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A B S T R A C T   

A model-data inversion is applied to an extensive observational dataset collected in the Southern Ocean north of 
the Ross Sea during late autumn to early winter, producing estimates of the frequency-dependent rate of dissi-
pation by sea ice. The modeling platform is WAVEWATCH III® which accounts for non-stationarity, advection, 
wave generation, and other relevant processes. The resulting 9477 dissipation profiles are co-located with other 
variables such as ice thickness to quantify correlations which might be exploited in later studies to improve 
predictions. An average of dissipation profiles from cases of thinner ice near the ice edge is fitted to a simple 
binomial. The binomial shows remarkable qualitative similarity to prior observation-based estimates of dissi-
pation, and the power dependence is consistent with at least three theoretical models, one of which assumes that 
dissipation is dominated by turbulence generated by shear at the ice-water interface. Estimated dissipation is 
lower closer to the ice edge, where ice is thinner, and waveheight is larger. The quantified correlation with ice 
thickness may be exploited to develop new parametric predictions of dissipation.   

1. Introduction 

During the past 20 years, open-ocean spectral wave modeling has 
achieved high levels of accuracy, e.g. Bidlot (2018), primarily driven by 
improvements to accuracy in wind forcing and physics parameteriza-
tions (e.g. Ardhuin et al. 2010; Liu et al. 2019). However, areas near 
coastlines and the sea ice margins remain a challenge, with relatively 
large errors and therefore substantial improvements possible (e.g. Cav-
aleri et al. 2018 and Sutherland et al. 2018, respectively). Predictions 
near the ice edge fall into two broad categories: the off-ice wind sce-
nario, and the on-ice wave scenario. In the former case, errors are caused 
by uncertainty in the ice edge location, and challenges with describing 
the rarely-studied conditions of growth in partial ice cover and the 
ubiquitous atmospheric instability (i.e. cold air blowing from the ice 
onto warmer water; see Gemmrich et al. (2018)). Modeling the on-ice 
wave scenario also suffers from the uncertainty of the ice edge posi-
tion. In addition, wave conditions within the ice are dominantly deter-
mined by the model’s representation of dissipation by sea ice. 
Fundamentally, this dissipation is strongly dependent on frequency (e.g. 
Wadhams et al. 1988). The objective of this paper is to use observational 
data to estimate this frequency-dependent dissipation rate and study 

possible dependencies, to guide future improvements to parameteriza-
tions of dissipation used by spectral wave models, and thence im-
provements to the accuracy of these models in on-ice wave conditions. 

More recently, there has been a surge in research activity on the topic 
of wave-ice interaction. This includes theoretical studies, numerical 
modeling studies, laboratory studies, and studies using field observa-
tions, either in situ observations or those from remote sensing. To 
demonstrate this quantitatively, we surveyed peer-reviewed articles 
published from 2015 to 2019. We found 32 articles for which the 
dissipation of wave energy by sea ice is a primary feature (e.g. Toffoli 
et al. 2015; Ardhuin et al. 2016; Asplin et al. 2018; Boutin et al. 2018; 
Herman et al. 2019; Marchenko et al. 2019; Voermans et al. 2019; Yue 
et al. 2019). In addition, we find nine other articles which are primarily 
concerned with both dissipation and changes to wavelength caused by 
the ice (e.g. Li et al. 2015a; Zhao et al. 2017), and four that are primarily 
concerned with the changes to wavelength (e.g. Sree et al. 2018). We 
find nine other articles primarily about the scattering and reflection of 
wave energy by sea ice (e.g. Montiel et al. 2016; Orzech et al. 2016; 
Bennetts and Williams 2015). We find 15 articles which treat the impact 
of waves on ice, either by fracturing the ice (e.g. Bennetts et al. 2017) or 
by determining the ice type during growth (Roach et al. 2018; Shi et al. 
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2019). We find six review articles during this period (e.g. Shen 2019). A 
detailed review of all these topics is beyond the scope of this paper, but 
the latter review article and Squire (2020) are a good starting point for 
interested readers. 

Among wave-ice interaction studies, observational campaigns in the 
southern hemisphere are in the minority. To the authors’ knowledge, the 
earliest study was that of Robin (1963) describing measurements using a 
ship-borne wave recorder in the Weddell Sea during 1959–1960. These 
measurements used early technology, and since wave observations were 
local to the ship, results were described not in terms of dissipation rate 
(the critical parameter required by a modern numerical wave model), 
but instead in terms of the distance of penetration of swells into the ice 
field. Robin found that this value depends on three rather intuitive pa-
rameters: wave period (or length), ice thickness, and floe size, with the 
first being important in all cases, the second being important for long 
waves, and the third being important for shorter waves. Doble and 
Wadhams (2006) and Doble (2009) describe a buoy deployment in the 
Weddell Sea in 2000, with particular attention to autumn ice growth and 
interaction with pancake and frazil ice. Doble and Bidlot (2013) study 
data from a buoy from the same deployment, but five months later (late 
winter/early spring), when the buoy was in pack ice during an energetic 
breakup event. Kohout et al. (2014) and Meylan et al. (2014) analyzed 
data from a buoy deployment during the SIPEX II voyage in 2012 north 
of Wilkes Land, Antarctica; these data have since been used also by Li 
et al. (2015b) and Liu et al. (2020). In July 2017, C. Eayrs (New York 
Univ.) and others deployed wave-buoys north of Queen Maud Land, 
Antarctica (Vichi et al. 2019); Alberello et al. (2019) study pancake and 
frazil ice formation during the same experiment. 

The present study uses another buoy dataset collected only a month 
earlier (June 2017), part of a larger dataset obtained north of the Ross 
Sea. This builds on a previous analysis by Kohout et al. (2020), who 
looked at the decay rate of total energy (i.e. significant waveheight) 
within the sea ice for the full wave buoy dataset (April to July 2017). 
That study found that the decay is generally linear exponential, and 
concluded that dissipation increases with ice concentration. The present 
study uses model-data inversion to estimate the frequency distribution 
of the dissipation rate. A notable advantage of the model-data inversion 
method is that it does not require that wave energy travels primarily 
along an axis between two buoys. 

A remarkable feature of the Kohout et al. (2020) dataset is its size: we 
are not aware of any prior study of spectral dissipation by sea ice using a 
larger dataset. The full dataset includes over 14,000 spectra (21 April to 
26 July), and the present study uses 9477 of those records for co- 
locations during 6 to 30 June. This large population enables a robust 
evaluation of the correlation between the dissipation rate and several 
additional variables (“tertiary variables”), such as satellite-based ice 
thickness estimates. 

The paper is structured as follows. Section 2 reviews the literature on 
the topic of the frequency dependence of dissipation. Section 3 gives a 
brief overview of the field experiment. Section 4 describes the wave 
model, Section 5 describes the model-data inversion, and Section 6 
presents the results of the analysis. Section 7 presents possible simple fits 
to the mean dissipation profiles. Summary and conclusions are given in 
Section 8. 

