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Abstract The role of gas bubbles on the air‐sea CO2 flux during Hurricane Frances (2004) is studied
using a large‐eddy simulation model that couples ocean surface boundary layer turbulence, gas bubbles,
and dissolved gases. In the subtropical surface ocean where gases are slightly supersaturated, gases in
bubbles can still dissolve due to hydrostatic pressure and surface tension exerted on bubbles. Under the
simulated conditions, the CO2 efflux with an explicit bubble effect is less than 2% of that calculated using a
gas flux formula without explicit inclusion of bubble effect. The use of a gas flux parameterization
without bubble‐induced supersaturation contributes to uncertainty in the global carbon budget. The results
highlight the importance of bubbles under high winds even for soluble gases such as CO2 and demonstrate
that gas flux parameterization derived from gases of certain solubility may not be accurate for gases of
very different solubility.

Plain Language Summary Carbon dioxide (CO2) is the primary anthropogenic greenhouse gases
in the atmosphere and is the gas most responsible for global warming. The ocean is an important sink of
anthropogenic atmospheric CO2, yet the exchange of CO2 between the ocean and the atmosphere is not
fully understood. This study reexamines the exchange of CO2 under hurricanes over the low‐latitude ocean,
using hurricane Frances (2004) as an example. Previous studies show that hurricanes significantly facilitate
the outgassing of CO2 due to the extreme wind. Those studies, however, do not explicitly consider gas
bubbles. Gas bubbles, entrained into the ocean when ocean wave breaks, are ubiquitous under hurricanes
also due to the extreme wind. While in the ocean, gas bubbles not only move around under the influence of
the chaotic wind‐driven currents and their own buoyancy, but they also exchange gases with the water.
Our study, using state‐of‐the‐art computer models that concurrently simulate the chaotic ocean currents, gas
bubbles, and dissolved gases, demonstrates that hurricane plays a significantly smaller role in the
ocean‐atmosphere transfer of CO2 than previously estimated.

1. Introduction

The transfer of carbon dioxide (CO2) through the ocean‐atmosphere interface modulates the cycling of CO2

in the earth system and influences the amount of anthropogenic CO2, an important greenhouse gas,
absorbed in the ocean. It has now been qualitatively understood that the ocean takes in CO2 at the high lati-
tudes where the surface water is cold and is undersaturated in CO2, and releases CO2 at low latitudes where
the water is warm and is supersaturated in CO2. The quantitative estimates of ocean‐atmosphere CO2 flux,
however, still contain strong uncertainties (e.g., Wanninkhof et al., 2009; Woolf et al., 2019), associated with
errors in the data used to calculate CO2 flux including gas concentrations and wind speed, and with the func-
tional form of gas flux parameterization due to insufficient understanding of gas transfer processes particu-
larly when the ocean is rough and gas bubbles entrained during wave breaking play a key role.

Gas bubbles alter air‐sea gas exchange in two ways: First, the gas transfer rate is enhanced as gases go in and
out of the ocean through bubble surfaces in addition to the sea surface. Second, gases still dissolve through
bubbles at saturated and supersaturated water as gases in bubbles are squeezed by water pressure and
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surface tension; as a result, the ocean is supersaturated when the total air‐sea gas flux is zero (e.g.,
Woolf, 1997). Although the enhanced gas transfer rate is already (mostly implicitly) in popular gas flux para-
meterizations, the bubble‐induced supersaturation is thought to be unimportant for highly soluble gases
such as CO2 and is never considered in any realistic CO2 flux calculations. A recent observational study
(Leighton et al., 2018), however, concluded that bubble‐induced supersaturation is more important than pre-
viously thought, implying that existing CO2 calculations neglecting bubble‐induced supersaturation may
overestimate (underestimate) efflux (influx). On the other hand, the importance of bubble‐induced supersa-
turation for less soluble gases such as O2 (e.g., Bushinsky et al., 2016; Vagle et al., 2010; Wang et al., 2019),
inert gases (Stanley et al., 2009), and their ratios (e.g., Hamme & Emerson, 2006) has already been recog-
nized. It was also established in those studies that accurate quantification of the total air‐sea gas flux requires
the separation of the total gas flux into three components, viz., the gas flux through the ocean surface, that
through bubbles that completely dissolved, and that through bubbles that eventually burst at the ocean sur-
face (partially dissolved).

