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Abstract— This study is concerned with prediction of the “wind 
noise” component of ambient noise (AN) in the ocean. It builds on the 
seminal paper by [1], in which the authors quantified the correlation 
between AN and individual wind/wave parameters. Acoustic data are 
obtained from hydrophones deployed in the north and northeast Pacific 
Ocean, and wind/wave parameters are obtained from moored buoys 
and numerical models. We describe a procedure developed for this 
study which isolates the correlation of AN with wave parameters, 
independent of mutual correlation with wind speed (residual 
correlation). We then describe paired calibration/prediction 
experiments, whereby multiple wind/wave parameters are used 
simultaneously to estimate AN. We find that the improvement from 
inclusion of wave parameters is robust but modest. We interpret the 
latter outcome as suggesting that wave breaking responds to changes 
in local winds quickly, relative to, for example, total wave energy, 
which develops more slowly. This outcome is consistent with prior 
knowledge of the physics of wave breaking, e.g. [2]. We discuss this 
in context of the time/space response of various wave parameters to 
wind forcing.  

Keywords—ocean waves, ambient noise, wave breaking, bubbles, 
Wenz curves 

I. INTRODUCTION 

The goal of this study is to improve prediction of the 
component of ocean ambient noise (AN) commonly referred to 
as “wind noise”. Important early work on this topic was 
performed by [3] and [4]. In these works, it was recognized that 
the sea state (“surface agitation”) has a central role in the 
creation of this noise, while the underlying mechanisms were 
imprecisely ascribed to some combination of the action of 
bubbles in the water and/or the impact of sea spray on the 
surface. Ref. [5] argued that the latter was a dominant 
mechanism, but by the end of the decade, there was general 

recognition that bubbles play the more important role (e.g., [6], 
[7]). Ref. [6] outlined three frequency regimes: 1) low 
frequencies, 100 to 200 Hz, where bubbles in the water act as 
amplifiers of “water turbulence noise”, 2) intermediate 
frequencies, 200 Hz to 1 or 2 kHz, where we tend to have a broad 
maximum in the wind/wave noise, caused by “collective 
oscillation of bubble clouds”, and 3) high frequencies, 1 or 2 
kHz to around 10 kHz, where individual bubble oscillation 
dominates. The last regime is the most well understood: this 
noise is emitted immediately (e.g. 10s of milliseconds) after the 
bubbles are formed, and the frequency of the emission is directly 
related to the bubble radius. 

It is generally understood that wave breaking is the link 
between wind speed and bubble generation. Further, [8] 
established that the third noise mechanism above is a direct 
result of wave breaking. However, in the real ocean, wave 
breaking is not a simple function of wind speed. While wind 
speed is of primary importance, the frequency and intensity of 
wave breaking is affected by other environmental factors, e.g. 
see review by [2]. Consider, as illustration, an idealized case of 
15 m/s wind speed over 100 m basin vs. the same wind over 100 
km basin. The oceanographic difference (specifically, fetch) will 
result in different strength of breaking, and therefore different 
acoustic emissions for these two cases. Current AN models use 
wind speed, plus water depth (usually binary, i.e. deep vs. 
shallow, [4]) and/or receiver depth [9] and predict AN as a 
function of frequency.  Our hypothesis is that since the AN is 
more directly connected to wave breaking than to wind speed, 
then it should be possible to improve a prediction of wind noise 
by incorporating oceanographic information.  

The above hypothesis is not new. It was central to the 
landmark study of [1], who quantified the correlation between 
AN and several wind/wave parameters for a relatively short (10-This work was funded by the Office of Naval Research via the NRL Core 
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day) field experiment, looking at three frequencies, from 4.3 to 
14 kHz. They found that the AN correlation with predicted wave 
dissipation rate is equal to, or slightly higher, than the correlation 
with wind speed. In the present study, we perform similar 
analysis, though here we apply multiple input parameters 
simultaneously to predict AN, rather than one parameter at a 
time. Further, we use a larger dataset: the cumulative duration 
of our dataset is 681 days, making it 68 times larger than that of 
[1], and a much broader range of frequencies are studied (127 
Hz - 18 kHz, vs. 4.3 – 14 kHz). 

In Section II, we present an idealized example of wave 
growth, to illustrate the uncertainty around the behavior of 
emitted AN as a type of “wave parameter”. In Section III, we 
introduce the datasets used in the study. In Section IV, we 
present an analysis in which we study the correlation of AN with 
wave parameters, after the correlation with wind speed is 
removed. In Section V we perform multi-linear regression to 
predict AN using combined wind and wave parameters, and 
quantify the benefit of including wave parameters in terms of 
RMS error in dB. In Section VI, we discuss limitations and 
future work, and in Section VII, we summarize our conclusions 
from this study. 