2. Brief review of frequency dependence in the literature 

Modern numerical wave models, e.g. WAVEWATCH III®, introduced 
in Section 4.1, compute the dissipation by sea ice as Sice = − 2CgkiE, 
where Cg is the group velocity, E is spectral energy density, and ki is the 
exponential rate of spatial decay of wave amplitude or waveheight, e.g. 
a(x) = a0e− kix, where a is the amplitude, a0 is the initial amplitude and x 
is the distance. Observations suggest that the Sice source term is a low- 
pass filter. Contrary observations of a “roll-over” effect, i.e. lower 
dissipation rate at high frequencies relative to mid-frequencies, are 
suspected as an artifact of disregarding local windsea growth (Wadhams 

et al. 1988; Rogers et al. 2016; Li et al. 2017) or of failing to account for 
instrument noise (Thomson et al. 2020). Parametric representation of 
the low-pass filter is determined by the shape of ki(f), where f denotes 
frequency. If the ki(f) profile increases continuously ki(f) ∝ fn may be 
suitable, and is in fact widespread in the literature. Here, we summarize 
values of power dependence n which we have found in the literature. 

□ Fit to data derived from sonar observations in Greenland Sea, Wad-
hams (1978), according to Squire 1998, n = 2.  

□ A viscoelastic model, the first of two new models proposed by 
Meylan et al. (2018), n = 2.  

□ A viscoelastic model, the second of two new models proposed by 
Meylan et al. (2018), n = 3.  

□ Derived from buoy observations near Antarctica, Meylan et al. 
(2014), binomial with n = 2 and 4. Meylan et al. (2018) report a best 
fit of n = 1.9 for the same dataset.  

□ Derived from buoy observations in pancake ice near Antarctica, 
Doble et al. (2015): n = 2.1. Meylan et al. (2018) report a best fit of n 
= 2.9 for the same dataset. Sutherland et al. (2019) report a best fit of 
n = 3.8 for this dataset, using a subset of the total frequency range. 

□ Derived from observations in the Greenland and Bering Seas, re-
ported in the seminal work of Wadhams et al. (1988). This dataset is 
highly scattered, either due to highly varied conditions, or less pre-
cise methods. In Meylan et al. (2018), a best fit of n = 3.6 is reported 
for this dataset.  

□ Derived from buoy observations in and near the Beaufort Sea, Rogers 
et al. (2016, 2018a), binomial with n = 2 for the first term and n = 4 
to 5 for the second.  

□ For the same experiment in the Beaufort Sea, Cheng et al. (2017) 
estimated dissipation rates, and Meylan et al. (2018) report a best fit 
of n = 3.6.  

□ Viscoelastic model of Robinson and Palmer (1990) as reduced by 
Meylan et al. (2018), n = 3. See also Liu et al. (2020).  

□ Boundary layer model, by F. Ardhuin (newer variant of ‘IC2’ in 
WAVEWATCH III): turbulent regime: n = 3 and laminar regime: n =
3.5. This is described in Appendix B of Stopa et al. (2016).  

□ Inextensible surface cover, Weber (1987) (from Lamb 1932): n = 3.5. 
Weber (1987) invokes the concept of eddy viscosity to represent 
turbulence in the lower/water layer, such as might occur due to 
shear at the ice/water interface.  

□ Empirical fit to airborne data by Sutherland et al. (2018): n = 3.5.  
□ Friction model, Kohout et al. (2011): n = 4.  
□ Viscous water model, Lamb (1932), Weber (1987): n = 5.  
□ Empirical fit to laboratory data by Rabault et al. (2019): n = 6 to 6.5. 
□ Viscous ice model, Keller (1998) (this can be recovered in WAVE-

WATCH III using the ‘IC3’ viscoelastic model with zero elasticity): n 
= 7. 

□ A viscoelastic model introduced in Mosig et al. (2015) and imple-
mented in WAVEWATCH III by Liu et al. (2020). It is referred to as 
the “extended Fox and Squire” (EFS) model in the latter paper. 
Meylan et al. (2018) call it the “viscous Greenhill” model, and find: n 
= 11. 

More detailed descriptions of some of these can be found in Meylan 
et al. (2018) and Rogers et al. (2018a, 2018b). 

3. Field experiment (overview) 

The wave observations used in this study are described in Kohout and 
Williams (2019) and Kohout et al. (2020). Here, we provide a brief 
overview. 

During the Polynyas, Ice Production, and seasonal Evolution in the 
Ross Sea (PIPERS) expedition in 2017, 14 waves-in-ice observation 
systems (WIIOS, Kohout et al. 2015) were deployed on Antarctic sea ice, 
in the Southern Ocean north of the Ross Sea. Four buoys were deployed 
during the transit south toward the Ross Sea on 21–22 April 2017, and 
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ten more were deployed during the outbound transit, 30 May to 3 June, 
with the first data recorded on 2 June. The inbound deployment was 
near 172◦E, and the outbound deployment was approximately 470 km 
east of that, near 184◦E. Buoy survival durations varied significantly, 
with the last record of the western (inbound) group coming on 6 July 
(10.8-week duration) and the last record of the eastern (outbound) 
group on 26 July (7.7-week duration). Fig. 1 shows the geographic 
location of the PIPERS deployment relative to three other notable wave- 
ice field experiments near Antarctica: an experiment in 2000 in the 
Weddell sea reported by Doble and Wadhams (2006); an experiment in 
2012 north of Wilkes Land reported in Kohout et al. (2014) and Meylan 
et al. (2014); and an experiment in July 2017 with data collected by C. 
Eayrs, north of Queen Maud Land, reported in Vichi et al. (2019). 

One buoy in the eastern group had a GPS failure, so effectively there 
are four and nine buoys in the west and east group, respectively. The 
spectral energy, E(f), data are provided with a precision of 1 × 10− 6 m2/ 
Hz. The full dataset includes 23,206 spectra with valid GPS coordinates. 
Of these, records with significant waveheight Hm0<0.1 m are omitted 
here to improve the overall signal-to-noise ratio, leaving 14,602 spectra. 
In this study, we analyze data from the eastern (outbound) grouping 
during 24 days of the transition from late autumn to early winter: 6 to 30 
June. This subset includes 9511 spectra and all of the large wave events 
(observed Hm0>3 m) of the full dataset. As will be described in Section 5, 
the model-data inversion requires us to omit cases of low ice concen-
tration, leaving 9477 spectra. The final number represents 41% of the 
full dataset and is at least 35 times larger than the dataset collected in 
SIPEX II (with 268 records), as previously noted by Kohout and Williams 
(2019). 

