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Ensemble forecasting greatly expands the
prediction horizon for ocean mesoscale variability
Prasad G. Thoppil 1✉, Sergey Frolov 2, Clark D. Rowley 1, Carolyn A. Reynolds 3, Gregg A. Jacobs 1,

E. Joseph Metzger 1, Patrick J. Hogan4, Neil Barton 3, Alan J. Wallcraft5, Ole Martin Smedstad 6 &

Jay F. Shriver 1

Mesoscale eddies dominate energetics of the ocean, modify mass, heat and freshwater

transport and primary production in the upper ocean. However, the forecast skill horizon for

ocean mesoscales in current operational models is shorter than 10 days: eddy-resolving

ocean models, with horizontal resolution finer than 10 km in mid-latitudes, represent

mesoscale dynamics, but mesoscale initial conditions are hard to constrain with available

observations. Here we analyze a suite of ocean model simulations at high (1/25°) and lower

(1/12.5°) resolution and compare with an ensemble of lower-resolution simulations. We

show that the ensemble forecast significantly extends the predictability of the ocean

mesoscales to between 20 and 40 days. We find that the lack of predictive skill in data

assimilative deterministic ocean models is due to high uncertainty in the initial location and

forecast of mesoscale features. Ensemble simulations account for this uncertainty and filter-

out unconstrained scales. We suggest that advancements in ensemble analysis and fore-

casting should complement the current focus on high-resolution modeling of the ocean.
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The ocean mesoscales, which include eddies, fronts, mean-
ders, and rings of the boundary currents, have horizontal
spatial scales of 10–300 km and timescales of weeks to

months. They develop as a result of baroclinic flow instabilities1

and direct wind forcing. The dominant scale of the baroclinic
instability driving much of this variability is determined by the
Rossby deformation radius, which varies between 250 km at the
equator to about 10 km at higher latitudes2. The recent trend of
increasing model resolution, fueled by increasing computational
resources, has resulted in global ocean models that directly
resolve mesoscale eddies in mi-latitudes. Conversely, the regional
model can now resolve submesoscale features directly without a
need for parameterization3 of their impacts on larger scales. Such
eddy-resolving models are essential for producing a realistic
representation of energetics of the western boundary currents
such as Gulf Stream4 and Kuroshio, their interaction with the
deep ocean5, exchange of the heat and momentum fluxes with the
atmosphere6,7, and biological productivity of the ocean8.

Eddy resolving, non-assimilative models are insufficient for
accurate prediction of evolving mesoscale eddies and fronts due
to mismatches in the initial locations of eddies and associated
non-linear process, resulting in large forecast errors. This source
of error could be diminished by accurate initialization of the
ocean dynamic state through assimilation of ocean observations
that are used to constrain the mesoscale features, thereby
extending the forecast horizon9,10. Such initialization underpins
forecasting for all components of the Earth system and is based
on the optimal statistical estimate of the initial state given the
prior guess from the numerical model and the sparse observations
of the fluid. Unlike the atmosphere, which is transparent to many
modalities of the remote sensing, the ocean is opaque to the
electromagnetic sampling, hence, resulting in very sparse obser-
vations of the ocean interior (vertical profiles of temperature and
salinity) with the majority of the observations confined to the
surface (sea surface height, salinity, temperature, and ocean
currents). With the assimilation of these observations9–14, the
current generation of the forecast models has forecast skill of
10–20 days11 as measured by the anomaly correlation of the Sea
Surface Height (SSH). Unlike the atmosphere where the limit of
synoptic predictability has been a focus of sustained
research15–17, similar estimates for the ocean mesoscale are
lacking. However, several recent studies suggest that using
empirical methods and numerical model experiments, it is pos-
sible to establish predictive skill in excess of 30 days for isolated
cases of large eddies in the northern South China Sea18,19.

The current generation of ocean forecasting models is taking
two complimentary approaches to improve the quality of the
ocean forecasts: (1) improving realism of the ocean models, such
as increasing model resolution beyond the mesoscale20, inclusion
of tides21, and coupling between ocean and atmosphere22,23; and
(2) directly accounting for uncertainty in the ocean initial con-
ditions and forecast evolution by using ensembles of model
forecasts22. Higher resolution models, while providing a more
realistic representation of ocean features at scales smaller than the
mesoscale, cannot be sufficiently constrained due to sparse
observations available to provide necessary coverage. As a con-
sequence, the source of error from the unconstrained scales could
lead to larger forecast errors owing to growing dynamical
instabilities24. We show that significant improvement in the
ocean forecast can be attained by accounting for uncertainty in
the initial conditions. Here, we use a suite of coupled lower
resolution (1/12.5°), high-resolution (1/25°), and ensemble
(1/12.5°) model forecasts (see Table 1 and Methods for specifi-
cation of model formulations) to examine the role of each of these
model enhancements in improving the ocean forecast. The
forecast error calculated using ground truth observations across a

variety of parameters among the models consistently indicate that
the ensemble mean exhibits superior skill over the deterministic
forecasts at all lead times. We provide a quantitative analysis that
shows how the ensemble mean selectively filter out scales that
contribute to the forecast error.