Since gas transfer rate increases with wind speed, it is plausible that gas transfer under hurricanes makes a
significant contribution to global CO2 flux. Based on observational data, Bates et al. (1998) concluded that
hurricanes contribute up to half of the global CO2 efflux. Lévy et al. (2012) noted that the gross effect of hur-
ricanes on CO2 efflux is much less and is about 10% of the global CO2 efflux because a considerable portion of
the ocean under a hurricane path is undersaturated in CO2 and vertical mixing is anomalously weak after
the passage of hurricanes. Several other studies (e.g., Bates, 2007; Huang & Imberger, 2010) also discuss
the CO2 efflux under hurricane conditions. While those studies debate the quantitative integral effect of hur-
ricanes on CO2 efflux, they all agree that strong CO2 outgassing occurs over surface water supersaturated in
CO2 during hurricane passage due to the enhanced transfer rate associated with strong winds. Gas flux
estimates in most studies implicitly include bubble‐enhanced transfer rate but not bubble‐induced supersa-
turation (e.g., Fairall et al., 2011; Wanninkhof, 1992). While parameterizations are based on gas flux mea-
surements, including CO2, the data for high wind are collected at high latitudes where the wind is strong
but CO2 is strongly undersaturated (e.g., Bell et al., 2017; Ho et al., 2011). At strongly undersaturated condi-
tions, both the gas flux through the ocean surface and that through bubbles are from the atmosphere to the
ocean. It remains unknown if the gas transfer formulas derived from undersaturated water, with CO2 influx,
apply to supersaturated water, with CO2 efflux.

The purpose of this study is to examine the effect of gas bubbles on CO2 outgassing in supersaturated waters
under Hurricane Frances (2004). The study is conducted by synthesizing in situ observations including gases
and numerical solutions from a process model that simultaneously models turbulent flows, gas bubbles, and
dissolved bubbles. Section 2 describes the data and the model; section 3 presents and discusses the results;
and section 4 is a summary.

2. Data and Model Description
2.1. Data

Hurricane Frances (2004) was a category‐4 hurricane in the northwestern Atlantic Ocean causing significant
damage to the Bahamas and the southeastern states of the United States. A large campaign was conducted
starting 31st August 2004 to observe both sides of the air‐sea interface in the path of the hurricane. Details
of the field campaign, instrumentation, and available data are in Black et al. (2007). For this study, the con-
centrations of dissolved O2 and N2 derived from an O2 sensor and a gas tension device on a Lagrangian float
that constantly transited across the upper 40‐m or so of the ocean under the maximum hurricane winds are
used (Figure 1a) (D'Asaro &McNeil, 2007; McNeil & D'Asaro, 2007). Temperature and salinity from a nearby
autonomous profiling Electromagnetic Autonomous Profiling Explorer (EM‐APEX) float (Sanford
et al., 2011) are also used.

2.2. Model
2.2.1. Model Description
The computer solutions are obtained using the coupled‐ocean‐bubble‐gas model (Liang et al., 2017).
Turbulent currents under the hurricane are simulated with the National Center for Atmospheric Research
Large Eddy Simulation (NCAR‐LES) model (e.g., McWilliams et al., 1997; Sullivan & McWilliams, 2010).
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The evolution of gas bubbles is tracked as Lagrangian particles (Liang
et al., 2018) and the concentration of dissolved gases are simulated
using advection‐diffusion equations. Model formulation and imple-
mentation are repeated in the supporting information. The next two
paragraphs highlight the improvements from Liang et al. (2017) that
are important for bubble simulations.

Bubbles are entrained into the ocean by breaking waves. In our past
studies (e.g., Liang et al., 2017), breaking wave number density is an
exponential function of breaking wave speed (c) (see Equation 3.15
in Sullivan et al., 2007). The functional form is based on visual obser-
vation byMelville andMatusov (2002). In this study, we implemented
the breaking wave front distribution function (Λ(c)) frommore recent
infrared observations (Romero, 2019; Sutherland & Melville, 2013,
2015; Zappa et al., 2012) that are power‐law functions of c (see sup-
porting information for details). There are more large breaking waves
and less small breaking waves using the current power‐law distribu-
tion function than the exponential distribution function in our pre-
vious studies (see Figure S1 in supporting information).

