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Chapter 5

Phase-Averaged Wave Models

W. Erick Rogers
',tL,o,l Researc:lt, Laborato,ry. Ste.nnr,s Sytctce Center. MS ,ggi2g. DSA

. Introduction
'-rrrplest terrns, a phasc-avcraged u,'ave modcl is one that docs- : r'crrt waves individually but instead nscs the wz,,e spectrum, as
.'t'ognostic "ariable. These modcls a,rcr sometirnes callerd "spcctral
i.1s'' for this reason, though in tr.uth. a phase-averagerl moclei
},e rnorochromatic, and a phase-resolving r.odel carr be usecl

.-tirrra,tcly prcdict spectra. We do,ot interrd to cover the topic' rraser-averaged rvave modeling cornprehcnsivcly herein. This is
.'1r- treatecl excelleutl.r, ancl in g'eater cletail bv ronger r,vorks
,rs Konren et ol,. 179941, Yourrg [1ggg], Cavaleri et o,1,.l2007l arcl'iruijsen 12007). Our goal here is to offcr an alternative perspec-

and includc topics and fr:rnk discussion which a.re not typictr,lrv
..:,1crl. Emphasis is on the u,-ar.e models S\\AN [Booij et al..7ggg)
\\-AVtr\!'ATCH III@ (,,WW3", Tolrnan [1991] WW3DG [2016]),' this author has rnore first-hand experience i,vith these two mocL-

- 'lLti, any other model. These tll.o .,re good examples of ph:rse-
,qecl ntcidels sincc they are open soLlrcc. rerltrtivcly rnodern (e.g..

' --r rnessage passing interface (N'IPI) parallelization and inclucling
.-r'n physics palarneterizations) and enjov u,,idespreacl, inter.na_
.l .-re. Both rnodels originally borrou,ed heavill'frorn fcaturcs of
rrrluor] trnccstor, the WANI model [\\AN,{DIG, lgBB], rn-hich rvas
- ier11. shared cor,r,unity model. Today, devclciprnent of \\ANI
.ct1r1'ed. e.g., the Europea. Centre for A.,Iediur,-R.ange Weather

163



 
 
 
 
 
Dear Reader, 
 
At time of writing, I do not have any .pdf of the 
official/published book chapter, nor do I intend to make such a 
.pdf via photocopying. 
 
The official/published version of the book can be purchased 
from retailers, such as amazon.com, either in physical or in 
digital form. 
 
The following pages are my version, provided by me to the 
Editor May 22-23 2019.  
 
The official/published version has different formatting and 
higher quality figures. 
 
Erick Rogers 
Oct. 5 2020 



 1 

Chapter 5 
 
Phase-averaged wave models 
 
Erick Rogers 

5.1 Introduction 

In simplest terms, a phase-averaged wave model is one that does not treat waves individually but 
instead uses the wave spectrum as the prognostic variable. These models are sometimes called 
“spectral models” for this reason, though in truth, a phase-averaged model can be 
monochromatic, and a phase-resolving model can be used to ultimately predict spectra. We do 
not intend to cover the topic of phase-averaged wave modeling comprehensively herein. This is 
already treated excellently and in greater detail by longer works such as Komen et al. (1994), 
Young (1999), Cavaleri et al. (2007) and Holthuijsen (2007). Our goal here is to offer an 
alternative perspective and include topics and frank discussion which are not typically included. 
Emphasis is on the wave models SWAN (Booij et al. 1999) and WAVEWATCH III® (“WW3”, 
Tolman (1991) WW3DG (2016)), since this author has more firsthand experience with these two 
models than any other model. These two are good examples of phase-averaged models since they 
are open source, relatively modern (e.g. using message passing interface (MPI) parallelization 
and including modern physics parameterizations) and enjoy widespread, international use. Both 
models originally borrowed heavily from features of a common ancestor, the WAM model 
(WAMDIG 1988), which was a widely shared community model. Today, development of WAM 
is fractured, e.g. the European Centre for Medium-Range Weather Forecasts continue to develop 
a proprietary, fully modernized version: ECWAM. Herein, we use the term “3GWAM” to refer 
to the “third generation” of wave models, which includes SWAN, WW3, WAM(s) and a handful 
of other models. In its formal definition, the “third generation” label implies that it is a model 
which explicitly includes relevant physical processes and does not make a priori assumptions 
about spectral shape (Komen et al. 1994). 
 