Results
Comparison of forecast skill. We define the skill of the model as
its ability to have lower root mean square error (RMSE) (com-
pared to the ground truth observations) than a monthly mean
climatology of the ocean observations. Figure 1 shows that the
enhancements in ocean model realism (1/25°, blue) results in
statistically indistinguishable RMSE compared to the lower
resolution (1/12.5°, red) forecasts. It is possible that a selection of
a different error metric might highlight the differences between
the two deterministic models. In contrast, better representation of
uncertainties through ensemble forecasting drastically increases
the skill of the forecast (black) compared to deterministic (high
and lower resolution) models (see summary in Table 2).

Specifically (Table 2), both deterministic models have similar
skill for predicting upper ocean temperature (11 days), upper
ocean salinity (5 days), Sea Surface Height Anomaly (SSHA,
8 days), Sea Surface Temperature (SST, 21 days), mixed layer
depth (11–15 days), and surface heat flux (7 days). For SST being
validated against the ERA5 SST reanalysis, the high-resolution
model offers a slightly less skillful forecast than the lower
resolution model (12 instead of 14 days). We speculate that this
slight degradation of the forecast skill for the high-resolution
model can be attributed to a combination of factors, stemming
from the unconstrained features that have sharper gradients and,
hence, lead to large errors when these features are displaced24.
Though not statistically significant, the presence of small-scale
features with sharper gradients in the high-resolution model is
sensitive to the upper-ocean mixing and thus contributed to the
slightly higher RMSE in the mixed layer depth.

In contrast, the ensemble mean is consistently more skillful
than the deterministic forecasts. The forecast skill of the ensemble
mean increases, relative to either deterministic forecast, by almost
three-fold (Table 2) for all ocean variables, with the exception of
the surface heat flux (which increases by 30%). For the ocean
variables, the largest skill is for comparisons with in situ SST
(greater than 60 days) and the smallest skill is for upper ocean
salinity (24 days). The forecast skill for the upper ocean eddies, as
measured by SSHA and the water column temperature, is around
30 days. We suggest that these discrepancies in skill reflect the
availability of observations to constrain the initial conditions of
the system: with most observations available for the SST (~50M
daily) and the least for in situ salinity (~0.5 K daily). There are
about 300 K SSHA altimeter observations daily. The lowest skill
of about 9 days and the smallest skill gain from the ensemble
mean is for the surface heat flux. This lower skill is a reflection
that heat fluxes are impacted by both ocean and atmospheric
states. Specifically, the dominant role that cloud cover plays on
the incoming short-wave solar radiation and outgoing long-wave
radiation. In mid-latitudes, the prediction of cloud cover is
limited by the atmospheric synoptic predictability of 5–10 days
and lack of formal initialization of the cloud fields. Furthermore,
the skill in the surface heat flux is consistent with the
predictability of 5–10 days in surface winds and air-
temperature22, which in turn contribute through fluxes of latent
and sensible heat to the lowest skill in surface heat flux. Although
surface heat flux is a dominant forcing for the evolution of SST,
the fluxes of momentum, heat and freshwater down to the mixed
layer determine the SST. The extended SST forecast skill, which
benefits from the longer ocean memory in response to the
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Table 1 List of model experiments used in this study.

Model experiment HYCOM/CICE NAVGEM Ocean tides Model set-up

DetHiRes 1/25°, 41 layers T0681 L60 (1/5°) Yes Deterministic
DetLoRes 1/12.5°, 41 layers T0359 L60 (1/3°) No Deterministic
EnsLoRes 1/12.5°, 41 layers T0359 L60 (1/3°) No Ensemble (16 members)

HYCOM Hybrid Coordinate Ocean Model, CICE Community Ice CodE, NAVGEM NAVy Global Environmental Model,
DetHiRes deterministic high-resolution model, DetLoRes deterministic lower resolution model, EnsLoRes ensemble lower resolution.