Six of the buoys in the eastern group have more than 500 records 

each; information about these buoys are described in Table 1, and time 
series of the distance to the ice edge1 for each of these six buoys are 
shown in Fig. 2. Each wave buoy is deployed directly on the ice, either 
on an existing floe or on continuous ice. The buoys are designed never to 
be retrieved, so all processing is performed onboard and data is sent by 
satellite telemetry. The primary component of the buoy is an Inertial 
Measurement Unit (IMU). Two of the nine buoys in the eastern grouping 
deployed deepest in the ice used high precision IMUs, with the expec-
tation that they would experience the lowest wave energy; these 
included buoy 14, listed in Table 1. The buoys were thoroughly tested 
prior to PIPERS (Kohout and Williams 2019). 

The WIIOS buoys record the motion of the floe upon which they rest. 
They can be expected to measure the motion of the underlying sea 
surface if either the floe is small relative to the wavelength being 
measured, or if the floe is large but bending freely such that it follows the 
sea surface. In either case, the response function is 1:1. However, if the 
floe is large and rigid, there will be an unknown deviation, particularly 
for higher frequencies. 

In this region and season, southerly katabatic winds push new ice 
northward from the Ross Sea (Kohout and Williams 2019) while wave 
conditions are dominated by extratropical storms in the Southern Ocean 
which generate swells arriving primarily from the northwest. The waves 
may transfer momentum to the mean flow and ice as they decay (Liu and 
Mollo-Christensen 1988; Stopa et al. 2018), which would result in a 
southward stress countering the northward wind stress. The eastern 
buoys were deployed along a south to north (meridional) transect, but 
they drifted to a roughly west-southwest to east-northeast orientation by 
mid-June. (Diagrams and an animation of the buoy tracks are provided 
with the Supplemental Information.) Ship-based ice observations were 
made using the Antarctic Sea Ice Processes and Climate (ASPeCt) pro-
tocol (Worby 1999). Ice consisted primarily of floes from new sheet ice 
(15–30 cm thick) and first-year ice (30 to 70 cm thick). This is sum-
marized in Table 1, and more details can be found in Kohout et al. 
(2020). 

Fig. 3 shows an example of wave spectra for the six buoys, using the 
same color scheme as used in Fig. 2. By comparing the two figures, one 
can see the correspondence between the damping of the spectrum and 
distance from the ice edge, with damping occurring first at higher fre-
quencies, and then more noticeably at the dominant frequencies for the 
buoys farther in the ice. At the lowest energy levels, the high-frequency 
tail slope is flatter than what might be expected in a spectrum in ice, 
recalling that ice acts as a low-pass filter, which should result in a steep 
slope. The tail may be “propped up” by an unknown physical process, or 
by instrument noise. The energy levels below which the spectral tails are 
noticeably elevated—either by noise or the unknown physical proc-
ess—are indicated in Fig. 3. This is discussed further in Section 6.3 and 
the Appendix. 

4. Wave model 

4.1. General description 

The wave model used in this study WAVEWATCH III® (WW3, Tol-
man 1991, WW3DG 2016). This is a phase-averaged spectral model for 
which the prognostic variable is wave action spectral density, which is 
the wave energy spectral density divided by the angular wave frequency: 
N = E/σ, where σ = 2πf = 2π/T (T denoting wave period). The spectrum 
is a function of wavenumber or angular frequency (k or σ), direction (θ), 
space (x, y or longitude, latitude), and time (t). The left-hand side of the 
radiative transfer equation includes terms for the time rate of change 
and propagation in the four dimensions (kinematics), while the right- 
hand side provides source functions (dynamics): 

Fig. 1. The geographic location of the observational campaign used in this 
paper (PIPERS-17) is marked in blue. Other observational studies are indicated 
as historical context and potential further work with comparable inversion 
exercises. Dashed colored lines are model grids and solid colored lines 
approximately denote the bounds of observational data for each case. Dashed 
blue box (for PIPERS-17) is the model domain of this study. Dashed green box 
(for SIPEX-12) is from Li et al. (2015b) (1/4◦ resolution). Dashed purple box 
(for Eayrs-17) pertains to a hindcast that will be reported on separately. 1 See Section 6.1 for definition. 
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∂N
∂t

+∇∙ c→N =
S
σ (1)  

where c→ is a four-component vector describing the propagation veloc-
ities in x, y, k, and θ. For example, in the absence of currents, cx is the x- 
component of group velocity Cg. The sum of all source functions is 
denoted as S, and individual source functions are indicated with an 
appropriate subscript: Sin, Swc, Snl4, and Sice being energy input from 
wind, dissipation by whitecapping, four-wave nonlinear interactions, 
and dissipation by sea ice, respectively. We use the “source term pack-
age” of Ardhuin et al. (2010) known as ‘ST4’, for Sin and Swc. In this 
package, swell dissipation (weak losses of energy not associated with 
breaking) is formally part of Sin. For Snl4, we use the Discrete Interaction 
Approximation (DIA) of Hasselmann et al. (1985). 

Sice is scaled by areal ice fraction aice, following Doble and Bidlot 
(2013), and the default behavior of WW3 (WW3DG 2016) is to scale 
open water source terms by the open water fraction, 1 − aice: 

S = (1 − aice)(Sin + Swc + Snl4)+ aiceSice (2) 

The scaling of open water source terms is an essential concept in our 
analysis. In case of full omission of the scaling for all three terms, we 
have: 

S = Sin + Swc + Snl4 + aiceSice (3) 

The scaling of Sin is particularly debatable, since the transfer of en-
ergy from wind to waves occurs through normal stresses, and one can 
easily imagine that normal stresses remain effective (or partially effec-
tive) in cases where the ice is composed of frazil, brash, or pancakes, or 
when floe size is small relative to wavelength. The optimal representa-
tion is somewhere between (2) and (3) and is probably frequency- 
dependent. The scaling of Snl4 is similarly in doubt: see discussion of 
relevant literature in Rogers et al. (2016). Scaling of Swc, on the other 
hand, is unlikely to be as consequential, since in ice, Swc will tend to be 
small or zero. 

Where ki gives the exponential decay rate of amplitude in the space 
domain, the exponential decay rate of energy in the time domain, prior 
to scaling by aice, is computed as Dice ≡ Sice/E = − 2Cgki. The group 
velocity Cg can, in principle, be affected by ice cover, particularly in 
frequencies above 0.3 Hz (Cheng et al. 2017; Collins et al. 2018), but 
here we simply assume that the group velocity is the open water group 
velocity. 

In the analysis of observational studies, where a positive correlation 
between dissipation rate and ice concentration is reported, it is crucial to 
note whether the authors are referring to Sice or aiceSice. In the case of 
Kohout et al. (2020), the positive correlation is referring to the latter, 
scaled term. In Section 6.3, we look at the correlation between ice 
concentration and the former, unscaled term (or, more precisely, ki). 