II. IDEALIZED CASE, FETCH-DEPENDENCE 

As in the thought experiment in Section 1, it is self-evident 
that for an idealized fetch-limited case, AN should grow with 
fetch. However, this is merely a qualitative relation, and so it 
does not assist us in predicting AN. A numerical ocean wave 
model such as SWAN (Simulating WAves Nearshore, [10]) can 
be used to predict many different wave parameters, each of 
which is associated with wave breaking to a greater or lesser 
degree. Table 1 show SWAN results for an idealized case with 
a 10-meter wind speed of 15 m/s.  

TABLE I.  Output from SWAN model for idealized case of 
wind speed of 15 m/s. Percentages shown are “percent relative 
to fetch of 300 km” 

fetch length 300 m 3 km 30 km 

fetch (%) 0.1% 1.0% 10.0% 

����
�.�� 46.2% 61.2% 83.1% 

����
�.� 21.4% 37.4% 69.0% 

���� 4.6% 14.0% 47.7% 

	
 17.7% 34.7% 61.8% 

��
� 14.7% 40.1% 95.6% 

��� 0.0% 0.6% 14.2% 

�� 0.2% 1.9% 22.7% 

�� 0.9% 5.7% 35.5% 

�� 3.9% 15.2% 53.0% 

�� 13.4% 34.6% 72.7% 

�� 32.1% 61.2% 88.2% 

�� 54.2% 83.7% 95.6% 

AN unknown unknown unknown 

 

Parameters given in Table 1 include moments of the wave 
energy density spectrum ����.  They are computed as �� =
� ����������
��

, where ��  and ��  are the upper and lower 

frequency bounds. Spectral moments typically have a physical 
relevance. For example, the significant waveheight ����  is 

defined as ���� = 4���; �� is proportional to surface orbital 

velocity; ��  is proportional to surface Stokes drift; ��  is 
proportional to mean square slope of the sea surface; and �� is 
associated with the Phillips saturation level [11], sometimes 
taken as a basis for a breaking threshold [12]. ��
�  is the 
integrated rate of dissipation of wave energy by whitecapping 
(deepwater breaking), and 	
 is peak period.  

The wave parameters grow at a markedly different rate. For 
example, ��
� , �� and �� grow very quickly with fetch, while 
total energy (��) grows more slowly. For the “wave parameter” 
AN, the growth rate is unknown, though intuition would suggest 
a growth rate similar to ��
� , �� and ��. And of course, it must 
be recognized that even this unknown idealized growth rate of 
AN is likely frequency-dependent. 

III. DATASETS 

This study relies on three datasets: 1) hydrophone 
observations of ambient noise, 2) observed wind/wave 
parameters, and 3) modeled wind/wave parameters. Each is 
described below. 

A. Hydrophones 

The first hydrophone dataset is from a deployment by the 
National Oceanic and Atmospheric Administration (NOAA) 
Pacific Marine Environmental Laboratory (PMEL) at Ocean 
Station Papa (OSP, 50.25 N, 145.13 W), south of the Gulf of 
Alaska. The location is very remote, around 1000 km from the 
Alaska and Canada mainlands, and in deep water (4250 m 
depth), with the hydrophone at 500 m depth, which is above 
critical depth. Data were processed for October to December 
2018. These data include eight analysis frequency bands, with 
center frequencies from 127 Hz to 1.7 kHz, with 5 kHz sample 
rate. 

The second and third hydrophones are offshore of southwest 
Canada, deployed and managed by Ocean Networks Canada. 
Both are near the seafloor, and data were processed for October 
2020 to December 2021. One hydrophone is the “Cascadia 
Basin” deployment, 202 km west of Vancouver Island, 2660 m 
depth (47.76 N, 127.73 W). This is below critical depth. The 
more nearshore hydrophone is the “Clayoquot Slope” 
deployment, 78 km west of Vancouver Island, at 1260 m depth 
(48.70 N, 126.87 W). Critical depth is not achieved at this 
location. The wind climate for this region is primarily 
alongshore, so fetch-limited conditions are not common. These 
data include 18 analysis frequency bands, with center 
frequencies from 127 Hz to 18 kHz, with 64 kHz sample rate. 
At most frequencies, Cascadia is modestly quieter than 
Clayoquot, implying that at the latter, the impact of being within 
the sound channel is relatively more important than any 
suppression of sound by bottom interaction. 
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Acoustic data processing 