Fig. 1 Comparison of forecast skills. Global Root Mean Square Error (RMSE) of the ensemble mean (black), lower- (red) and high- (blue) resolution
deterministic models, and monthly mean climatology (green) for (a) upper 500m temperature (°C), (b) upper 500m salinity (psu), (c) in situ SST (°C),
(d) Sea Surface Height Anomaly (SSHA, m), (e) ECMWF ERA5 SST (°C), (f) ECMWF ERA5 surface heat flux (W m−2), and (g) mixed layer depth (MLD,
m), as a function of forecast length (days) from 1 to 60 days. The monthly mean climatologies include: (a–c, g) GDEM443, (d) AVISO SSHA for the period
1993–2018, (e–f) ECMWF ERA5 1989-2018. The verification is limited to region 50°S–50°N for the SSHA and ECMWF ERA5 and MLD fields. MLD is taken
as the depth at which surface temperature decreased by 0.25 °C. Error bars are drawn at 95% confidence intervals (see methods for details).
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atmospheric forcing, is comparable to the skill of the mixed layer
depth forecasts. Furthermore, the ocean dynamic processes (e.g.
upwelling) govern the SST in regimes where surface heat flux is
not dominant and acts to counter the SST changes25. This
disconnect between the surface heat flux and SST explains the
superior skill in SST compared to surface heat flux. The
comparison with ERA5 SST, which is relatively smoother than
in situ SST, further confirms that the improvement is not only
due to a smoother ensemble mean but also through filtering of
the unconstrained scales in the eddy-resolving ocean.

How do ensembles improve forecast skill? Theory as well as the
daily practice of weather forecasting show that an ensemble
average of non-linear forecasts will have a comparable or lower
RMSE than any individual ensemble forecast member26,27. The
RMSE in the ensemble mean is improved relative to the control
member through non-linear filtering of the less-predictable

smaller spatial scales. (For linear perturbation growth, the mean
of an ensemble centered on a control member will remain equal
to the control member). The impact of non-linear filtering
through ensemble forecasting has been well-documented in the
atmosphere28,29 and thus ensemble weather forecasts are routi-
nely used at major forecasting centers26. We illustrate the impact
of non-linear filtering by starting a deterministic forecast from an
ensemble mean analysis, referred to as the control forecast or
emIC (Fig. 2). As expected, the RMSE score of the control fore-
cast is similar to that of the ensemble mean over the first
5–7 days. However, at longer lead times, the dynamic instabilities
in the control forecast grow, leading to deteriorating RMSE
scores. Ultimately, the error of the control forecast converges to
the error of the other deterministic forecasts (cmIC).

To distinguish between the effect of non-linear filtering in the
ensemble mean and the fact that the ensemble mean is smoother
and, hence, may verify better against observations in an RMSE
sense, we use spectral analysis of the forecast error R2 statistics.
We define R2 as the ratio of the model error variance to the
variance of the altimeter SSHA (see methods section for details of
the R2 computation). The R2 > 1 indicates that the model lacks
skill in a specific spectral band because the variance of the model
error exceeds the natural variability of the SSHA. The R2 < 1
indicate a skillful forecast, that is, the model error is smaller than
the natural variability. The R2= 1 indicates that the variance of
the model error is equal to the variance of the signal in the
spectral band, for example, when we use climatology as a forecast.
The R2= 2 can occur when the model and the observations have
equal variance but the signals are perfectly out of phase.

At 1-day forecast (Fig. 3a) both deterministic forecasts lack
skill for scales smaller than about 300 km. In contrast, the
ensemble mean has skill at all scales, with significant skill at scales
larger than 150 km. The ensemble mean is also more skillful than
a deterministic forecast at large scales (up to the maximum of
1000 km shown in Fig. 3). The lack of deterministic skill is
consistent with the recent study that found that assimilation of
ocean observations provides no constraint on ocean eddy kinetic
energy at scales smaller than 161 km in the Kuroshio region20.
Recall that the eddy kinetic energy is a derivative of the altimetry
SSHA and, hence, we can expect that constrained kinetic energy
spectra would have different scales than the SSHA.

Figure 4 further illustrates the spectral analysis results
presented in Fig. 3 using a single snapshot of the SSH from 1-
day forecast in the Kuroshio extension region of the North West
Pacific. The forecasts agree on the representation of large-scale
warm and cold core eddies (as indicated by highs and lows in
SSH) and fronts in the Kuroshio extension region. Conversely,
the models disagree at the exact location of smaller eddies (e.g.
eddy around 162°E and 30°N highlighted by the black dashed line
box). It is these unconstrained features at the analysis time that
are leading to large forecast errors owing to growing dynamical
instabilities. The error growth in the high-resolution model is
even more rapid as indicated by slight degradation of skill in SST

Table 2 Comparison of forecast skills relative to climatology. Values come from Fig. 1. A Model forecast is skillful when the
RMSE is smaller than that of climatology.