Table 1 
WIIOS deployments for PIPERS-17: Only buoys in eastern grouping with 500 or more data records are included. Notation: hice, dice, aice are ice thickness, floe size, and 
concentration respectively. Buoys are given here in order of deployment, from south to north. Note that the sizes of the floes on which the buoys are deployed are not 
known generally. Floes may have broken after deployment, and some buoys far from the ice edge were actually deployed on the continuous ice and became “buoys on 
floes” later.   

Floe upon which the buoy is deployed Most prevalent ice near the buoy, from nearest ASPeCt record # of spectra Init. Dist. from ice edge (km) 

Buoy # Buoy ID hice (cm) dice (m) aice hice (cm) dice (m) 

14 A-34* 54 N/A (cont. ice) 100% 50 100–500 509 244 
5 B-25 60 100 100% 60, 75 20–100 1349 175 
6 B-26 70 20 100% 30 20–100 1746 153 
7 B-27 36 40 50% 30 20–100 1830 151 
9 B-29 50 40 100% 20 <20 (cake) 1668 133 
10 B-30 75 20 100% 30 20–100 2052 118  

* Equipped with high-precision “Kistler” accelerometer. 

Fig. 2. Positions of the six buoys, relative to the ice edge. The vertical line here 
indicates the time used in Figs. 3, 4, and 5. 

Fig. 3. Energy spectra from the six buoys during the period of 0900 to 1000 
UTC 19 June 2017. This uses the same color scheme as Fig. 2. The thick hor-
izontal lines indicate energy levels below which the tail is visibly “propped up”, 
presumably by instrument noise. 
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4.2. Implementation for this study 

The specific implementation of WW3 used in this study is described 
in this section. 

Wind forcing in the form of 10-m wind vectors comes from archives 
of the U.S. Navy’s global atmospheric model, NAVGEM (Hogan et al. 
2014), at 3-hourly intervals and 1/4◦ geographic resolution. Ice con-
centration forcing for the nested grid come from AMSR2 analyses using 
the “ARTIST” algorithm, Spreen et al. (2008) and Beitsch et al. (2013, 
2014). This ice concentration product is at relatively high geographic 
resolution (median spacing is 3.05 km) but relatively low temporal 
resolution (one field every 24 h). 

The wave model grid receives boundary forcing from a global model 
hindcast. The global model was run from 0000 UTC 23 May 2017 to 
0000 UTC 30 June 2017. The global grid design known as “Irregular- 
Regular-Irregular” (Rogers and Linzell 2018) is used. Resolution is 1/4◦

at low latitudes and 18 km south of 50◦S. 
The ‘ST4’ package for open water source terms is used with the ‘DIA’ 

method of computing nonlinear interactions. The spectral grid includes 
36 directional bins and 31 frequency bins (0.0418 to 0.73 Hz, loga-
rithmically spaced). The wind input source term of Ardhuin et al. (2010) 
requires specification of a wind input calibration parameter, βmax; a 
value of 1.2 is used for these hindcasts. 

The nested grid bounds are indicated in Fig. 1 and Fig. 4. The PIPERS 
grid is bounded by 140◦E, 195◦E, 70.1◦S, and 60◦S and contains 
292×103 sea points. The computational grids are polar stereographic 
and match the grids of the ice concentration input (3.05 km median 
resolution). 

The northern limit of the nest, 60◦S, is selected so that all relevant ice 
is entirely inside the nest during the simulation period. This implies that 
the Sice settings of the global model are inconsequential to the inversion. 

The WW3 nest and example output are shown in Fig. 4. The time 
period, 0900 UTC 19 June 2017, corresponds to the time period used in 
Fig. 3. Buoy positions are marked with filled circles, using the color 
scheme of Fig. 3. Buoy 9 (red circle) and 10 (blue circle) are used later, in 
Fig. 5. Note that for this case, the mean wave direction approximately 
matches the axis between these two buoys. An animation of images 
similar to Fig. 4 are provided with the Supplemental Information. 

5. Inversion process: introduction 

Here we use the inversion method introduced in Rogers et al. (2016). 
In briefest terms, the objective is to determine the value of attenuation 
rate ki(f) which provides a match between the modeled energy density 
spectrum E(f) and the corresponding observed E(f). Thus, for each 
observational E(f), a dissipation profile ki(f) is determined. 

The discrete frequencies on which the modeled and observed E(f) are 
natively described have dissimilar minimum, maximum, and spacing. 
For the purpose of the inversion, these are remapped to new distribu-
tions over the region in which they overlap, 0.042 to 0.472 Hz. These 
new frequency bins are coarser than either of the native frequency dis-
tributions, to increase degrees of freedom and improve stability (e.g. 
Elgar 1987). 

There are 16 coarse frequency bins, with spacing at or near 0.020 Hz 
at lower frequencies, and spacing at or near 0.039 Hz at higher fre-
quencies. The left (i.e. low frequency) side of the first bin is 0.042 Hz, 
and the right side of the last bin is 0.472 Hz. 

The primary computational component of the inversion consists of 
repeated simulations with a fixed value of ki. Linear interpolation is 
performed between these values to find the “optimal” ki, where observed 
E(f) should match the modeled E(f). The process is described and illus-
trated in Rogers et al. (2016). The inversion here includes 20 ki values 
(so 20 hindcasts). The spacing is finer for the smaller values. In units of 
1/m, ki values are: [0, 1e-6, 2e-6, …, 2000e-6, 4000e-6, 9000e-6]. Note 
that since negative values of ki are not included in this set, solutions of 
negative ki are effectively disallowed. This is discussed further below. 

Since the inversion seeks to match the buoy observations by selecting 
the optimal ki value, and the source term Sice is scaled by ice concen-
tration aice, it does not return a valid solution in cases of aice=0, and for 
cases of small aice, the solution ki is less stable. Therefore, these cases are 
omitted. We use the semi-arbitrary cut-off of aice=0.22. As noted in 
Section 3, we use data from the eastern buoy group collected during the 
period starting 0000 UTC 6 June and ending 0000 UTC 30 June 2017. 

Attenuation rates are traditionally estimated by computing differ-
ences in wave energy measured by two buoys, preferably two buoys 
along the primary axis of wave propagation, e.g. Meylan et al. (2014). 
We refer to this herein as the “geometric” method. The model/data 
inversion method is particularly appropriate here because it does not 
require that buoy configuration is aligned with the mean wave direction: 

Fig. 4. Wave conditions predicted by WW3 for the period of 0900 UTC 19 June 
2017. Red lines indicate the northern and southern boundary of the WW3 nest. 
Colors indicate the significant waveheight in meters. Arrows indicate the mean 
wave direction. Contours indicate ice concentration at 20%, 40%, 60%, and 
80%. This is the same time period used in Fig. 3. Buoys are marked with dots, 
using the color scheme of the prior two figures. The yellow dot is the last 
surviving buoy in the western/inbound buoy group, not used in this paper. 