The procedure for wind noise estimation is similar for all 
data sets, with modifications to account for factors such as data 
bandwidth, hydrophone depth, and acoustic propagation 
characteristics. Raw hydrophone time series data were first 
processed using Welch’s method [13] to produce spectral 
estimates over stationary time intervals. A Hann window was 
used to minimize off-frequency-bin energy leakage via spectral 
sidelobes [14]. Received sound levels were then estimated over 
analysis frequency bands spanning 100 Hz to 20 kHz. For all 
data sets, lower frequencies (< 100 Hz) were not processed due 
to elevated ambient sound levels due to shipping activity. High 
frequency processing cutoffs were determined based on 
identified low pass filter roll-off and data acquisition system 
noise floor. 

Calibrated spectral estimates were formed from the raw 
spectra based on Transmission Voltage Response (TVR) curves 
which accompanied the data sets. The calibrated spectra were 
averaged over 1-min intervals and analysis band levels were 
derived as the linear mean of the time-averaged spectra for the 
analysis frequency bands (8 for OSP and 18 for ONC). For the 
PMEL data, this averaging was done using 1-s FFTs with 50% 
overlap (119 snapshots per minute, 1 Hz frequency resolution) 
while the ONC data was processed using 0.1s FFTs with no 
overlap (600 snapshots per minute, 10 Hz frequency resolution). 
Finally, an algorithm was developed for automated removal of 
wind noise contaminants based on statistical techniques for 
outlier removal. Outlier selection is based on signal 
normalization techniques and median based statistical measures 
[15], [16], [17]. 

B. Observed wind/wave parameters 

The OSP hydrophone is co-located with a PMEL buoy 
equipped with an anemometer at 4 m elevation (Ocean Climate 
Station (OCS) Project Office), and an Applied Physics 
Laboratory / University of Washington wave buoy [18]. 

The ONC hydrophones are not co-located with wind/wave 
observations, but a number of U.S. and Canadian buoys are in 
the region, eight of which are used to validate input/output 
to/from the ‘SW (southwest) Canada’ wave model described in 
the next section. 

C. Modeled wind/wave parameters 

For the OSP location, we run a 1/4° hindcast with the wave 
model WAVEWATCH III® (“WW3”, [19], [20]).  The grid 
design of [21] is used. Wind and ice forcing for this model 
comes from the Navy's operational global atmospheric model, 
NAVGEM [22].  

For the SW Canada case, we run a similar global wave model, 
but since the hydrophones are not far from shore, we nest a 
regional wave model within the global model. We use the 
SWAN wave model (“Simulating WAves Nearshore”, [10]), at 
resolution between 2.5 and 2.8 km. Both models use NAVGEM 
winds (and ice, in case of the global model) at 0.18° resolution 
(Fig. 1). 

 

Fig. 1. Significant wave height (colors, in meters) and peak wave direction 
(white arrows), from the SW Canada SWAN model. Valid time is 2020 Oct. 10 
12:00 UTC. The ONC hydrophones are indicated with black diamonds. 
Magenta dots indicate metocean buoys deployed by NOAA’s National Data 
Buoy Center and Environment Canada. The west and south edges of the grid 
receive boundary forcing from WW3. 

WW3 and SWAN are both phase-averaged wave models which 
take inputs such as 10-m wind vectors and use them to predict 
directional wave spectral density, as a function of space, time, 
frequency, and direction. From the spectra, wave parameters can 
be derived. They account for the effects of spatially and 
temporally varying winds (i.e. increasing, falling, turning) on 
wave growth, dissipation effects such as that by breaking, 
bottom friction, and interaction with sea ice, and advection in all 
dimensions, making them much more sophisticated (and 
complex) than a parametric model based on time/space averaged 
wind speed and approximated fetch. 

D. Co-locations 

 In the case of OSP observed wind/wave parameters, 
geographic position of hydrophone data is already co-located. In 
all cases of model wind/wave parameters, bilinear interpolation 
is used for geographic co-location.  

 Temporal co-locations are made by taking the wind/wave 
parameters at 30-minute intervals, and for each temporal data 
point, finding the AN data within ±15-minutes of the wind/wave 
time, and averaging that AN data. For the OSP case, this results 
in up to 4250 co-locations per frequency. For ONC cases, there 
would be 21,100 co-locations without data gaps, but each case 
did contain gaps, so there were 13,300 co-locations per 
frequency for Cascadia and 10,900 co-locations per frequency 
for Clayoquot. With OSP counted twice, since observed and 
modeled wind/wave parameters are available, the total number 
of co-locations per frequency is 681 days. 
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IV. DE-CORRELATION ANALYSIS 

Ambient noise is created by bubbles, which are created by 
breaking waves, and the wave energy is generated by wind 
action. Thus, the AN is strongly correlated with wind speed, and 
so models such as [4] and [9] have had success. The direct 
correlation between AN and wave parameters (e.g. [1]) is 
difficult to interpret, because much of that AN-to-wave 
correlation is via mutual correlation with wind speed, which is 
already used in the AN predictive model. One method to 
anticipate the potential of wave parameters for improving the 
prediction is to perform analysis while controlling for this 
mutual correlation. We have done this using two independent 
methods, which are described in the two sections following. 