RMSE skill compared to climatology (days)

Model Experiment Temperature (8–500m) Salinity (8–500m) in situ SST ERA5 SST SSHA ERA5 Heat Flux MLD

DetHiRes 11 6 16+ 12 8 7 11
DetLoRes 11 5 21 14 9 7 15
EnsLoRes 33 24 60+ 37 29 9 45

+Forecasts with no climatology crossing due to forecast length cutoff.
SST sea surface temperature, SSHA sea surface height anomaly, ERA5 ECMWF reanalysis Version 5, MLD mixed layer depth.

Fig. 2 Illustration of non-linear filtering in a model experiment.
Comparisons of global SSHA RMSE for a single forecast started on 5 July
2017 between (black) ensemble mean, (solid red) lower resolution
deterministic initialized from the analysis (cmIC), and (green dashed) lower
resolution deterministic initialized from the ensemble mean at the analysis
time (lower resolution emIC). At short lead times the lower resolution
emIC and ensemble mean RMSE match as a result of filtering out non-linear
unconstraint scales. At long lead times growing dynamical instabilities in
the lower resolution emIC lead to larger forecast errors similar to that in the
lower resolution deterministic forecast. On the other hand, by filtering out
unconstraint scales through averaging the ensemble mean maintains a
consistently lower RMSE at all lead times. Although our sensitivity
experiment seems to suggest that a forecast started from the ensemble
mean is yielding skill that is better than the control member at shorter lead
times, in practice, this is not necessarily a better approach. When we
initialize from the ensemble mean, which is smoother than a single
member, the features that exhibit sharp gradients are lost in the ensemble
averaging. This will have a major impact on ocean mixing and stratification
and it will take time for the model to recover.
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(Fig. 1e) as the error from smaller scales feed onto the underlying
mesoscales. This is consistent with other reported findings that
increasing model resolution towards the submesoscale leads to
a degradation in the forecasting of mesoscale features in a
regional modeling study24.

Figures 3b, 4b show that our findings for the 1-day forecast are
also valid at a longer forecast time (we used 10 day forecast here
as an example). As expected, the R2 for the deterministic forecast
increases across all scales, indicating degraded skill of the forecast
compared to the 1-day forecast (Figs. 3a, 4a). Furthermore, in
agreement with Fig. 1, the R2 for deterministic forecasts exceeds 1

at all scales indicating lack of skill (recall that from Fig. 1d the
skill of the deterministic forecast for SSHA is less than 9 days). By
contrast, the R2 ratio of the ensemble mean is below 1 at a wide
range of scales, particularly scales larger than 200 km, consistent
with Fig. 1d. The fact that these independent analyses produced
similar results provides confidence in our results.

Qualitative comparisons with SSHA observations shown in
Fig. 5 illustrate the extended predictability of the mesoscale
features in the ensemble mean. At 1-day forecast (Fig. 5a), the
characteristics (shape and position) of mesoscale features (cold
and warm core eddies) are in good agreement with the along-
track SSHA observations owing to the assimilation of observa-
tions at the analysis time. The evolution of the mesoscale
circulation becomes less skillful at 10-day forecasts (Fig. 5b) due
to growing dynamical instabilities. This can be seen around 155°E
(see dashed box) where an elongated cyclonic circulation with a
warm core eddy to the north in the 1-day forecast becomes
baroclinically unstable, generating two cold core eddies by eddy
separation. However, the observations have maintained its shape
and position closer to March 2, 2017. The eddy separation may
also be the result of interaction with the warm core eddy to the
north. In the 30-day forecast (Fig. 5c), the mesoscale features in
the ensemble mean do not match well with the along-track SSHA.
While there is reasonable agreement for the presence of mesoscale
features in the observations, it is evident that their positions are
displaced. This is the case for a cold core eddy at 132°E (see
dashed box) where it has displaced slightly to the northeast
compared to the observations.