In addition to O2 and N2 that were simulated in Liang et al. (2017),
CO2 is also explicitly simulated in the same way as in Liang
et al. (2011). In the model, dissolved inorganic carbon ([DIC] ¼
[CO3

2−] + [HCO3
2−] + [H2CO3]) and alkalinity are simulated. The

partial pressure of CO2 is diagnosed by assuming equilibrium chemis-
try (e.g., Emerson & Hedges, 2008; Sarmiento & Gruber, 2006). Since
the carbonate reaction is assumed instantaneous, our model does not
have the chemical enhancement effect of CO2 exchange that is negli-
gible at normal ocean turbulence conditions (e.g., Wanninkhof &
Knox, 1996). The use of equilibrium assumption in LES studies of
upper ocean CO2 is also confirmed by Smith et al. (2018), who com-
pared LES simulations resolving carbonate reactions and those
assuming carbonate system equilibrium and concluded that explicit
consideration of carbonate reaction has minimal effect on CO2 flux.
2.2.2. Model Configuration
The model was configured in a rectangular domain of
400 × 400 × 200 m with 256 × 256 × 192 grids. The simulation starts
on day 245.15 (~3:36 a.m. 1st September GMT) of 2004 when the dis-
solved gas data are available and lasts for about 1.16 days within
which the wind strengthened to its maximum and weakened to about
the prestorm strength. Wind speeds at 10‐m above the ocean surface
(U10) and sea level pressure (Figure 1b) were interpolated from the
National Oceanic and Atmospheric Administration/Hurricane
Research Division (NOAA/HRD) real‐time wind analysis
(H*WIND) product (Powell et al., 1998). The float is located on the
right flank of the hurricane and the largest U10 over the float is
greater than 52 m/s at day 0.6. Surface heat flux and freshwater flux
were interpolated from the hourly NCEP Climate Forecast System
Reanalysis (CFSR) product at a spatial resolution of 0.312° × 0.312°
(Saha et al., 2010). The strong wind and precipitation also lead to
strong cooling flux and freshwater flux to the ocean (Figure 1c).
Wave parameters, including Stokes drift, peak wave period, and wave
energy to the ocean (Figure 1d), are based on the solutions of wave
spectrum computed using the wind‐wave model WAVEWATCH
III® (WWIII) (Tolman, 2009). The WWIII model was also driven by

Figure 1. (a) Contours of wind speed (m/s) for Hurricane Frances (2004) at day
245.75. The blue line is the track of the hurricane. The red line is the path of the
float where measurement is taken, with symbols indicating a quarter‐day
increment. At the location of the float, (b) 10‐m wind speed (U10) and sea level
pressure (Patm). (c) Surface heat flux (Qnet) and evaporation minus precipitation
(E.minusP.). (d) Significant wave height (Hsig) and peak wave speed (cpeak).
Time 0 corresponds to day 245.15 of year 2004.
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the H*WIND product. Details about the configuration of the WWIII model were described in Fan
et al. (2009). The calculation of wave energy flux to the ocean follows Fan and Hwang (2017). The waves
in the front‐right quadrant of the hurricane track are higher and longer due to the resonance effect
caused by the movement of the storm, while those in the rear‐left quadrant are lower and shorter. The
atmospheric fraction of gases is constant through the simulation and is 20.9%, 78.1%, and 374 ppm for O2,
N2, and CO2, respectively. The value for atmospheric CO2 concentration was inferred from the updated
observation‐based global monthly gridded sea surface CO2 and air‐sea CO2 flux product (Landschützer
et al., 2017).