A. Band-normalized wave parameters 

Fig. 2 shows examples from the (a) OSP observations and 
(b) Clayoquot (ONC) model output at a middle frequency, 841 
Hz. The color scale here is the wave parameter ��, normalized 
by the mean �� in a wind speed bin of width 1 m/s. Horizontal 
black lines indicate these bins, and the mean AN in the bin, and 
thus these black lines are an example of a AN prediction that is 
based on wind speed alone. 

These plots indicate that at higher wind speeds, there is little 
variation of AN from the black horizontal lines. This indicates 
that a “wind speed only” prediction of AN is already quite 
accurate, and little can be done to improve upon it. At lower 
wind speeds, there is much more scatter above and below the 
black lines, indicating that some improvement is possible over 
the “wind speed only” model. The colors indicate that where 
observed AN is higher than the “wind speed only” model, 
normalized �� tends to be higher (red and orange), and below 
the line, the opposite is true (blue colors). This indicates that 
some improvement can be made on the “wind speed only” 
model by incorporating �� into the prediction model. 

A limitation of this type of diagram is that it only presents 
results for a single wave parameter and single acoustic 
frequency at a time. 

B. Correlation of residuals 

Another method to anticipate the potential of wave 
parameters for improving the prediction is to remove the 
component of the AN signal that correlates with the wind. Any 
remaining correlation is the “residual correlation”. 

First, we create a “wind speed only” prediction of AN for the 
dataset. Here, the population is split up into overlapping wind 
speed bins of width 1 m/s, and within each bin, a polynomial fit 
on frequency space is performed. Subsequently, the residual is 
computed as the misfit (or error) between the predicted and 
observed ambient noise. Having obtained the residuals, we are 
able to present all frequencies in the same plot: Fig. 3 shows the 
results for the wind speed band 4.2 to 5.2 m/s for the Clayoquot 
case. In panel (a) of Fig. 3, we see that the residual does not 
correlate with wind speed ( ! = −0.01), i.e. the decorrelation 
is successful. In panel (b), we find that correlation of the residual 
with the wave parameter �� is significant but not large,  ! =
−0.42. 

In Fig. 4, we plot the correlation vs. wind speed for several 
wind/wave parameters. This is the correlation with the wind 

speed correlation removed, and the result for wind speed is 
included as a thick blue line, both to indicate that the de-
correlation has succeeded (low correlation), and to indicate the 
range in which correlation can be considered insignificant (equal 
to or smaller than thick blue line). A negative value indicates 
that a predictive model based on wind speed alone will have 
signed mismatch (error) that correlates negatively with the 
parameter in question (e.g. tendency for underprediction of AN 
for cases of larger ��).   Parameters are summarized here: 1) 
“BFI” is the “Benjamin-Feir Index” sometimes used to predict 
the probability of rogue waves (for this and other definitions, the 
reader is referred to [23]; 2) “DSPR” is a metric for directional 
spread of the wave spectrum; 3) “FSPR” is a metric for 
frequency spread of the wave spectrum; 4) “PDIR” is peak wave 
direction (which may correlate with breaking due to proximity 
to coast line); 5) “QP” is associated with frequency width and 
wave groupiness ; 6) “STEEP” is the ����/', where ' is mean 

wavelength ; 7) “WD_deg” is wind direction; 8) “precip” is 
mean precipitation; 9) "mm1" is the spectral energy moment 
���, 10) "m0" is the moment ��, etc.  

This figure indicates that parameters such as ��, ��, ��, 
steepness, and integrated dissipation can help to improve the AN 

a) 

 

b) 

 

Fig. 2. AN at 841 Hz as a function of wind speed (��; colors indicate the 
value of normalized �� as described in the text. Panel (a) shows results for 
the OSP case. Panel (b) shows results for the Clayoquot case. 
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prediction, by a modest amount (correlation around 0.4), at 
lower wind speeds (3 to 6 m/s). At middle wind speeds (e.g. 6 to 
10 m/s), this benefit is significant but smaller (correlation around 
0.2). There is significant correlation with precipitation, even at 
higher wind speeds. 