Discussion
The growth in computational power for ocean modeling has
enabled increased horizontal resolution beyond mesoscales. We
find that current deterministic data assimilation only constrains
SSHA scales that are larger than 300 km, which far exceeds scales
that can be numerically resolved by a modern ocean model. For
example, the high-resolution (1/25°) model used in this study can
numerically resolve and propagate features as small as five-to-ten
grid cells or about 20–40 km. As a result, both deterministic
models constrained similar scales despite having differences in
the model resolutions, thereby producing comparable skill.
Hence, we attribute the lack of skill improvements in the high-
resolution model to the lack of high-density observations that are

Fig. 3 Improved forecast skill in the ensemble mean as revealed by power spectral analysis of along-track SSHA. Scales constrained in the (a) 1 day
forecast and (b) 10 day forecast in the high-resolution model (blue), lower resolution (red), and ensemble mean (black). R2, which is the ratio of the model
error variance to the variance of the altimeter SSHA, values above 1 mean that variance of error in this frequency band is greater than variance of the
altimeter signal and, hence, these scales are not constrained. R2 values below 1 indicate that variance of errors are lower than the variance of the signal and,
hence, analysis and forecast have skill in this frequency band. The R2 values are spectrally smoothed and averaged over multiple forecasts (see details in
the methods section). We excluded scales lower than 150 km as the power spectra density flattens off at this scale. The analysis is carried out for the globe
(50°S to 50°N). The error bars of the R2 are computed at 95% confidence level (see methods for details).

Fig. 4 Models depiction of mesoscale features. Snapshot of model Sea
Surface Height (SSH, m) forecast initialized from the analysis on 1 March
2017 for the Kuroshio Extension region (southeast of Japan) for the (a) 1-
day (2 March 2017), and (b) 10- day (11 March 2017) forecasts. Shaded
regions indicate ensemble mean SSH. A contour of the 0.7 m SSH is shown
for ensemble mean (black), high- (blue) and lower- (red) resolution models
to demarcate the mesoscale features. Gray contours indicate spaghetti
isolines of 16 ensemble members 0.7 m SSH. Regions of high (low) SSH
indicate warm (cold) core mesoscale eddies. The spread of the ensemble
members indicates forecast uncertainty in the location of mesoscale
features, which is causing larger forecast errors in the deterministic
forecasts. The models agree on the large-scale mesoscale features and
fronts. However, the exact location of the small-scale features differs
among the models (highlighted by dashed black box). It is the fast-growing
instabilities on these scales that are responsible for forecast errors.
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needed to constrain the model. Future high-density observations
mission such as Surface Water Ocean Topography (SWOT)30

could benefit high-resolution models in constraining scales
smaller than that in the current ocean observations system.

The results of this study suggest that the continuous increase in
resolution and realism of the ocean models has limited potential
to further improving the forecast skill of eddy-resolving models
without reducing the uncertainty of the model initial conditions.
One way to reduce these uncertainties is to increase the density of
the ocean sampling network (such as the upcoming SWOT30 and
the planned Winds and Currents Mission (WaCM)31 satellite
missions). The scales constrained by the data assimilation are
specific to the density of observations, assuming model resolution
can resolve those scales in the observations. Recent studies20,32

suggest that the addition of the SWOT observations will translate
to modest improvement in constrained scales in the ocean fore-
cast (reduction from 161 km to 139 km for ocean eddy kinetic
energy). It is likely that the proposed WaCM mission to observe
surface currents will be able to further constrain global ocean
mesoscale features. Conversely, it is possible to improve the
realism of the resolved scales in the high-resolution models by
improved ocean model physics and parameterization of sub-grid
scale processes.

As an alternative, but also in addition to the increase in ocean
satellite observing missions, this article demonstrates that
ensemble forecasting methods can greatly reduce error in both
the ocean analysis and forecast. Specifically, at the 1-day forecast,
the ensemble mean analysis presented here had skill for the entire
range of examined scales (from 150 to 1000 km), while the
deterministic analysis had no skill below 300 km. The same

benefit of non-linear filtering extends to the forecast, which
translates to a three-fold gain in the skillful forecast range over
climatology (ensemble mean is more skillful than climatology up
to 29 days for SSHA and over 60 days as verified against
in situ SST).

Given the results presented in this paper, what is the benefit of
further investments into higher resolution forecast models? We
hypothesize that the ensemble of such high-resolution models
(once it becomes practicable with an increase in computational
resources) is likely to be more skillful than the ensemble of lower
resolution models that we investigated in this paper. Such
increased skill is likely to result from (a) a more realistic repre-
sentation of the natural variability of the ocean, and (b)
better representation of the energy cascade in the high-
resolution model.

Ensemble forecast systems similar to the one presented here
can be developed readily and at a modest computational cost (the
cost of the 16-member lower resolution ensemble is roughly twice
the cost of the high-resolution ocean model used in this study).
The addition of the ensemble methodology to the array of
emerging ocean forecasting applications can have positive bene-
fits for multiple endeavors, including improvements in ocean
reanalyses and improved forecasting of ocean ecosystems and
harmful algal blooms and storm surge, and other application such
as safety of navigation in the Arctic, search and rescue at sea, and
extended range weather forecasting.