Initial profiles of temperature, salinity, dissolved O2, and dissolved N2 were set based on the measurements
on the floats (Figures 2a and 2b). The initial mixed layer depth is less than 30 m. Temperature is higher and
salinity is lower in themixed layer than below, as is typical of the region (Sanford et al., 2011). Dissolved N2 is
lowest in the mixed layer and increases with depth below the mixed layer. It is about 1% supersaturated in
the mixed layer. Dissolved O2 is more than 2% supersaturated in the mixed layer. In the studied region with
strong surface heating and sunlight, the euphotic zone is deeper than the mixed layer, leading to higher dis-
solved O2 in the thermocline than in the mixed layer. Dissolved O2 is the largest at around 60 m, below
which dissolved O2 decreases with depth due to remineralization. Initial profiles of dissolved inorganic car-
bon and alkalinity (Figure 2c) are the same as those used by Huang and Imberger (2010) for the same storm.
The profiles are based on measurement by the R/V Knorr cruise at (22.21°N, 66.00°W) in 1997, but are
increased by 9.59 and 4.27 mmol/kg for DIC and alkalinity, respectively, based on the observed increase
in mean DIC and alkalinity in the same region and between 1997 and 2004 by Bates (2007).

To understand the effect of gas bubbles, two simulations were carried out, one without gas bubbles (run NB)
and the other one with bubbles (run B). In the simulation without gas bubbles, the total gas flux is calculated
using the parameterization byWanninkhof (1992) that is commonly used in earth systemmodels. In the par-
ameterization, the enhanced gas transfer rate due to bubbles is implicitly included while the bubble‐induced
supersaturation is neglected. In the simulation with gas bubbles, gas bubbles are represented by 8 million
Lagrangian particles. The total gas flux is the sum of the gas flux through bubbles and the gas flux through
the ocean surface. The gas flux through bubbles is explicitly calculated from the bubble fields and the
dissolved gas fields, and the gas transfer rate through the ocean surface is calculated using the formula

Figure 2. Initial profiles of (a) temperature and salinity; (b) dissolved O2 and N2; and (c) DIC and alkalinity.
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proposed by Goddijn‐Murphy et al. (2012) for in situ wind, i.e., ks,660 ¼ 2.6 U10–5.7. Sensitivity experiments
are also conducted to validate the robustness of the results from run B (see supporting information).

3. Results

During the passage of the hurricane, the ocean surface cools by about 2°. The cooling is primarily driven
by the turbulent entrainment of thermocline water. Only 10% of the total cooling is caused by surface
heat flux. Detailed analysis of the cold wake of the hurricane has been carried out by D'Asaro et al. (2007).
It plays an important role in the local atmosphere‐ocean coupling (e.g., D'Asaro et al., 2007), and in the
heat exchange between the surface and the interior oceans (Mei et al., 2013). Although there is strong
freshwater flux associated with precipitation during the passage of the hurricane, sea surface salinity
increases (Figure 3b) due to the dominant effect of entrainment of saltier thermocline water below the
mixed layer. The model captures the observed upper ocean response well, particularly during the stron-
gest winds.

Mixed‐layer dissolved O2, dissolved N2, and DIC all increase after the passage of the hurricane in simulations
with and without gas bubbles (red lines in Figures 3c–3e). Similar to heat and salt, dissolved gas concentra-
tions are controlled by air‐sea surface gas flux and by entrainment of thermocline water which has different
dissolved gas concentrations. Throughout the simulated period, all three gases are supersaturated with
respect to their atmospheric pressure (see the comparison between the solid lines and the dashed lines in
Figures 3c, 3d, and 3f), so that the surface flux is from the ocean to the atmosphere. The supersaturated con-
dition is a combined consequence of the initial supersaturation condition, the low atmospheric pressure dur-
ing the storm, the entrainment of the thermocline water immediately below the mixed layer, and the mixing
of waters of different temperatures. For the three gases, the effect of entrainment dominates that of surface
outgassing, and the mixed layer concentrations of gases increase.

In the simulation with bubbles, the mixed layer concentrations of all three gases increase, and are larger
than in the simulation without bubbles throughout the simulated period. Given that the effect of bottom
entrainment is the same for both simulations, the difference between the two simulations is from the explicit
inclusion of gas bubbles. The difference between the two simulations is much more evident for O2 and N2

than for DIC and pCO2. This is consistent with the conclusion in Koch et al. (2009) that air‐sea gas flux
has a minimal influence on the change of mixed‐layer DIC under a hurricane and the decrease in pCO2 is
due to changes in mixed layer temperature and salinity.

