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Abstract While westerly winds dominate the equatorial Indian Ocean and generate the well‐known
eastward flowing Wyrtki Jets during boreal spring and fall, there is evidence of a strong westward surface
jet during winter that is swifter than eastward currents during that season. A weaker westward jet is found in
summer. In this study, we report the occurrence, characteristics, and intraseasonal variability of this
westward jet and its impact on mixed layer salinity in the equatorial Indian Ocean using the HYbrid
Coordinate Ocean Model (HYCOM) reanalysis with the Navy Coupled Ocean Data Assimilation (NCODA).
The westward jet typically occurs in the upper 50 m, above an eastward flowing equatorial undercurrent,
with peak westward volume transport of approximately −8 Sv. The westward jet builds up gradually, decays
rapidly, and is primarily forced by local intraseasonal wind stress anomalies generated by atmospheric
intraseasonal convection. Westward acceleration of the jet occurs when the dominant intraseasonal
westward wind anomaly is not balanced by the zonal pressure gradient (ZPG) force. The intraseasonal
westward jet generates strong horizontal advection and is the leading cause of mixed layer freshening in the
western equatorial Indian Ocean. Without it, a saltier mixed layer would persist and weaken any barrier
layers. Existing barrier layers are strengthened following the passage of freshwater‐laden westward jets.
Deceleration of the westward jet occurs when the eastward ZPG becomes increasingly important and the
westward intraseasonal wind anomalies weaken. A rapid reversal of atmospheric intraseasonal
convection‐driven surface winds eventually terminates the westward jet.

Plain Language Summary This study investigates currents that flow and travel from east to west
along the equator in the Indian Ocean. We examine potential mechanisms of current variability using a
reanalysis version of the global HYbrid Coordinate Ocean Model (HYCOM). The Indian Ocean experiences
seasonal wind reversals, which drive much of the surface ocean dynamics. Our results show that the
winds vary more frequently than the currents. These intraseasonal winds are the main causes of intense
westward currents. The westward jet is stronger during winter than summer, a likely result of winds
persisting for a longer time during winter than during summer. Strong intraseasonal westward currents
transport freshwater from the east to the central and western Indian Ocean. Rapid reversal of the
intraseasonal winds from westward to eastward causes the surface currents to reverse direction from
westward to eastward.

1. Introduction

Intraseasonal surface zonal current variability in the equatorial Indian Ocean is dominated by the
Yoshida‐Wyrtki jets (Wyrtki, 1973; Yoshida, 1959) forced by intraseasonal oscillations (ISOs) (Madden &
Julian, 1971). Seasonal wind‐driven currents are eastward flowing during the Indian intermonsoon periods:
the boreal spring during April–May and the boreal fall during October–November. Many previous studies
(e.g., Han et al., 1999; Jensen, 1993; Knox, 1976; Nyadjro & McPhaden, 2014) have focused on the dynamics
of the eastward zonal surface current variability in the equatorial Indian Ocean and showed that these cur-
rents are typically strong and can exceed 1.2 m s−1 (Figure 1b). During boreal summer and winter, however,
equatorial surface currents weaken and/or reverse becoming westward flowing (Figure 1; Han et al., 1999;
Joseph et al., 2012; Rydbeck et al., 2017). There are limited studies on the intraseasonal variability (ISV) of
westward surface currents, even though they modulate the exchange of heat, momentum, and salt, across
the tropical Indian Ocean (Cane, 1980; Nagura & McPhaden, 2008; Rydbeck et al., 2017). In order to
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construct a complete understanding of intraseasonal surface current variability in the equatorial Indian
Ocean, we identify the salient features of the Yoshida‐Wyrtki jet's counterpart, the westward jet (Figure 1a).

Many studies on zonal currents in the equatorial Indian Ocean focus on the semiannual (Luyten &
Roemmich, 1982; Nagura &McPhaden, 2010; Wyrtki, 1973), seasonal (e.g., Han et al., 1999; Rao et al., 1989),
and interannual (e.g., Gnanaseelan et al., 2012; Joseph et al., 2012; McPhaden et al., 2015; Nyadjro &
McPhaden, 2014) variability with relatively few studies on ISV. Much of the research attention is on the
impact of winds associated with the seasonal monsoon and the dominant interannual modes of variability,
such as the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO), on surface currents.
However, it has been noted that intraseasonal variations of zonal currents in the equatorial Indian Ocean
can be as large as the seasonal variations (Senan et al., 2003). Cane (1980) observed a local and rapid
response of the equatorial currents to westerly and meridional winds at 73°E. Luyten and
Roemmich (1982) reported a dominant 30‐ to 60‐day variability of zonal currents in the upper 200 m in
the western equatorial Indian Ocean. Rydbeck et al. (2017) observed that intraseasonal westward jets warm
the sea surface in the western Indian Ocean by advecting the climatological Indian Ocean warm pool west-
ward. They also observed that the zonal extent of the westward jet was approximately one half the wave-
length of the first baroclinic mode equatorial Rossby waves, whereas the Wyrtki jet extends across most of
the equatorial Indian Ocean (Delcroix et al., 1991; Jensen, 1993).