Methods
Models. A set of coupled global models are used. A summary of the model con-
figurations is presented in Table 1. The model components and their configurations
are based on existing Navy forecast systems. The ocean model is the HYbrid
Coordinate Ocean Model (HYCOM)11,33 with sea ice—Community Ice CodE
(CICE)34; and the atmospheric model is the NAVy Global Environmental Model
(NAVGEM)35. The models are fully coupled using National Unified Operational
Prediction Capability (NUOPC)36 coupler. The high-resolution model is config-
ured at 1/25° (~4.4 km in the tropics) and lower resolution is 1/12.5° (~9 km in the
tropics). All models have 41 vertical layers. Vertical mixing is parameterized using
the KPP scheme. These experiments utilize the same settings apart from differences
in resolution except that high-resolution deterministic model includes tidal forcing.
Because the models are fully coupled, the forcing can be slightly different between
the models due to different horizontal resolutions (see Table 1) which is not likely
to impact the forecast skills. The family of coupled models, referred as Navy-
ESPC22, were undergoing transition from research to operations at the U.S. Fleet
Numerical Meteorological and Oceanographic Center (FNMOC) at the time these
experiments were conducted.

Data assimilation. Atmospheric observational data are assimilated using a 6-hour
update cycle in the NRL Atmospheric Variational Data Assimilation System—
Accelerated Representer (NAVDAS-AR)37. A three-Dimensional Variational Data
Assimilation (3DVAR) method is used for the assimilation of ocean and sea ice
observations using a 24-hour update cycle and the Navy Coupled Ocean Data
Assimilation software (NCODA)38,39 to constrain the mesoscale features to the
available observations. A weakly coupled data assimilation system is used for the
Navy-ESPC model22, which is defined by using separate DA systems for the ocean
(NCODA) and atmosphere (NAVDAS-AR) and a fully coupled forecast model for
the first guess (Navy-ESPC). A 3-h incremental analysis update40 is used to syn-
chronize the initial conditions in the ocean and the atmosphere and to minimize
the impact of the dynamical imbalances in the analysis increments. The sea ice
analysis is directly inserted at the start of each 12Z forecast cycle.

Ensemble generation. Ensemble experiments with the Navy-ESPC are configured
as a 16-member ensemble. Ensemble generation used the perturbed observation
approach, in which observations are perturbed separately in NAVDAS-AR and
NCODA scaled by the observational error. In the present configuration, 15 members
add perturbations to the observations and one “unperturbed” member does not.
Note, that this unperturbed member is still part of a random draw from the
unknown true distribution of errors. Each ensemble member maintained an inde-
pendent forecast-assimilation cycle in which perturbations are introduced through
the observations assimilated by adding random perturbations to the observations.
The perturbations are scaled with the assumed observation error of each observation
(i.e., random draws from the normal distribution with zero mean and the standard
deviation of the observation error). The introduction of the random perturbations

Fig. 5 Qualitative comparisons with SSHA observations. Model ensemble
mean sea surface height anomaly (SSHA, m) of the Kuroshio Extension
region (southeast of Japan) on the forecast days (a) 1 (2 March 2017), (b)
10 (11 March 2017) and (c) 30 (31 March 2017) for the forecasts started
from the 1 March 2017 analysis. The shaded regions indicate the ensemble
mean SSHA. The along-track altimetry SSHA observations are shown as
filled squares with white edges using the same color bar. Because a single
day along-track SSHA observations have a limited spatial coverage on
depicting mesoscale eddies, we combined three days along-track
observations (e.g. along-track observations from 9 to 11 March 2017 are
used for forecast verification on 11 March 2017) with the assumption that
eddy movement over three days is relatively small. Regions of high (low)
SSHA indicate warm (cold) core mesoscale eddies. The location of two cold
core eddies (cyclonic) is highlighted by dashed black boxes.
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produces differences in the analyses, in turn, causing differences in the forecasts. In
NAVDAS, observations are perturbed in the NAVDAS-AR 4DVAR solver after they
are thinned and quality controlled. Statistics of the perturbations are consistent with
the observation error statistics used by the 4DVAR system. In NCODA, satellite
observations of SSHA, SST, and sea ice concentration and in situ surface observa-
tions are perturbed before thinning, synthetic profiles are generated using perturbed
SSHA and SST predictors, and in situ profile observations are perturbed individually
independent of the profile thinning. Due to our implementation constraints we do
not enforce the requirement that the ensemble perturbations average-out to zero at
initial time.