Fig. 5. Estimated dissipation rates, as a function of frequency (“dissipation 
profiles”, ki(f)), comparing the inversion results (thin green and red lines) 
against the results from the simple geometric method (thick blue line). Gray and 
black lines are reference profiles. See text for explanation. 
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in this field study, buoys became misaligned over time due to drift 
(Section 3). Other advantages and disadvantages of the inverse method 
used here, relative to the geometric method, are summarized in Rogers 
et al. (2020). 

Fig. 5 compares the inverse method with the geometric method for a 
single time period. Colored lines are from the same PIPERS example 
used in prior figures (0600 to 1200 UTC 19 June 2017). Thin green lines 
are ki(f) profiles estimated by the inverse method at the inner buoy, 
which is #10 in this case. Thin red lines are ki(f) profiles estimated by the 
inversion method at the outer (near the ice edge) buoy, which is #9 in 
this case. There are multiple lines for each because the entire period 
from 0600 to 1200 UTC 19 June 2017 is used. The inversion estimates 
ki(f) at each buoy, independent of other buoys. The thick blue line is the 
estimate of ki(f) using the traditional geometric approach and corre-
sponds to an average for the six-hour period. Three reference profiles are 
also shown in this figure. “SIPEX-12” is the fitted profile from Meylan 
et al. (2014). “SWIFT WA3” is the profile fitted to an inversion (Rogers 
et al. 2018b) using SWIFT buoys (Thomson 2012) in “Wave Array 3” of 
the Sea State field experiment (Thomson et al., 2018). The PIPERS 
reference profile is an average profile from the present study, denoted 
“mean 2” (M2), presented in Section 7 and Fig.8. 

In the inversion, there is no guarantee that the dissipation of wave 
energy by sea ice will be much larger than the errors in the wave model. 
In our case, this was most evident at the two lowest frequency bins 
(0.042 to 0.08 Hz, i.e. wave periods larger than 12.5 s). At low fre-
quencies, ki is small, and its impact may be lower than model errors, 
such as the error in the boundary forcing. For example, if our global 
model is providing boundary spectra that is too weak (low energy), the 
inversion will seek to compensate by reducing ki. In our evaluation of 
profiles, we treat these first two bins with enhanced suspicion. 

At high frequencies, another challenge exists. The lower the energy 
density E(f), the more likely it is to be substantially affected by noise 
(Fig. 3 and Thomson et al. (2020)). We flag ki(f) solutions as unusable 
when E(f) < JEn, where En is the estimated noise level and J is a sub-
jective setting, with J = 10 being a more aggressive noise-removal 
setting, and J = 1 being a setting which retains more data. Since noise 
increases with total energy, a threshold based on observed significant 
waveheight, En(Hm0) is used rather than a fixed En. This anti-noise al-
gorithm is described in the Appendix. 

6. Inversion results (dissipation profiles) 

This section discusses the ki(f) profiles resulting from the application 
of the inverse method to the PIPERS dataset. The overall goal is to 
identify the correlation between the ki(f) profiles and other variables. 
Since ki and frequency are the primary and secondary variables pre-
sented, and these other variables are referred to here as “tertiary 
variables”. 

6.1. Methods: co-located variables (tertiary parameters) 

In this section, we list the tertiary variables which we will inspect for 
correlation with ki(f) profiles from the inversions. 

Ice concentration,aice estimates are taken from AMSR2 and are the 
same fields as used in the model forcing (Section 4.2). 

Ice thickness,hice estimates are derived from the MIRAS radiometer 
onboard the European Space Agency’s SMOS satellite. Processed files 
are provided by the Univ. Bremen (https://seaice.uni-bremen.de/thin- 
ice-thickness/), Huntemann et al. (2014) and Paţilea et al. (2019). 
These files are on a 12 km polar stereographic grid, with one analysis per 
day. Ice thickness (hice) values are available at ice thicknesses up to 50 
cm, where the instrument saturates. Therefore, cases of hice=50 cm 
presented here should be interpreted as hice≥ 50 cm. In cases where the 
daily field is missing, the hice value is flagged as unusable. 

Ice distance,xice is computed as the distance from the buoy to the ice 
edge. Since the buoys are in ice, the algorithm searches for the nearest 

open water point (aice = 0). Isolated open water points are disregarded. 
Significant waveheight,Hm0. This parameter is taken from buoy ob-

servations. Hm0 is computed as Hm0 = 4 ̅̅̅̅̅̅m0
√ , where mn =

∫
E(f)fndf, and 

E(f) is the one dimensional (non-directional) energy spectrum, and the 
bounds of integration are defined by the overlap with model spectral 
range, i.e. 0.042 to 0.476 Hz. 

Seven other tertiary variables are described in the Supplemental 
Information and included in the associated Mendeley Data archive2: 
mean period, Tm; fourth spectral moment, m4; significant steepness, Ssig; 
representative orbital velocity, V; wind speed, U10; air temperature; and 
date. 

Our purpose here is to identify correlations. These correlations may 
or may not indicate causal relations. A number of these variables are 
computed from the wave spectrum itself (Hm0, Tm, m4, Ssig, and V). If the 
relationship is causal, this implies nonlinearity of the dissipation. Such 
behavior would not be extraordinary, e.g. whitecapping dissipation Swc 
is extremely nonlinear, and in fact, we already use a few nonlinear forms 
of Sice in WW3, e.g. the dissipation by ice-water friction under orbital 
motion as implemented by F. Ardhuin in Stopa et al. (2016, Appendix B) 
and some of the empirical forms implemented by Collins and Rogers 
(2017). Extensive discussion of potential nonlinearity of Sice can be 
found in Squire (2018). 

6.2. Methods: quantifying role of tertiary parameters 

We use inversion results from the nine buoys in the eastern group 
(see Section 3) during the period of 6 to 30 June, and only consider cases 
with aice>0.22. This results in 9477 valid ki profiles. In the cases where 
hice is the tertiary parameter, the population is reduced further, to only 
include the 8957 ki profiles with contemporaneous hice estimates, see 
Section 6.1. 

Given our objective to reveal dependency on the tertiary variables, 
the intuitive approach would be to sort and bin the ki(f) profiles ac-
cording to the associated values of the tertiary parameters. However, 
this approach results in spurious flattening of the profiles, as will be 
discussed in Section 6.3. Instead, the ki(f) profiles are sorted and binned 
according to the length of the ki(f) profiles in frequency space. Naively, 
we should not expect this to reveal trends associated with the tertiary 
variables. However, since our anti-noise algorithm terminates the pro-
files in a way that is strongly correlated with the tertiary variables, this 
approach does in fact yield indirect sorting on these variables, and so we 
can identify a clear correlation of ki(f) with the tertiary variables, 
without the spurious flattening. 