While both the eastward and westward jets are forced primarily as a response to local winds (Cane, 1980),
there are however differences in their structures and occurrences. The westward jets are shallower, typically
occurring in the upper 50 m (Figure 2c). Temporally, the westward jets tend to occur during boreal winter
and summer (albeit weaker than the winter occurrence; Figures 1a and 2a).

The eastward jets on the other hand are deeper, occurring in the upper 80–100 m (Han et al., 1999; Iskandar
& McPhaden, 2011; Nyadjro & McPhaden, 2014). They tend to occur during the intermonsoon periods ear-
lier mentioned (Figure 1b). Observed differences in the strength of the spring eastward jet and the fall east-
ward jet vary in the literature. Studies by Han et al. (1999) and Qiu et al. (2009) suggest that the
climatological Wyrtki jet is stronger during boreal fall than during boreal spring. Gnanaseelan et al. (2012)
however reported the opposite, but results from Nagura and McPhaden (2010) and Nyadjro and
McPhaden (2014) suggest both fall and spring jets to be of approximately similar magnitudes. Summarily,
the characteristics of westward jets and their impacts are quite different from eastward‐flowing Wyrtki jets
along the equatorial Indian Ocean, prompting further investigation.

ISV of ocean currents is fundamentally generated by resonant winds (Figure 3; Sengupta et al., 2001). The
ISO of equatorial Indian Ocean winds manifests as the boreal summer intraseasonal oscillation (BSISO) dur-
ing Northern Hemisphere summer and theMadden‐Julian Oscillations (MJO) (Madden & Julian, 1971) dur-
ing winter. The ISO, a coupled ocean‐atmosphere phenomena that typically occurs on 40‐ to 50‐day periods,
impacts SST, precipitation, and the atmospheric circulation. It has also been observed to rectify onto phe-
nomena with longer timescales such as ENSO and IOD (DeMott et al., 2015; Deshpande et al., 2017;

Figure 1. Mean zonal current (color shading, m s−1) and currents (vectors, m s−1) for (a) February and (b) May. White box in Figure 1a, 50–70°E, 2°S to 2°N,
shows the region where westward jets tend to be strongest.
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Figure 2. (a) Daily climatology of zonal winds (black line, m s−1) and zonal volume transport (red line, Sv) box‐averaged in the western equatorial Indian Ocean
(i.e., white box in Figure 1a). The strongest correlation between winds and transport (0.61) occurs when the winds lead the currents by about 5 days.
(b) Lead‐lag correlations of box‐averaged intraseasonal zonal wind anomalies and zonal current anomalies in the western Indian Ocean. (c) Daily climatology of
box‐averaged zonal currents in the upper 300 m in the western Indian Ocean from HYCOM (color shading, m s−1). Contours show temperature climatology
(°C). The thermocline depth represented by the 20°C isotherm is highlighted. (d) Box‐averaged annual mean zonal currents (solid black line, m s−1) and standard
deviation of intraseasonal current anomalies (dashed black line, m s−1) in the upper 300 m in the western Indian Ocean.

Figure 3. (a) Intraseasonal anomalies of zonal winds (m s−1) averaged in the western Indian Ocean (i.e., white box in Figure 1b). Red line shows 1.5 standard
deviations of the filtered, intraseasonal anomalies. Blue dots indicate the westward zonal current events as defined in section 2. (b) Wavelet power spectrum
(WPS) of filtered anomalous zonal winds in the western Indian Ocean. (c) Climatology of the WPS.
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Hendon et al., 1999). Low‐level winds associated with the ISO accelerate surface zonal currents in the equa-
torial Indian Ocean. On select occasions, ISO‐forced equatorial Rossby waves generate westward jets that
transport warm water to the western Indian Ocean and aid the onset of subsequent MJO events (Rydbeck
et al., 2017).

Aside from forcing ISVs of ocean currents, atmospheric ISOs generate variability of salinity in the upper
ocean, affecting ocean stratification, which can subsequently feedback onto ISO convection (DeMott
et al., 2015; Drushka et al., 2014; Grunseich et al., 2011). On intraseasonal time scales, sea surface salinity
(SSS) in the Indian Ocean varies by ~0.2 psu and is controlled by freshwater flux (evaporation minus preci-
pitation), advection, and mixing (Grunseich et al., 2013; Matthews et al., 2010). The relative contributions by
these processes to intraseasonal SSS variability vary by location and phases of the atmospheric ISOs. Li
et al. (2015) suggest that wind‐driven ocean dynamical processes are the primary cause of SSS ISV in most
of the equatorial Indian Ocean with freshwater fluxes playing a secondary role. During the active phase of
the ISO, however, enhanced precipitation is the primary contributor and causes low‐salinity anomalies in
the Indian Ocean (Grunseich et al., 2011). Anomalous winds associated with the ISO force intraseasonal jets
that advect these low salinity anomalies along the equator (Drushka et al., 2014). The importance of horizon-
tal advection to the intraseasonal salt budget in the western equatorial Indian Ocean has not been previously
explored.