To better understand the role of bubbles in air‐sea gas flux, especially for CO2 flux, the total gas flux between
the ocean and the atmosphere and the respective contribution from the two types of bubbles and the ocean
surface are presented in Figures 4a–4c. In the simulation without bubbles, the total gas flux (black dashed
lines in Figures 4a–4c) is from the ocean to the atmosphere for all three gases due to the supersaturation
of the gases. In the simulation with bubbles, the total gas flux for both O2 and N2 (black solid lines in
Figures 4a and 4b) is from the atmosphere to the ocean, in the opposite direction from the surface flux
(red lines) and the total flux without bubbles (black dashed lines). The gas flux through bubbles dominates
the surface flux for both O2 and N2. The fractional contribution by completely dissolved bubbles (blue lines)
is larger for N2 than for O2 because the solubility of N2 is smaller than that of O2.

With bubbles, the total gas flux of CO2 is from the ocean to the atmosphere aside from a brief period between
around day 0.58 and day 0.69 when the winds are strongest (Figure 4c). Under the simulated conditions, the
integrated CO2 flux during the simulated period is still from the ocean to the atmosphere but is less than 2%
of the flux estimated using a parameterization without explicit consideration of bubble‐induced supersatura-
tion. Except for the first 0.32 days when CO2 is more than 8% supersaturated and U10 < 26 m/s, bubbles
contribute to CO2 dissolution although the gas is at least 3% supersaturated. In traditional gas flux parame-
terization without bubble‐induced supersaturation, bubbles will always contribute to gas efflux in supersa-
turated conditions. This implies that previous studies using a traditional gas flux parameterization
significantly overestimates CO2 efflux during the passage of a hurricane. Since CO2 is the most soluble
among the three simulated gases, the relative contribution by bubbles to total gas flux is the smallest. The
effect of gas bubbles becomes evident (the black and the red lines deviate) when U10 > 30 m/s. The contribu-
tion of completely dissolved bubbles is much smaller than that from partially dissolved bubbles for CO2 that
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is highly soluble. This is because the fraction of gas that dissolves through partially dissolved (large) bubbles
increases with increasing solubility while the fraction of a gas through completely dissolved bubbles is
determined only by the atmospheric fraction of the gas.

While parameterizations for bubble‐mediated gas flux including bubble‐induced supersaturation have been
examined for weakly soluble gases such as inert gases (Stanley et al., 2009), oxygen (e.g., Atamanchuk
et al., 2020) and nitrogen (e.g., Emerson & Bushinsky, 2016), they have never been tested with CO2. That
is likely because all CO2 gas flux studies are conducted at high latitudes where the water is undersaturated.
We compare CO2 flux through bubbles from the LES solutions with that calculated using three parameter-
izations, including Nicholson et al. (2011), Liang et al. (2013), and Nicholson et al. (2016) (denoted as N11,
L13, and N16 hereafter). The three parameterizations explicitly include the effect of bubble‐induced super-
saturation that is required to predict an influx or a reduced efflux under supersaturated conditions. The para-
meterizations also compare well with observed concentrations of a few weakly soluble gases (e.g., Liang
et al., 2017; Manning et al., 2016; Nicholson et al., 2016). The three parameterizations show different predic-
tion skill for total gas fluxes (Figures 4d–4f) and the gas fluxes through bubbles when compared with the LES
models (Figures 4g–4i). Note that the three parameterizations neglect wave condition as an additional para-
meter. Wave condition regulates the distribution of breaking waves and boundary layer turbulence, thereby
modulating both bubble entrainment (Deike et al., 2017) and bubble penetration (Liang et al., 2012). It was