6.3. Results 

Fig. 6 shows the results, with each bin-averaged ki(f) profile colored 
according to the mean of the tertiary parameter within that bin popu-
lation. This is given in four panels, one for each of the four tertiary 
variables (hice, aice, xice, Hm0). The gray rectangle in each panel indicates 
the first two frequency bins of the inversion. As noted in Section 5, the 
inversion results for this frequency range are potentially most affected 
by errors in boundary forcing. The number of ki(f) profiles used in each 
mean ki(f) profile (colored lines in Fig. 6) varies, e.g. with 785, 2334, 
and 118 profiles being used for mean profiles terminating at 0.07, 0.11, 
and 0.23 Hz, respectively. Four reference profiles are shown in Fig. 6: 
the “SIPEX” and “SWIFT” reference profiles (solid gray and black lines) 
were introduced in Section 5. The two PIPERS reference profiles are 
based on a simple mean of all profiles, which will be denoted as “mean 
1” and a mean of profiles in thinner ice nearer the ice edge, described in 

2 The 9477 dissipation profiles, energy-to-noise estimates E/En, and co- 
located tertiary variables can be downloaded from Mendeley Data, https:// 
doi.org/10.17632/5b742jv7t5.1. 
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Section 7, “mean 2”. 
Some noteworthy features of Fig. 6 are: 

1) With ice concentration, aice there is a weak trend for lower dissipa-
tion with lower ice concentration. Plotted mean values of aice vary 
from 0.67 to 0.98. The ki plotted here is the dissipation of only the 
ice-covered fraction of the sea. We scale Sice by ice concentration in 
the model, Sice = − 2aiceCgkiE.  

2) Across all frequencies (f≤0.23 Hz), there is a clear increase in ki(f) 
with hice. This is an intuitively causal relation and is consistent with a 
primary conclusion of Robin (1963), who observed that ice thickness 
is the most useful parameter to predict the penetration of waves into 
sea ice for lower frequencies (f<0.10 Hz).  

3) Unsurprisingly, the dependence on xice is broadly similar to the 
dependence on hice. (There is thicker ice farther from the ice edge.)  

4) There is a clear trend of smaller ki(f) for larger waveheight, Hm0. This 
may be coincidental since larger waves occur closer to the ice edge, 
or it may be causal. A possible causal relation would be the breakup 
of floes during large events, making the ice cover more pliable and 
less dissipative. This is a nonlinear type of dissipation. Considering 
the ice cover as quasi-viscous in aggregate, this is a thixotropic 
behavior (shear thinning) and is reversed from the more typical 
nonlinearity for wave model dissipation terms, e.g. higher dissipa-
tion for larger orbital velocity, or larger steepness, etc. This corre-
lation is consistent with the results of Montiel et al. (2018), who find 

that for larger waveheights (Hm0> 3 m), ki is inversely proportional 
to Hm0 (i.e. linear, non-exponential decay). 

6.3.1. Discussion: flattening of dissipation profiles 
The approach used here—bin-averaging based on termination fre-

quency—was not the first that we applied. Rogers et al. (2020) used the 
more intuitive approach: to sort and bin the ki(f) profiles according to 
the associated values of the tertiary parameters. However, that study 
found spurious results associated with flattening of the ki(f) profiles. This 
flattening can be thought of as a nascent or more subtle variation on the 
“roll-over” effect noticed in observational data by Wadhams et al. 
(1988) and others. In fact, Wadhams et al. (1988) themselves offer the 
possibility that this non-monotonic behavior is an artifact of non- 
representation of wind input. This, and other, possible causes of flat-
tening are reviewed by Rogers et al. (2020). Here, we focus on two 
causes that we believe are most important to our analysis. 

Flattening can be caused by averaging of ki(f) profiles which termi-
nate at different frequencies. The “mean 1” profile (dashed black line in 
Fig. 6), which is just a simple mean of all ki(f) values, is an example of 
this. In lower frequencies, say up to 0.14 Hz, the mean is dominated by 
high-dissipation profiles which terminate at these frequencies, while in 
mid-frequencies, say from 0.14 to 0.23, the mean is dominated by 
smaller-dissipation profiles which extend into these frequencies. This 
artifact affects the “mean 1” profile but does not affect the colored 
(binned) profiles presented in Fig. 6, or “mean 2” profile, since all ki(f) 

Fig. 6. Dissipation profiles estimated using the model-data inversion with a conservative anti-noise algorithm (J = 10). Four variables are evaluated here: ice 
thickness, ice concentration, distance from ice edge, and significant waveheight. Reference profiles (gray and black lines) and the gray-shaded rectangle are explained 
in the text. 
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profiles used in each averaging terminate at the same frequency. 
Anything that tends to “prop up” the high-frequency portion of the 

spectrum will contribute to flattening or even roll-over of ki(f). As dis-
cussed in Section 3 and Thomson et al. (2020), instrument noise has this 
tendency. Given our aggressive removal of ki values with possible noise 
contamination using J = 10, (Section 5), this problem is unlikely to 
affect results shown in Fig. 6. However, it is useful to evaluate this 
aggressive strategy. After all, with a less aggressive anti-noise algorithm, 
the binned profiles extend farther in frequency space, a desired feature. 
Results using the less conservative value of J = 1 are shown in Fig. 7. 
This indicates that though the flattening is slight with J = 1, it does 
unmistakably occur. In other words, the use of J = 10 appears to be 
justified. 

The above suggests an interesting paradox: exclusion of noise- 
contaminated data prevents artificial flattening of individual ki(f) pro-
files; but this “fix” —i.e. early termination of profiles—itself results in 
artificial flattening of mean profiles, if those means are calculated using 
dissimilar termination frequencies. 

7. Fitting to parametric model 

Empirically-derived mean ki profiles can be fitted to a parametric 
form. Several possible forms exist, but here, we look at monomial and 
binomial subsets of the general polynomial ki =

∑
Cnfn. This follows the 

approach of Meylan et al. (2014), who used C2f2 + C4f4, i.e. n = 2 and 4. 
The value of n can be interpreted as an indicator of a dominant physical 
process (or two processes in the case of a binomial) if they match the n 

predicted by a theoretical model. For example, if an empirical ki profile 
fits well to n=7; this would support the argument that dissipation is 
caused by something like viscosity in the ice layer (Keller model, see 
Section 2). 

Herein, we use two methods of creating mean profiles. Neither ex-
tends beyond 0.23 Hz, since the number of valid ki(f) values at higher 
frequencies is relatively small, due to the omission of ki(f) estimates that 
may be affected by noise (Section 5). Both are created using the more 
aggressive anti-noise algorithm, J = 10. The two methods are:  

1) A “simple mean” profile, denoted “mean 1” in this text. As long as a 
ki(f) value is considered valid; it is included in the average. As with 
the binned profiles in Fig. 6, the mean profile excludes frequencies 
for which the population of the frequency bin is less than 5% of the 
maximum, and so the profile terminates at 0.19 Hz. As an example, 
this averaging includes 8739, 2715, and 664 ki values at bins 
centered at 0.09, 0.15, and 0.19 Hz respectively.  