The western equatorial Indian Ocean is a region of economic and climatic importance. It is biologically pro-
ductive and supports a large fishery (Liao et al., 2017), with the variability and distribution of chlorophyll (a
key component of this productivity) impacted by surface currents (McCreary et al., 2009). The
temperature‐influenced vertical stratification in the western equatorial Indian Ocean makes the region sus-
ceptible to significant air‐sea interactions (Hermes & Reason, 2008; Nyadjro et al., 2017; Trenary &
Han, 2012). Despite the dominant temperature influence, salinity has been suggested to further enhance
the vertical ocean stratification in the western Indian Ocean (Chowdary et al., 2009; D'Addezio &
Subrahmanyam, 2016), hence requiring further investigation.

In this study, we use observations and the HYbrid Coordinate Ocean Model (HYCOM) reanalysis that uti-
lizes the Navy Coupled Ocean Data Assimilation (NCODA) to characterize the occurrence, evolution, fea-
tures, and ISV of the westward surface jets in the equatorial Indian Ocean. We also examine the role of
the jet in modulating intraseasonal mixed layer salinity anomalies.

2. Data and Methods
2.1. Data

Daily gridded 0.75° × 0.75° ocean surface winds are obtained from the European Centre for Medium‐Range
Weather Forecasts (ECMWF) reanalysis (Dee et al., 2011). Outgoing Longwave Radiation (OLR; used as a
proxy for atmospheric convection) data on a 2.5° × 2.5° grid is obtained from the National Oceanic and
Atmospheric Administration (NOAA) (Liebmann & Smith, 1996).

Daily averages of sea surface height (SSH), salinity, temperature, and currents from a reanalysis version of
the HYCOM for January 1994 to December 2015 are used in this study. The dynamic model used is
HYCOM configured for the global ocean with a nominal horizontal resolution of 1/12° (~8 km at the equa-
tor) and 41 hybrid vertical layers. The first 16 vertical layers are fixed in pressure (z level) and correspond to
the upper 100 m, which ensures a good representation of mixed‐layer processes (Metzger et al., 2017). The
vertical coordinate is isopycnal in the open stratified ocean and approximately equal pressure levels (z levels)
in the unstratified ocean. However, the model switches to a terrain‐following (σ) coordinate in coastal waters
via the layered continuity equation. HYCOM has the capability of selecting one of several different vertical
mixing submodels (Halliwell, 2004), and this experiment uses the NASA Goddard Institute for Space Studies
(GISS) Level 2 turbulence closure model (Canuto et al., 2001, 2002). The bathymetry is derived from the
30‐arc second General Bathymetric Chart of the Oceans (GEBCO) data set (IOC, IHO, & BODC, 2003).
Data assimilation is performed once a day using the NCODA (Cummings, 2005). NCODA assimilates avail-
able satellite altimeter and SST data in addition to in situ temperature and salinity data from conductivity‐
temperature‐depth profiles, expandable bathythermograph profiles, Argo floats, and moored buoys through
a 3‐D variational scheme. The surface forcing is from the National Center for Environmental Prediction
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(NCEP) Climate Forecast System Reanalysis (CFSR) wind, heat fluxes (computed using bulk formula), and
precipitation fields (Saha et al., 2010).

2.2. Methods

We obtained ISV as in Rydbeck et al. (2017) by first removing the seasonal cycle and then applying a 20‐ to
200‐day band‐pass filter in order to isolate the ISV of interest. This choice of band‐pass filtering window is to
ensure that the slower response of the ocean to higher‐frequency atmospheric intraseasonal forcing is cap-
tured. The 200‐day low‐frequency bound avoids the truncation of lower frequency oceanic ISV. For instance,
this might include the second baroclinic mode Rossby wave response, which has a much lower frequency
(~200 days) than the first mode (~90 days). We identify periods of strong westward jets in the western
Indian Ocean by averaging intraseasonal zonal current anomalies from 2°N to 2°S and 50–70°E. This aver-
aging box encompasses the core of the intraseasonal westward currents (Figures 1 and 2). It is also part of the
region identified in Rydbeck et al. (2017) as an area in the western equatorial Indian Ocean where the zonal
SST gradient maximizes (and stimulates air‐sea interactions) as a result of westward advection of warm SST
by equatorial Rossby waves. Using this averaging box also allows us to examine the contribution of salinity to
stratification in the western equatorial Indian Ocean.