Figure 3. The evolution of simulated and observed mixed‐layer (a) temperature; (b) salinity; (c) dissolved O2 concentration; (d) dissolved N2 concentration; (e)
DIC; and (f) pCO2. Blue lines are from observation; black lines are from simulation with bubbles; red lines are from simulation without bubbles; and dashed lines
are the saturation levels. The black line and the blue line overlaps in panels (a) and (b).
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shown to be important for determining gas flux (e.g., Liang et al., 2017) and gas transfer rate (e.g., Brumer
et al., 2017; Deike & Melville, 2018; Esters et al., 2017; Reichl & Deike, 2020). Parameterization L13
predicts a CO2 efflux until day 0.5 and then switches to CO2 influx afterward. The change from efflux to
influx, also in the LES solutions, is associated with the drastic decrease in pCO2 due to the entrainment of
subsurface water into the mixed layer. In parameterizations N11 and N16, the surface efflux dominates
the influx through bubbles throughout the studied period. The predicted total CO2 fluxes by the three
parameterizations are all much larger in magnitude than the results from the LES model (Figure 4f).
It is likely because the equilibration time is much shorter for CO2 than for N2, O2, and inert gases
(see section 4b of Woolf & Thorpe, 1991). As a result, in many of the partially dissolved bubbles,
equilibration is reached for CO2, but not for less soluble gases such as O2 and N2 (Keeling, 1993). When
generalized for CO2, parameterizations derived from weakly soluble gases assume that equilibration is not
reached for CO2, therefore overestimating the flux through bubbles for CO2 and other highly soluble gases.

Figure 4. (a–c) The evolution of gas fluxes for total gas flux (Ftot), surface gas flux (Fs), gas flux through completely dissolved bubbles (Fc), gas flux through
partially dissolved bubbles (Fp), and Fbub ¼ Fc + Fp in simulation without bubbles (run NB) and with bubbles (run B). (d–f) The comparison of Ftot between
three parameterizations (N11: Nicholson et al., 2011; L13: Liang et al., 2013; N16: Nicholson et al., 2016) and LES solutions. (g–i) The comparison of Fbub between
the three parameterizations and LES solutions. The left, middle, and right columns are for O2, N2, and CO2, respectively. Positive means influx and negative
indicates efflux.
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4. Summary

This study shows that gas bubbles have a substantial effect on the transport of a soluble gas, CO2. The out-
gassing of CO2 over supersaturated water during the passage of a hurricane is smaller than previous esti-
mates based on traditional gas flux parameterizations. The small efflux is due to gas bubbles that transfer
gases into the ocean even under supersaturated conditions. At the right flank of Hurricane Frances (2004)
close to the location of maximumwinds, CO2 efflux including the effect of gas bubbles is less than 2% of that
calculated using a popular gas flux parameterization without bubble‐induced supersaturation under the
simulated conditions. These results underscore the significance of previously overlooked bubble‐induced
supersaturation conditions for CO2, a highly soluble gas. They also demonstrate that parameterizations
derived using weakly soluble gases such as O2, N2, and inert gases are not accurate for highly soluble gases
such as CO2, and vice versa.

This study focuses on changes in mixed layer dissolved gas concentration and air‐sea gas flux during the
passage of a hurricane. Although the CO2 outgassing flux is substantially smaller than previous esti-
mates, hurricanes likely still have considerable impacts on CO2 outgassing well after their passage. As
shown in Figure 3, the mixed‐layer DIC concentration after the passage of the hurricane is substantially
higher than its prestorm values due to interior mixing. Although pCO2 is not significantly different right
after the passage of the hurricane because of cooling from entrainment of thermocline water, anomalous
warming over the cold wake after the hurricane (e.g., Price et al., 2008) increases pCO2, leading to
anomalous outgassing in the hurricane wake. On the other hand, it is also possible that the anomalously
high DIC is consumed during the enhanced plankton bloom after the passage of hurricanes and is
exported to the deep ocean through the sinking of organic particles. Massive ocean phytoplankton
blooms after the passage of a hurricane are commonly observed (Lin et al., 2003; Liu et al., 2019;
Walker et al., 2005). The study of CO2 flux over a complete hurricane wake would require a regional
or a global model together with a parameterization explicitly including bubble‐induced supersaturation.
Our ongoing efforts are to develop a parameterization including bubble‐induced supersaturation for CO2,
with both wind and wave as parameters. Future field campaign could focus on measuring CO2 flux over
supersaturated water, those measurements should include air‐side fluxes and concentrations at the two
sides of the ocean surface.

Data Availability Statement

Data for the figures were archived at https://doi.org/10.5281/zenodo.3975400 (https://zenodo.org/record/
3975400).
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