2) A mean using only the profiles which span the full frequency space of 
the mean profile (0.051 to 0.23 Hz in terms of bin centers) and only 
cases with thinner ice (hice<14 cm) and those nearer the ice edge 
(xice<63 km). This averaging thus includes only 116 profiles but 
provides greater consistency within the averaging and uniformity of 
population. This averaging is denoted “M2” (mean 2). 

The top left panel of Fig. 8 shows the mean ki profile M2 on log-log 
scale, so that the slopes of the line segments correspond to values of n. 
Integer values of n are indicated as straight lines on these panels. The 

Fig. 7. Like Fig. 6, but using a less aggressive setting for the anti-noise algorithm: J = 1.  
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mean profile has mean slope slightly less than n= 4 for the range 0.09 to 
0.23 Hz. Various tested binomials and monomials were tested, sum-
marized in Table 2, and we find the best outcome using a binomial fit of 
n= 2 and 4, but nearly the same accuracy using a monomial fit to n= 3.5 
to 4. 

The top right panel of Fig. 8 illustrates the error minimization pro-
cess used to find the best fit values of Cn for the n= 2 and 4 binomial. The 
diagonal error distribution suggests that the dependence is distributed 
between the two terms of the binomial. Best fit coefficients are given in 
Table 2. The first two bins are excluded during the fitting process, since 
inversion results are more sensitive to errors in boundary forcing for 
these bins. Goodness-of-fit is quantified by root-mean-square error 

(RSME), where the error is log10(ki, fit) − log10(ki, M2) and M2 denotes 
mean 2. 

Dependence on n= 2 to 4 can be found in several theoretical models 
reviewed in Section 2, namely: two new theoretical models of Meylan 
et al. (2018) (n = 2 and n = 3), the turbulent boundary layer model (n =
3), the Robinson and Palmer (1990) model (n = 3), the inextensible 
surface cover model (n = 3.5), and the Kohout et al. (2011) friction 
model (n = 4). Though notably, most of these models do not predict the 
dependence of dissipation on ice thickness, hice. 

The mean profile and fitted polynomial of M2 is shown in the lower 
panel of Fig. 8, along with the mean profile “mean 1”, and ki estimates 
from prior studies. The quality of fit is excellent. The power dependence 
(i.e. slope) is consistent with previous analyses using different datasets: 
the M2 binomial is compared to earlier binomial fits, from Meylan et al. 
(2014) and Rogers et al. (2018b). The M2 binomial fit is lower than that 
from Meylan et al. (2014) (for broken floes near Antarctica) by factors 
from 0.45 to 0.93 in the 0.08 to 0.16 Hz range, and is higher than that 
from Rogers et al. (2016) (for pancake and frazil ice near the Beaufort 
Sea) by factors from 1.07 to 1.44 in the 0.09 to 0.23 Hz range. We also 
plot the ki estimates for low frequency waves from Ardhuin et al. (2016) 
for an energetic swell case near Svalbard in ice of thickness 2 to 4 m. At 
these frequencies, (f<0.08 Hz) the simple mean of PIPERS suggests a 
weaker dissipation than the Ardhuin estimates, which is unsurprising 
given the much thinner ice during the PIPERS experiment. 

Fig. 8. Top: Power fit for “mean 2” from this study. Top left: Evaluation of power dependence of ki on frequency. Power dependence corresponds to fixed slope on 
this log-log scale. Integers within axes indicate power dependence. Top right: Error surface for determining best-fit coefficients. Bottom: Comparison to other es-
timates of ki(f). See text for further explanation. 

Table 2 
Best fit coefficients for binomials and monomials of the form ki(f) = CAfnA + CBfnB. 
The first row corresponds to the binomial fitting shown in Fig. 8. Calculation of 
RMSE is explained in the text.  

nA CA nB CB RMSE 

2 2.08e-4 4 5.18e-2 0.048 
3 2.83e-3 4 4.31e-2 0.052 
3 9.52e-3 0 0 0.107 
3.25 1.52e-2 0 0 0.081 
3.5 2.43e-2 0 0 0.061 
3.75 3.89e-2 0 0 0.055 
4 6.22e-2 0 0 0.067  
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7.1. Limitations 

Because in the underlying dataset there is variance about the mean 
profiles, any simple parametric model that is only a function of fre-
quency will have limited skill, even when directly applied to the same 
case. Inclusion of tertiary variables, such as hice, in the parametric for-
mula is a logical next step. 

8. Summary and conclusions 

In this section, we summarize the study, list the conclusions based on 
the analysis presented, and lastly, we offer thoughts and speculations 
about the results. 

8.1. Summary 

• A new dataset is presented: ki(f) profiles (dissipation rate as a func-
tion of frequency) from model/data inversion. These are computed 
using observations of waves in ice in the Southern Ocean: the 
“PIPERS” dataset presented by Kohout et al. (2020). Here, 24 days (6 
to 30 June 2017) are used. This is a subset of the larger dataset and 
includes 9477 ki(f) profiles.  

• The model/data inversion method is a relatively new method for 
estimating dissipation rate, and is particularly appropriate to this 
field study because it does not require that the buoy configuration is 
aligned with the mean wave direction: in the PIPERS field study, 
buoys became misaligned over time due to drift.  

• The ki(f) profiles are evaluated by studying their correlation with 
four environmental variables (denoted “tertiary variables”): ice 
concentration aice, distance from ice edge xice, ice thickness hice and 
significant waveheight Hm0. This multi-dimensional analysis is made 
possible by the large population of the dataset (9477).  

• The ki(f) profiles are presented using a novel method of binning 
which quantifies correlation with the tertiary parameters.  

• Two mean ki(f) profiles are computed, and a parametric model of 
dissipation are created by fitting to the mean that is based on profiles 
of thinner ice found nearer the ice edge. 

8.2. Conclusions  

• Results indicate a positive correlation between dissipation rate ki(f) 
and ice thickness hice.  

• Results indicate a negative correlation between dissipation rate ki(f) 
and waveheight, Hm0.  

• The simple mean of all ki(f) values, denoted “mean 1”, exhibits a 
flattening in higher frequencies (0.13 to 0.19 Hz) that is spurious, 
resulting from averaging profiles with dissimilar termination fre-
quencies. This type of averaging is therefore not recommended.  

• The second mean of ki(f) profiles, denoted “M2” and representing 
cases of thinner ice closer to the ice edge. This profile is well 
described by a binomial using n = 2 and 4, or by a monomial using n 
between 3.5 and 4.  