To characterize periods of robust westward jets, we identified strong westward jet events that are composited
with filtered data to reveal salient features of their dynamics, temporal evolution of the zonal currents, wind
forcing, OLR, salinity, and SSH. In this study, qualifying westward jet events are those that exceed 1.5 stan-
dard deviations of the area‐averaged intraseasonal zonal current anomalies. From the HYCOM reanalysis,
45 westward jet events were identified from 1994–2015 (Figure 4a).

Volume transports are calculated from 2°N to 2°S, and down to 50 m depth. The meridional bounds of the
calculation isolate the westward equatorial surface current from the south equatorial counter current
(SECC). The vertical limit ensures that the calculation is performed over the surface westward current
and is not impacted by the subsurface, eastward‐flowing current that occurs in the thermocline region.

We computed the mixed layer depth (MLD) following the methods of de Boyer Montégut et al. (2004), which
uses a variable density threshold equivalent to 0.2°C to define the MLD:

Δσθ¼σθ T10 − 0:2; S10; P0ð Þ − σθ T10; S10;P0ð Þ (1)

where Δσθ is the change in potential density between a reference depth (i.e., 10 dbar) and the base of the
mixed layer. T10 and S10 are, respectively, temperature and salinity at 10 dbar, and P0 is sea surface
pressure.

We computed zonal momentum budget as in Drenkard and Karnauskas (2014) and Nagura and
McPhaden (2014):
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The square brackets represent vertical integration over the mixed layer. The primed terms are band‐pass fil-
tered for 20–200 days in order to obtain intraseasonal anomalies of each term. The terms are first computed
using the total fields before filtering is applied. From left to right the terms in Equation 2 are the time rate of
change in zonal velocity (i.e., zonal acceleration), zonal momentum advection, meridional momentum
advection, vertical momentum advection, zonal pressure gradient (ZPG) force (computed as the residual
from Equation 2), Coriolis force, surface wind stress, shear stress at the base of the mixed layer, and horizon-
tal friction terms. u, v, and w are, respectively, zonal velocity, meridional velocity, and vertical velocity. p is
pressure, ρ is density of sea water, and f is the Coriolis parameter. The surface wind stress, τxo , is obtained
from the 10‐m wind speed, U, using τxo¼ρaCd∣U|U, where ρa is the density of air (1.225 kg m−3) and Cd is
a constant drag coefficient (1.43 × 10−3; Weisberg & Wang, 1997). The shear stress at the mixed layer base

τxML is computed as τxML¼ρAV
∂u
∂z
; where AV is vertical viscosity (4.5 × 10−3 m2 s−1; Qiao & Weisberg,

1997). AH is horizontal viscosity (1.5 × 103 m2 s−1; Wallcraft et al., 2005).
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To better understand the impact of westward jets on salinity, contributions to the intraseasonal mixed layer
salinity tendency are calculated using the following formula:

∂S
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� �
′

¼ S
E−P
h
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′

− u
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� �
′

− v
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′
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From left to right, the terms in Equation 3 represent themixed layer salinity tendency, sea surface freshwater
forcing, zonal salt advection, meridional salt advection, interaction of mixed layer with the layer below, and
the residual. S is the salinity vertically averaged over the MLD, h. E is evaporation, and P is precipitation,

both obtained from the NCEP CFSR data set used to force the model.
∂S
∂z

is computed as the difference

between S in the mixed layer and salinity 10 m below the MLD. As in Stevenson and Niiler (1983), the
entrainment term we is computed as

we¼H
∂h
∂t

þ v:∇hþ wh

� �
(4)

where ∂h/∂t is the rate of the mixed layer change, v. ∇ h is the horizontal velocity at the base of the mixed
layer multiplied by the horizontal gradient of the MLD, and wh is the vertical velocity at the base of the
mixed layer. H, the Heaviside unit function, equals zero for a shoaling mixed layer (∂h/∂t < 0) and equals
1 for a deepening mixed layer (∂h/∂t > 0) (Delcroix & Henin, 1991; Rao & Sivakumar, 2003). Term R repre-
sents the residual from the computation, which includes physical processes that are unresolved in this for-
mulation such as diffusion and diapycnal mixing as well as errors in the calculation of other terms.