 

V. MULTI-LINEAR REGRESSION 

For each location, we perform linear regression to fit 
individual wind/wave parameters to AN and multi-linear 
regression to fit multiple parameters (e.g. wind speed plus one 
to five wave parameters). For each regression, we create both a 
linear fit, e.g. AN=coefficient1 × parameter1 + coefficient2 × 
parameter2 + .., and a log fit, e.g. AN=coefficient1 × 
log10(parameter1) + coefficient2 × log10(parameter2) + ..., and 
select the one with higher skill. We also experimented with 
power fits, but those results are not presented here. 

 For the OSP dataset, the months of October and December 
2018 are used for training and November 2018 is used for 
prediction and evaluation.  In the ONC cases, the AN time series 
is segmented by “day of month” over the 14-month time series. 
The division is at “day of month” of 21, so that ~67% of data are 
used for creating the regression, and ~33% of data are used for 
prediction and evaluation. 

 Unlike the works such as [4] and [9], our goal here is not to 
create a predictive model that can be applied to other locations. 
Our predictions do not control for sensor depth as in [9], or water 
depth as in [4]. The predictive models created are thereby tied to 
their geographic positions. Our goal, rather, is to quantify the 
impact of inclusion of wave parameters in model predictive 
skill.  

Fig. 5 shows an example evaluation of the multi-linear 
predictions, for the Clayoquot case. The vertical axis is the RMS 
error of the AN prediction, in dB. We find that there is consistent 
but modest improvement in the predictive skill, relative to the 
“wind speed only” model. The degree of improvement is mostly 
insensitive to the selection of wave parameters. 

a) 

 

b) 

 

Fig. 3. Distribution of AN residual vs. wind/wave parameter for Clayoquot 
case, for the wind speed band of 4.2 to 5.2 m/s. In panel (a), dependency on 
wind speed is shown. In panel (b), dependency on �� is shown. 

Fig. 4. Clayoquot case: Pearson correlation coefficient as a function of wind 
speed, for different wind/wave parameters. This is the correlation value after 
the correlation with wind speed has been removed (see text). 
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VI. DISCUSSION: LIMITATIONS AND FUTURE WORK 

 Non-local AN generation is not addressed here. Past studies 
have, to our knowledge, also omitted this. In principle, this can 
be addressed with an acoustic propagation model, but the 
calibration process would become prohibitively complex. 
 Datasets that we have used so far are not fetch-limited, 
climatologically speaking. This implies that locally-generated 
waves are often in a mature state, which in turn implies that the 
windsea portion of the wave spectrum is, for the most part, 
adequately described using information about wind speed 
alone. This is expected to have a strong impact on our 
conclusions (i.e., conclusions here are likely site-specific). 
Work is now underway to apply similar methods to several 
“High-frequency Acoustic Recording Package” (HARP) 
deployments of [9]), some of which are likely to be fetch-
limited much of the time. 

VII. CONCLUSIONS 

We conclude the following, based on results presented. 
Discussion points are set apart using brackets []: 

• Likely, the wave process which leads to ambient noise 
(wave breaking, bubbles) reaches a mature state more 
quickly than, for example, wave height. [This implies 
that there is less penalty for using “wind only” 
prediction of AN than for using “wind only” prediction 
of wave height.] 

• The correlation study indicates a clear correlation of AN 
with wave parameters, independent of mutual 
correlation with wind. Unfortunately, at the three 
locations investigated, this “residual correlation” is less 
than 0.5. 

• Potential for improving AN prediction is greatest for 
lower winds (e.g. 2.5-7.0 m/s). 

• By including wave parameters in prediction (rather than 
wind speed alone), using multilinear regression: there is 
consistent and robust improvement in skill. However, it 

is modest at the three locations investigated, e.g. 0.1-
0.25 dB in the RMSE. 

We also make the following conclusion which are based on 
comparisons which are omitted from this manuscript for sake of 
brevity: 

• The residual correlation with wave parameters is higher 
for lower acoustic frequencies. [This may be an 
indication of more remotely generated AN.] 

• In our evaluations of RMSE for the OSP case (similar 
to Fig. 5), we get significantly higher skill (up to around 
0.5 dB) using input from observations (wind only or 
wind and waves) relative to using model values of the 
same. This indicates that accuracy (or lack thereof) of 
the winds is a primary determiner of AN predictive skill 
for all cases. 

• We found that prediction of AN from wind/wave 
parameters using Machine Learning exhibits less skill 
than the simpler method of multilinear regression. 
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