• The binomial for M2 is qualitatively similar to the binomials from 
Meylan et al. (2014) and Rogers et al. (2018). The former was 
computed for a case of broken floes in Antarctica using simple geo-
metric calculations, and is higher than M2 by a ratio of 1.07 to 2.24. 
The latter was computed using an inversion with wind input scaling, 
for an example of pancake and frazil ice in the western Arctic, and 
these values are generally lower than those of M2, by factors 0.69 to 
0.93.  

• We tested two possible settings for an algorithm to eliminate data 
contaminated by instrument noise and find that when the less con-
servative setting is used, there is a slight, spurious flattening of some 

ki(f) profiles near their terminal frequencies, an outcome predicted 
by Thomson et al. (2020). 

8.3. Further discussion  

• Power dependence found here (n=2 to 4) can be compared with our 
review of power dependence in the literature (Section 2). For 
example, n = 3.5 dependence is consistent with an existing model for 
dissipation caused by friction with laminar flow at the ice-water 
interface, and n = 4 is consistent with another friction model, Koh-
out et al. (2011).  

• The negative correlation between dissipation rate and energy may be 
coincidental rather than causal. If causal, it follows the analog to a 
thixotropic (shear-thinning) ice cover.  

• Further, this negative correlation apparently contradicts formulae 
which assume that dissipation increases with orbital velocity. How-
ever, the correlation does not isolate for coincident variables and so 
is inconclusive.  

• Variability of the 9477 ki(f) profiles estimated here is significant. Any 
parametric dissipation rate that is only a function of frequency, ki(f), 
applied in a forward model—even for the same case shown here-
—can be expected to be accurate only in the mean sense. Correla-
tions with tertiary variables such as hice found here may be exploited 
in the development of new parametric dissipation formulae and 
applied in predictive models. 
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Mendeley Data, doi:10.17632/5b742jv7t5.1. Other data files used to 
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request. 

Author statement 

The authors have no additional statements to make. 

Declaration of Competing Interest 

None. 

Acknowledgments 

Author ER was funded by the Office of Naval Research via the NRL 
Core Program, Program Element Number 61153N. The 6.2 project was 
titled “Wave-ice interactions”. Author MM was funded by the Australian 
Research Council, grant DP200102828. Author AK was funded by New 
Zealand’s Deep South National Science Challenge Targeted Observation 
and Process-Informed Modelling of Antarctic Sea Ice and NIWA core 
funding under the National Climate Centre Climate Systems programme. 

We thank the crew of the R/V Nathaniel B. Palmer and the members 
of the science team on the PIPERS cruise who helped with the buoy 
deployment and ice observations. We thank the University of Hamburg 
for providing the AMSR2 ice concentration analysis. We thank the 
University of Bremen and Dr. Li Li (NRL Remote Sensing Division) for 
providing the satellite-based ice thickness estimates. We thank Mr. 
Michael Phelps (NRL Oceanography Division contractor) for providing 
archives of the NAVGEM fields. We thank Drs. David Wang (NRL), Jim 
Thomson (UW/APL), and Tripp Collins (USACE) for helpful information 
and advice about instrument error and data processing. 

This is NRL contribution number NRL/JA/7320-20-4950 and is 
approved for public release.  

W.E. Rogers et al.                                                                                                                                                                                                                               

ftp://ftp.niwa.co.nz/incoming/Kohout/WII_2017
ftp://ftp.niwa.co.nz/incoming/Kohout/WII_2017
mailto:Alison.Kohout@niwa.co.nz
mailto:Alison.Kohout@niwa.co.nz
https://doi.org/10.17632/5b742jv7t5.1


Cold Regions Science and Technology 182 (2021) 103198

11

Appendix A. Noise threshold 

An algorithm was developed for this study, to remove E(f) records for which noise contributes significantly to E(f), specifically E(f) < JEn, where En 
is the estimated noise level and J is a subjective setting (Section 5). 

Traditionally, instrument noise most severely affects the measurement of long, low-amplitude waves. For example, if the acceleration spectrum 
measured by a buoy is contaminated by noise that is uniform in frequency (white noise), then the contamination of E(f) will fall off at a slope of f− 4, and 
tend to be extremely small at higher frequencies, relative to an open water spectrum. However, in sea ice, the high-frequency E(f) is much lower than 
an open water spectrum, such that noise may be a significant portion of E(f). As noted in our discussion of Fig. 3, the high-frequency tail appears to be 
“propped up”, and this may be caused by noise. We conservatively assume that this feature is caused by noise, and seek to exclude contaminated data. 
This requires an automated estimate of En. 

Instrument noise is expected to increase with total energy, so our approach is designed to include this dependency. The development was initiated 
by sorting spectra by significant waveheight Hm0 and organizing in groups of 50, so the first group has 50 spectra with the lowest Hm0, and so on. The 
groups were then manually evaluated to estimate the E(f) below which the spectra are visibly contaminated, similar to Fig. 3. In a second phase, an 
objective method was created, following these steps:  

1) For each group of 50 spectra, a mean spectrum was computed. The averaging was performed in log-space.  
2) The slope of the mean spectrum was computed, in log-log space.  
3) The point in frequency space where the negative slope in the tail was steepest was identified. This is assumed to be the point where dissipation by 

sea ice is very strongly suppressing the tail while noise is negligible.  
4) The point in frequency space where the magnitude of slope reaches less than 55% of the maximum is identified. This is treated as the noise level En. 

The criterion of 55% was determined as the setting which most closely matches the subjective (manual) evaluation.  
5) Since the spectra were sorted by Hm0 prior to grouping, the computed thresholds were then available as En = En(〈Hm0〉), where 〈Hm0〉 is the mean 

Hm0 of each group. We then performed a least-squares fit linear regression to En(〈Hm0〉) in log-log space, resulting in a power fit, En = 3.99 ×
10− 4Hm0

0.85. 

Since a different accelerometer was used for buoys 13 and 14, we perform a separate analysis for these buoys, giving En = 3.89 × 10− 3Hm0
1.86. These 

represent only 550 out of the 9477 spectra, so a smaller group size (20) was used for these buoys. The two fits are illustrated in Fig. A1. 
The overall outcome of applying the algorithm is that for cases further from the ice edge, the ki(f) profiles terminate at lower frequency (i.e. more 

data is discarded). This is because E(f) is more strongly damped (pushed down toward En) further from the ice edge. At the same time, the dependence 
of our noise floor on waveheight implies a lower En further from the ice edge. This empirically-determined dependence works against the overall 
outcome above but is not strong enough to reverse it.

Fig. A1. Noise level En as a function of waveheight. Dots indicate results using the algorithm based on spectral slope. Lines indicate power fits. “MPU” and “Kistler” 
denote two types of accelerometers used. “MPU” accounts for 94.2% of the measured spectra, and “Kistler” represents the other 5.8% (buoys 13 and 14). 
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