3. Results and Discussion
3.1. Climatological Currents

In the western equatorial Indian Ocean (i.e., white box in Figure 1a: 50–70°E, 2°S to 2°N), where westward
currents tend to be strongest, westward currents, when present, occur in the upper 50 m (Figure 2c), above
an eastward flowing equatorial undercurrent (EUC) located in the thermocline layer (i.e., marked by the 20°

Figure 4. (a) Intraseasonal anomalies of zonal currents (m s−1) averaged in the western equatorial Indian Ocean (i.e., white box in Figure 1b). Red line shows 1.5
standard deviations of the filtered, intraseasonal anomalies. Blue dots indicate the westward events as defined in the section 2. (b) Wavelet power spectrum (WPS)
of filtered anomalous zonal currents in the western Indian Ocean. (c) Climatology of the WPS.
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C isotherm; Figure 2c). The relatively shallow westward current maxima are found during boreal winter
(January–March) and boreal summer (July–September), at which time the winds are westward over the
region (Figures 1 and 2). Notably, the amplitude of westward current maxima is stronger during winter than
during summer, although the zonal winds are of similar magnitude during these two seasons (Figure 2a).
However, the winds persist for different durations of time during the respective seasons such that their
cumulative impact on currents during the winter is stronger. We note that approximately one half of the
westward jet events (i.e., 22 out of 45 events, 49%) occur during the winter (November–February) while only
20% of the westward events (i.e., 9 out of 45 events) occur during the summer (June–September). The other
14 events occurred in the various months outside of the winter and summer seasons.

The behavior of the MJO, the main driver of the ISO equatorial wind variability during the winter, is quite
different than the BSISO that occurs during the summer. The MJO is much stronger, more enduring, and
largely confined to the equatorial waveguide during the winter (Adames et al., 2016). For the BSISO, atmo-
spheric ISV exhibits notable northward propagation that restricts its equatorial impact and is generally
weaker (Adames et al., 2016). Thus, the MJO‐influenced intraseasonal winds are more persistent with
greater fetch, resulting in enhanced equatorial zonal current forcing during winter.

Seasonally, the strongest westward currents occur in February, with amplitude of ~1 m s−1 at the equator
near 60°E (Figures 1a and 2). While eastward‐flowing surface currents occur during the Indian intermon-
soon in April–May and October–November, the annual mean zonal current in the upper 50 m of the western
Indian Ocean is westward (Figure 2d). At its peak, the volume transport of westward surface zonal currents
(approximately−8 Sv; 1Sv = 106 m3 s−1) is almost twice as large as that of the peak eastward surface currents
(~4.4 Sv). The mean subsurface currents in the thermocline layer are nearly eastward flowing year‐round,
with the exception of a brief period in July when they reverse, becoming weakly westward (Figure 2c).
The standard deviation of intraseasonal zonal current anomalies demonstrates that the currents are most
variable in the upper 50m (e.g.,−0.13 ± 0.33m s−1 at the surface), with the variability weakening with depth
(Figure 2d).

3.2. Winds and Currents Time‐Frequency Characteristics

We use wavelet analyses to examine the dominant periods of intraseasonal zonal wind and zonal current
variability in the western Indian Ocean. Equatorial winds have been previously recognized as the dominant
forcing of surface currents in the Indian Ocean (Cane, 1980; Iskandar & McPhaden, 2011; Jensen, 1993). In
the western equatorial Indian Ocean, intraseasonal zonal wind power has a maximum at higher frequencies
with peak spectral energy at 30–40 days (Figure 3). A secondary maximum located near 70 days is also pro-
minent. When the wavelet time series is composited for each day of the year, wind variability is noted to be a
maximum between 30 and 50 days during April–May (Figure 3c). Intraseasonal power is more broadband
during October–December, eventually partitioning into distinctive high‐ and low‐frequency bands by
January and extending through March (Figure 3c).

For intraseasonal zonal current anomalies in the surface layer of the western Indian Ocean, the dominant
energy resides in the lower frequencies of the intraseasonal band (i.e., 120–150 days), while substantial
energy is also present in the relatively higher frequencies (i.e., 30–90 days) (Figure 4). Year‐to‐year variability
in the intraseasonal periods is also evident. For example, stronger ISV occurred during 1997, 2008, and 2014
(Figures 4a and 4b). We also note a seasonal dependence of ISV (Figure 4c). At higher frequencies (i.e., per-
iods less than 50 days), substantial power is noted during April–May and October–November, coincident
with the intermonsoon periods. At lower frequencies, peak power occurs during February–March, coinci-
dent with the timing of strong intraseasonal westward currents in the western equatorial Indian Ocean
(Figure 4c).

3.3. Mechanisms of the ISV

Using a time series of box‐averaged (see Figure 1a) intraseasonal zonal current anomalies at 50–70°E, 2°S to
2°N as a reference index and lag correlating it against intraseasonal zonal wind anomalies at each longitude
along the equator, the strongest correlation between currents and winds (~0.8) occurs between 60°E and 70°
E, when the winds lead the currents by ~4–5 days (Figure 2b). This suggests that intraseasonal zonal current
variability in the region is primarily locally forced. Weaker positive correlations between the currents and
the winds are found to the east and west of this region. The lead time of 4 days is consistent with the
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results of Rao et al. (2017), which suggests that it takes approximately 4–5 days for surface zonal currents in
the equatorial Indian Ocean to respond to wind momentum that is trapped in the mixed layer.