The governing equation of phase-averaged models is the wave energy balance equation (most 
versions of WAM) or wave action balance equation (SWAN, WW3). This can be represented as 
 

   (5.1) 

where 
   (5.2) 
 
In (5.2) the individual process are represented as: wind input, ; wave dissipation, ; 
nonlinear wave-wave interactions (quadruplets), ; wave-bottom interactions, ; depth-
induced breaking, ; triad wave-wave interactions, ; bottom scattering, ; wave-
attenuation due to ice, and reflection of waves due to shorelines and icebergs, . 
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The models operate by integrating this equation. There are five independent variables: wave 
frequency (or alternatively, wavenumber), wave direction (or alternatively, the Cartesian form of 
wavenumber), geographic position (meters, or degrees latitude/longitude), and time. Thus, some 
possible forms of the prognostic variable (spectral density) are: 𝐹(𝑓, 𝜃, 𝑥, 𝑦, 𝑡), 𝑁(𝑓, 𝜃, 𝜙, 𝜆, 𝑡), 
𝑁(𝑘, 𝜃, 𝜙, 𝜆, 𝑡), and 𝑁(𝑘𝑥, 𝑘𝑦, 𝜙, 𝜆, 𝑡). 
 
We introduce phase-averaged models by contrasting with phase-resolving models of the previous 
chapter: 
Advantages 

1. There is no requirement of having a minimum number of computational “points per 
wavelength”, which is particularly important if shorter waves are being modeled, e.g. the 
high frequency tail. It is challenging to efficiently represent many length scales 
simultaneously in a phase-resolving model. 

2. Geographic resolution is flexible, which implies that a model design can conform to the 
resolution of expected scale of variability, as appropriate. These scales tend to follow 
model input; we discuss this below. 

Disadvantages 
1. Phase-averaged models tend to include more parameterization. This is especially true for 

source terms. Though, phase resolving models typically do require their own 
parameterizations for anything that is not explicitly computed (breaking, capillary waves, 
atmosphere, turbulence, viscosity, compressibility, etc.). 

2. Phase-averaged models tend to utilize a larger number of assumptions built into the 
governing equation, e.g. that the sea surface is Gaussian. For kinematics, phase-averaged 
models usually rely on linear wave theory, while some phase-resolving models do not. 

3. Though today’s phase-averaged models offer an enormous number of output variables 
computed from the spectra or the source terms, the phase-resolving model can, in 
principle, provide even more, e.g. some explicitly model wave shape and wave grouping. 
Freak wave prediction is possible using a phase-averaged wave model, but this relies on 
associations and correlations rather than explicit modeling (e.g. Janssen 2002, 2003). 

 
A careful reader will have noticed that computation time was not mentioned above. Though 
some phase-resolving models are exceedingly expensive to run, there are sufficient counter 
examples (fast phase-resolving models and slow phase-averaged models), that blanket statements 
are impossible. Similarly, though phase-resolving modeling tends to be more academic, and 
phase-averaged modeling more suitable for operational use, one can find counter-examples. 
 
3GWAM output has many uses and forms. One common use is in operational nowcasting and 
forecasting of wave conditions, and in that context, perhaps the most common product is the map 
of significant waveheight 𝐻𝑠. An example is given in Figure 5.1.  

5.2 Kinematics 

Here, we use “kinematics” to refer to processes described using the advection term of the 
governing equation, ∇ ∙ 𝐶𝑔⃗⃗⃗⃗ 𝑁. A brief list is given here: 

1. Refraction by bathymetry and currents. Obviously, this creates a change in wave 
direction, and perhaps less obviously, can change the energy level locally via focusing 
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and defocusing. This occurs when the phase velocity is non-uniform along wave crests 
(perpendicular to the axis of propagation). 