As this is a fully coupled ocean-atmosphere-sea ice system, perturbations
introduced in the atmospheric variables (e.g. winds), in turn, feedback into the
ocean thereby serving as a source of uncertainty to the ocean forecasts. The model
uncertainties, those caused by approximations in model formulations and physical
parameterizations, are not accounted for in the present configuration. While
considerable progress has been made to account for structural model uncertainties
in atmospheric forecast models41, progress for ocean models is still in the early
stages42. This is due to the lack of a clear understanding of sources of error and
how to represent them in ocean forecasting models. One aspect of this research that
separates itself from earlier studies is that we have presented results from a global,
fully coupled ocean-atmosphere-ice global ensemble prediction system and
compares the ensemble skill relative to a high- and lower- resolution deterministic
systems, out to 15–60 days.

Analysis-forecast cycle. The analysis for the coupled ensemble started on
15 December 2016. All 16 members started on this date using the same restart files
and ran until 24 January 2018. After a 45-day spin-up period in order to give the
parallel update cycles time to diverge, 60-day forecasts were performed once per
week on Wednesdays at 12Z consisting a total of 52 forecasts spanning 1 February
2017 and 24 January 2018. A similar set-up is used for high-resolution coupled run,
except that the length of forecast is limited to 16 days. This set-up enables com-
parisons of the skill between the ensemble and deterministic forecasts.

Observations. To evaluate the skill of the forecasts, a variety of ocean observations
were used. We used observations during forecast verification time, hence, the
specific observations used for verification have not been yet assimilated by our
system and can be considered independent as is a common practice for the ver-
ification of atmospheric and oceanic forecasts. However, because of the paucity of
observational data, this is the same type (Argo profiles, SST observations, etc.) of
the observation as we use in assimilation. This is, possibly, with the exception of the
ERA5 SST and heat flux, which come from an external reanalysis product.

During the model forecast runs, daily-mean temperature and salinity fields were
calculated in HYCOM. For each file, a corresponding 24-hour window of verifying
profile or surface observations was stored in a matchup file together with the model
prediction of the temperature and salinity at the observation location, and on the
standard 40 depth levels. The profiles or surface observations are retrieved from the
NCODA database include in situ temperature and salinity from Argo and
Conductivity Temperature Depth (CTD) among other sources. Profiles are quality
controlled for outliers against climatology and profiles with larger than three
standard deviations are excluded from the analysis. The primary reference
comparison for the ocean forecast is climatology, because there is presently no
extended-range (more than 7 days) global ocean forecast system. The climatology
used for ocean temperature and salinity is the Generalized Digital Environmental
Model43 (GDEM4).

For the SST forecast skill evaluation, two sets of SST are used. The in situ based
SST observations made primarily by drifting buoys and ship of opportunity among
other sources are quality controlled in the NCODA database. Matchup files
consisting of model values at observation location and the observations of SST
(~30 K day−1) are used to calculate the forecast error. The observations which are
mostly confined along the ship tracks have non-uniform spatial coverage. The
reference climatology is taken from the GDEM443. In situ SST complimented by
more spatially uniform SST from the ERA5 reanalysis. The ERA5 reanalysis, which
is on spatial resolution of 0.25° × 0.25° grid, is sub-sampled by 1° × 1° grid so that
they can be treated as representative observations rather than correlated values
from adjacent grid points. Unlike in situ SST, the analysis region is near-global and
limited between 50°S and 50°N. For climatology, the monthly mean ERA5
reanalysis for the period 1979–2018 is used. The surface heat flux represents the
balance between the radiative (solar and long-wave radiation) and turbulent heat
fluxes (sensible and latent heat fluxes) and primarily governs the evolution of SST
through one-dimensional mixed layer thermodynamic processes among other
ocean dynamic processes. The forecast skill of the surface heat flux is evaluated
against ERA5 reanalysis and climatology for the period 1979–2018.

The Sea Surface Height Anomaly (SSHA) measured by remotely sensed satellite
altimetry provides a quantitative measure of mesoscale eddies in the ocean. The
along-track SSHA observations are taken from the NCODA ocean observation
system. The SSHA is calculated using the reference mean SSH from observations
averaged over the period 1993–2008. For comparing with altimetry SSHA, the 20-
year (1993–2012) mean SSH from an ocean reanalysis44 is subtracted from the
model SSH to obtain model SSHA. Model SSHA is extracted along the satellite
track using a linear interpolation. The skill of model forecasts is compared relative

to a climatology generated using a 26-year (1993–2018) monthly mean SSHA
mapped on a spatial resolution of 0.25° × 0.25° from AVISO (Archiving, Validation
and Interpretation of Satellite Oceanographic data).