Using composite analyses of westward jet events during boreal winter and boreal summer (i.e., seasons when
the jets typically occur), we further examine the causes of the ISV of westward jets in the equatorial Indian
Ocean. Intraseasonal westerly winds associated with the suppressed phase of atmospheric intraseasonal con-
vection (i.e., positive OLR anomalies; Figure 5a) occupy the tropical equatorial Indian Ocean during lag−50
to lag −40 days (Figure 6a). These westerly winds drive the eastward surface currents that are present in the
equatorial Indian Ocean during lag −50 to lag −40 days (Figures 6a and 6b). Winds in the equatorial region
begin to reverse from eastward to westward at lag −30 days (as the OLR anomalies weaken), being strongest
in the eastern Indian Ocean and weakest in the western Indian Ocean (Figure 6c). The westward jets are sub-
sequently generated in the eastern Indian Ocean during this time (Figure 6c).

The westward jets reach the central Indian Ocean by lag −20 days, then strengthen, and extend further west
between lags −10 and + 10 days, in association with downwelling Rossby waves, a source of remote forcing
(i.e., positive SSHA; Figure 5b). At the same time, low‐salinity waters in the east are advected toward the cen-
tral and western equatorial Indian Ocean (Figure 7) concomitant with strengthening of the barrier layer in
the region (Figure 5d). The role of advection produced by intraseasonal westward jets is examined in the next
section. Barrier layers are intermediate layers that form between the bottom of the salinity‐influencedmixed
layer and the top of the thermocline (Girishkumar et al., 2011; Lukas & Lindstrom, 1991;Masson et al., 2002).
In Figures 5 and 7, the swiftest surface currents tend to occur within the fresher, warmer surface waters.
Previous studies (e.g., Han et al., 1999; Masson et al., 2003) have shown that as the mixed layer thins, the
barrier layer thickens (i.e., assuming the isothermal layer depth, ITLD does not change; Figure 5d) and traps
momentum, strengthening the effects of wind forcing on the surface current acceleration.

Momentum budget estimates (Figure 8) show that acceleration of the intraseasonal westward jets is con-
trolled mainly by the stress and ZPG terms (as shown by the dashed black line in Figure 8), with the stress
term leading the ZPG term by ~5 days, consistent with the adjustment of the ocean to wind‐forced equatorial
wave dynamics (Nagura & McPhaden, 2008; Yuan & Han, 2006). The ZPG term is mostly eastward due to
lower SSH in the east and higher SSH in the west during the events (Figure 5b). Acceleration of intraseasonal
westward jets is dominated by the stress term, confirming the dominance of atmospheric intraseasonal con-
vection in locally forcing the intraseasonal zonal currents in the equatorial western Indian Ocean. This sug-
gests that forcing from remotemechanisms, such as equatorial Rossby waves, are weak. The tendency for the

Figure 5. Composites of intraseasonal anomalies of zonal currents averaged from 5°S to 5°N (color shading, m s−1). Contours of intraseasonal (a) outgoing long
wave radiation (Wm−2), (b) sea surface height (m), (c) sea surface temperature (°C), and (d) barrier layer thickness (m) anomalies are overlaid. Only the 22 boreal
winter and 9 boreal summer westward current events are used to make these composites.
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intraseasonal westward jet to accelerate occurs when the stress term is westward and greater than the ZPG.
Conversely, the tendency for the intraseasonal westward jet to decelerate occurs when the ZPG becomes
significant and counteracts the weakening stress term (Figure 8). Contributions from the zonal and
meridional momentum advection terms are weak and play nearly negligible roles in the intraseasonal
zonal current tendency. On the contrary, the vertical nonlinear momentum advection term tends to have
a relatively greater impact on the intraseasonal zonal current acceleration as it mixes the momentum
downwards and reinforces the westward wind stress forcing during the event peak days.

At the event peak (i.e., during lag 0 day), westward jets anomalies typically exceed −0.3 m s−1 (with a max-
imum of approximately −0.65 m s−1 occurring in May 2008; Figure 4a) and span most of the equatorial
Indian Ocean between latitudes ±4° (Figure 6f). By lag +10 days the atmospheric intraseasonal convection
is near its peak (Figure 5a), and the westward winds at the equator reverse rapidly (Figure 6g). This phase
relationship between intraseasonal convection and wind anomalies is typical for atmospheric intraseasonal
convection in the Indian Ocean. The equatorial zonal currents are still westward at this time (Figure 6g), as
they require several days to fully adjust to the momentum tendency forcing of the surface winds, as earlier
noted. By lag +20 days (Figure 6h), the westward equatorial currents have reversed to be eastward in nearly
the entire equatorial region (with only a remnant of westward currents in the west). These sequences of
events are consistent with results from previous studies (e.g., Masson et al., 2003; Reppin et al., 1999;
Rydbeck et al., 2017; Rydbeck & Jensen, 2017). In summary, the westward surface current anomalies build
up slowly but decay rapidly.

3.4. Impact of Westward Jets on Mixed Layer Salinity

The strengthening of the barrier layer in the central equatorial Indian Ocean following the peak of west-
ward jet events was earlier mentioned (Figure 5d). One of the mechanisms for the formation of a barrier
layer is the development of a warm, freshwater layer near the surface (Drushka et al., 2014; Lukas &

Figure 6. Composites of intraseasonal zonal currents (color shading, m s−1) and wind stress (vectors, N m−2) anomalies during westward current events. Only the
22 boreal winter and 9 boreal summer westward current events are used to make these composites.
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Lindstrom, 1991; Masson et al., 2002). In a recent study, Rydbeck et al. (2017) showed that horizontal
advection forced by equatorial westward jets associated with Rossby waves resulted in intraseasonal
mixed layer warming in the western equatorial Indian Ocean. In this section, we show that westward
jets also advect anomalously low‐salinity waters from the eastern equatorial Indian Ocean into the
central and western equatorial Indian Ocean. In doing so, westward jets modulate the upper ocean
stratification.

During lag −50 days to lag −40 days, high salinity waters occupy the equatorial Indian Ocean, being
advected by anomalous eastward zonal currents from the high‐salinity‐dominated western equatorial
Indian Ocean to the low‐salinity‐dominated eastern equatorial Indian Ocean (Figures 7a and 7b). By lag
−30 days, the presence of this high‐salinity waters in the equatorial Indian Ocean wanes as the anomalous
westward currents begin to form in the eastern equatorial Indian Ocean (Figure 7c). Low‐salinity waters in
the eastern equatorial Indian Ocean originate from the freshwater‐dominated Bay of Bengal (Han &
McCreary, 2001; Jensen, 2001; Nyadjro et al., 2010; Thompson et al., 2006) and are advected equatorward
during lag −20 days (Figure 7d).

Using Equation 3, we quantify the various contributors to the intraseasonal mixed layer salinity tendency in
the equatorial western Indian Ocean. Salt budget estimates show that the largest contributor to the intrasea-
sonal freshening of mixed layer salinity in the western equatorial Indian Ocean during the event peak is the
westward advection of low‐salinity waters. The phase of the mixed layer salinity tendency generally follows
that of the zonal advection with a 0.87 correlation between them. The freshening produced by zonal advec-
tion begins after lag−35 days (Figure 9a). By lag−10 days the contribution of zonal advection to mixed layer
salinity tendency has increased to approximately−2 × 10−3 psu day−1. This is twice as large as the next high-
est contributor during this time, atmospheric forcing through net freshwater flux that increases the mixed
layer salinity (Figure 9a).

Figure 7. Composites of intraseasonal sea surface salinity (color shading, psu) and surface currents (vectors, m s−1) anomalies during westward current events.
Only the 22 boreal winter and 9 boreal summer westward current events are used to make these composites.
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The freshening impact of westward advection on mixed layer salinity
reaches its maximum during the event peak contributing approxi-
mately −3.5 × 10−3 psu day−1 to the mixed layer salinity tendency
(Figure 9a). Immediately following the event peak and coinciding
with the convective peak of the atmospheric intraseasonal convection
(Figure 5a), net freshwater flux tendency reverses, freshening the
mixed layer salinity, consistent with results of Drushka et al. (2014)
and Grunseich et al. (2011). On the other hand, the tendency from
subsurface processes, meridional advection, and unresolved physical
processes (i.e., the residual term, R) is to counteract this freshening
impact and increase the salinity in the mixed layer. The net effect
however is a fresher mixed layer due to the overwhelming influence
of westward jet‐driven salt advection during the event peak. By lag
+15 days, the sign of the zonal advection term reverses, which
together with a positive net freshwater flux term counteracts the
freshening impact by both meridional advection and unresolved pro-
cesses, such that the mixed layer salinity tendency is positive.

To demonstrate the impactful role of westward jets in the zonal
advection term of the salinity budget, we decompose the zonal advec-
tion term into its intraseasonal and non‐intraseasonal components
(Rydbeck et al., 2017). The zonal advection term from Equation 3
can be rewritten as

− u
∂S
∂x

� �
′

¼− u′
∂S
∂x

� �
′

− u−u′ð Þ ∂S
∂x

� �
′

(5)

where the first term on the right‐hand side of Equation 5 represents
the advection of salt by intraseasonal zonal currents and the second term represents the advection of salt
by non‐intraseasonal zonal currents (i.e., currents with periods below 20 days and above 200 days).