Error quantification. The performance of forecast models is quantified in terms of
RMSE using all available independent observations. Although RMSE is dominated
by observations with large errors, the averaging across 52 forecasts minimize this
and accurately represents the performance of the forecasting systems. The sampling
between high- and lower resolution models is treated the same as most observa-
tions are coarser than model grid points. The statistics presented are global error
and should be comparable between the models.

While RMSE penalizes the sharp features with location error in the high-
resolution model, the so-called the double-penalty effect45,46, the spectral analysis,
which independently confirms the error analysis, is not prone to the double-penalty
effect for the scales considered (>150 km). We also note that the skill improvements
in the ensemble mean are significantly greater than the deterministic models; hence,
it is highly unlikely that the double-penalty effect, which is more prevalent at shorter
lead times, could affect the major conclusions of this study.

Spectral analysis of error. The spectral analysis of error presented in Fig. 3 has
been computed using the following steps: (1) Matchups between altimeter SSHA
and deterministic model runs and ensemble mean are computed (matchups file
consists of observed SSHA, time, geographical coordinates, and model SSHA at the
observation locations) (2) Latitude-longitude position of the matchups are con-
verted into the along-track coordinates (3) Matlab© implementation of the Lomb-
Scargle method is used to compute power spectral density (PSD) of the raw along-
track altimeter signal (#2) and the model-altimeter matchups (#1) (4) PSD are
smoothed using a moving average filter in the frequency space that used the sliding
window of the nearest ±1000 frequencies, which, in the range of interest between 50
and 1000 km, averaged frequencies within ±2% of the central frequency. For
example, the resulting smoothed estimate for the frequency centered on 1/300 km−1

is averaged between 1/294 km−1 and 1/306 km−1 (5) Smoothed PSD are inter-
polated on a common set of 5000 frequencies, which are logarithmically spaced
between 20 and 2000 km (6) The R2 statistics are computed by taking a ratio of the
smoothed PSD of the errors to the altimeter signal.

We examined the slope of the power spectral density of the SSHA signal
(Supplementary Fig. 1), which revealed that the slope flattens for wavelengths
below 150 km, indicating that below 150 km SSHA observations are contaminated
by an increasing amount of observational noise. As a result, we excluded scales
smaller than 150 km from the forecast error R2 with no apparent implications on
the major conclusions drawn from this study.

Error bars. Error bars of the estimated RMSE (Fig. 1) and R2 statistics (Fig. 3) are
computed at 95% confidence level as Error = 1:96 ´ stdðqÞ=

ffiffiffiffiffiffiffiffiffi

N=4
p

; where q is a
quantity of interest (the RMSE or the R2) and N/4 is the number of degrees of
freedom in the sample. Specifically, N is the number of forecasts (52) and 4 is an
empirical factor that accounted for possible correlation between weekly forecasts.

Data availability
Data displayed in the figures are publicly available from https://github.com/frolovsa/
papers-naturecee2021. The observations being used for forecast evaluation are publicly
available for download from these websites https://ioos.noaa.gov/data/access-ioos-data/;
https://www7320.nrlssc.navy.mil/altimetry/. The monthly mean SSHA climatology used
in this study were processed by SSALTO/DUCAS and distributed by AVISO+ with
support from CNES and available for download from website https://www.aviso.
altimetry.fr. The ECMWF ERA5 reanalysis products being used here are obtained from
https://cds.climate.copernicus.eu/. The GDEM climatology is the product of U. S. DoD
and available upon submitting product request form to the Naval Meteorology and
Oceanography Command Secretary of the OAML. The Navy-ESPC analysis and forecast
model output data are stored at the Navy DoD Supercomputing Resource Center
(DSRC). Access to the Navy DSRC may be obtained through a request to the DoD
HPCMP (https://www.hpc.mil/). Once an account has been established, contact the
corresponding author for information to access the archived data.

Code availability
The ocean model is available at https://www.hycom.org/. The data assimilation and
observation processing scripts are the intellectual property of the Department of Navy.
The Navy-ESPC code is only available with pre-approval from sponsors. Collaborators
outside of NRL with model access have agreements and grants with sponsors (i.e., Office
of Naval Research (ONR)). If interested in working with the Navy-ESPC code, please
contact the corresponding author and code 32 of ONR (https://www.onr.navy.mil/
Science-Technology/Departments/Code-32).
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