When intraseasonal zonal currents are removed from the salt budget (i.e., first term on the right‐hand side of
Equation 5), the salinity tendency during the peak of the events reverses sign from freshening to salting

Figure 8. Depth‐integrated intraseasonal momentum budget terms averaged
over 50–70°E, 1°S to 1°N for zonal acceleration ∂u/∂t (UT, black line), zonal
momentum advection (UM, red line), meridional momentum advection (VM,
green line), vertical momentum advection (WM, blue line), zonal pressure
gradient force (PG, magenta line), surface wind stress (TX, cyan line), and sum of
pressure gradient force and surface wind stress (PG + TX, dashed black line). U
(yellow line) represents zonal current integrated over the mixed layer. Shear
stress at the mixed layer base and horizontal friction terms are negligible and
therefore not plotted.

Figure 9. Intraseasonal mixed layer salt budget terms averaged over 50–70°E, 5°S to 5°N for salinity tendency ∂S/∂t (ST, black line), surface freshwater forcing
(SF, cyan line), zonal component of advection (UA, red line), meridional component of advection (VA, green line), subsurface influence (SB, blue line), and
residuals (R, magenta line). MLS (yellow line) represents salinity averaged over the mixed layer. In Figure 9a, all the terms in Equation 3 are shown. In Figure 9b,
horizontal advection by intraseasonal zonal currents is removed from the salinity tendency (black line), zonal component of advection (red line), and the MLS
(yellow line) and is shown in dashed lines. The corresponding complete terms from Figure 9a are repeated in Figure 9b.
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(Figure 9b). While the salinity tendency that includes the intraseasonal zonal currents peaked at lag−2 days,
the salinity tendency with the intraseasonal zonal currents removed, peaked at lag +4 days. Without the
inclusion of intraseasonal zonal currents, the zonal advective term is nearly zero, and the mixed layer sali-
nity anomaly becomes much saltier (i.e., from −0.02 to +0.055 psu) and reaches its maximum several days
after the peak of the events. This result emphasizes the important freshening role of westward jets in the wes-
tern Indian Ocean.

4. Summary and Conclusion

Westward jets transport heat and salt from the eastern Indian Ocean into the central and western Indian
Ocean, which impacts air‐sea interactions, particularly on intraseasonal timescales (Cane, 1980; Rydbeck
et al., 2017; Rydbeck & Jensen, 2017; Webber et al., 2010). Consequently, it is worthwhile to understand
the occurrence and ISV of westward currents in the equatorial Indian Ocean. Our results show that the
volume transport associated with westward currents during boreal winter is greater than that during boreal
summer, as the surface wind forcings tend to persist for longer periods during winter.

By defining an index for intraseasonal westward jet events, we are able to formulate composites of their sali-
ent features and analyze their behavior. The amplitude of westward jets is strongest during the boreal winter
with a peak amplitude of ~1m s−1. Composite analyses reveal that the excitation andmaintenance of intense
westward equatorial jets within the equatorial Indian Ocean are primarily locally forced by atmospheric
intraseasonal convection‐driven wind anomalies. Upon propagating from the central to the western equator-
ial Indian Ocean, atmospheric ISOs (e.g., MJO) develop in the western Indian Ocean. The rapid reversal of
surface wind anomalies following the passage of the active phase of atmospheric intraseasonal convection
results in a dramatic and rapid termination of westward jets. A momentum budget estimate confirms the
dominant role of intraseasonal winds as it shows significant contributions from intraseasonal wind stress
and ZPG terms, with westward intraseasonal wind stress aiding the westward acceleration of intraseasonal
jets in the equatorial Indian Ocean. Eastward ZPG then acts to counteract this impact, causing a deceleration
and eventual reversal of the intraseasonal westward jets.

The westward jets are associated with a warming and freshening of the equatorial Indian Ocean basin. Using
an intraseasonal salt budget, we demonstrate that zonal advection by westward jets are largely responsible
for the freshening in the central and western Indian Ocean.When the westward jet is removed from the bud-
get estimations, the zonal advection term becomes near zero, and the mixed layer becomes saltier. Likewise,
Rydbeck et al. (2017) showed that Rossby waves and westward jets along the equatorial Indian Ocean caused
a warming of ~0.12–0.15°C in the western equatorial Indian Ocean. Subsequently, these warm, fresh waters
lead to a thickening of the barrier layer in the western equatorial Indian Ocean. As the barrier layer thickens,
the water column becomes more stratified and inhibits mixing between the surface mixed layer and the ther-
mocline (McPhaden & Foltz, 2013). Such variations in the barrier layer thickness have impacts on the
coupled ocean‐atmosphere system. Future work will aim to understand whether the atmospheric intrasea-
sonal convective forcing of westward jets may ultimately feedback onto the atmospheric intraseasonal con-
vection itself through variations of sea surface temperature, salinity, and ocean stratification.

Data Availability Statement

The output is freely available from the data repository of the HYCOM Consortium at (ftp://ftp.hycom.org/
datasets/GLBb0.08/expt_53.X/). OLR data are obtained from NOAA (http://www.esrl.noaa.gov/psd/).
ECMWF winds data are downloaded online (from https://www.ecmwf.int/en/forecasts/datasets).
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