2. Shoaling by bathymetry, and analogous behavior in cases of horizontally sheared 
currents. This occurs with the group velocity (plus currents) is non-uniform along the axis 
of propagation. 

3. Anything that causes the dispersion relation to deviate from its conventional form will 
necessarily produce behavior analogous to (1) and (2) above. Two examples are the effect 
of a viscous mud layer at the seafloor (e.g. Dalrymple and Liu (1978)) and the effect of a 
viscous ice cover at the surface (e.g. Keller 1998). At the time of writing, these kinematic 
effects are limited to academic applications. 

4. Advection in frequency space as waves encounter horizontal shear in currents (Chapter 
4). 

5. Diffraction has been implemented in SWAN via modifications to the advection terms 
(Holthuijsen et al. 2003). However, there are difficulties with this approach and it is our 
opinion that this process is best predicted using a phase-resolving model (Chapter 6), 
especially in the vicinity of engineering structures. 

5.3 Source terms  

Though the most of the source terms have already been described in Chapters 2-4, we briefly list 
the source terms available in 3GWAMs here, and in contrast to those prior descriptions, the 
following includes discussion of the compromises, approximations, and other artifice of 
numerical modeling.  
 
Exponential wind input. Some methods used today are 1) the parameterization of Komen et al. 
(1984), loosely based on the experimental work of Snyder et al. (1981), 2) the parameterization 
of Janssen (1991), loosely based on the quasi-laminar theory of Miles (1957), 3) models based 
on fitting to a boundary layer model, e.g. Tolman and Chalikov (1996), and 4) the 
parameterization of Donelan et al. (2006), largely empirical but drawing inspiration from the 
sheltering theory of Jeffreys (1924). There are large differences between these methods, even in 
fundamental features such as the directional distribution, and the integrated atmosphere-wave 
momentum flux. See Chapter 2.  
 
Linear wind input. Exponential wind input requires energy to increase energy, so it does not act 
on a calm surface. In wave models, this problem can be addressed in one of two ways. One is to 
“seed” the model state with some very small initial energy. The other approach is to implement a 
linear wind input source term. The Phillips resonance mechanism (Chapter 2) is linear, so it is 
commonly used. Both SWAN and WW3 have linear wind input which is nominally based on this 
mechanism, following the work of Tolman (1992) which is, in turn, based on Cavaleri and 
Malanotte-Rizzoli (1981). In truth, the connection to the Phillips resonance is practically non-
existent, particularly with respect to the directional resonance at 𝜃𝑟 = ±cos−1(𝐶/𝑈). However, 
it can be argued that the accuracy of the source term is inconsequential, because it has little 
impact on the modeling outcome beyond the first stages of wave growth. 
 
Steepness-limited breaking (whitecapping). Breaking is strongly phase-dependent, so a spectral 
source term is necessarily highly parameterized. Even so, this source term has seen remarkable 
improvement since the early, simple formulation by Komen et al. (1984). The primary 
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shortcoming of the early formulation was non-physical features such as the breaking of swell, 
and the unintended non-physical influence of wind sea on swell and vice versa (see Rogers et al. 
2003). The key breakthrough was the effective incorporation of the concept of a spectral 
threshold, below which no breaking occurs, and above which breaking increases nonlinearly (e.g. 
Babanin and van der Westhuysen 2008; Ardhuin et al. 2010). Also important was the recognition 
that multiple physical mechanisms can contribute to breaking. Modern formulations tend to 
include at least two of the following: 1) breaking caused by instability of waves at the frequency 
in question (independent of other frequencies), 2) dissipation caused by turbulence and 
instability associated with the breaking of waves that are longer than the frequency in question, 
and 3) breaking associated with the “concertina effect”, in which short waves are modulated by 
the orbital velocities of long waves. 
 
Non-breaking dissipation. With the threshold mechanism for wave breaking in modern wave 
models, it becomes necessary to include an additional mechanism to produce the slow dissipation 
which is implied from observations of swell propagating across long distances (e.g. Ardhuin et 
al. 2009). One postulated cause for this is friction at the near-surface atmospheric boundary 
layer, e.g. with energy lost to turbulent eddies in the air (Ardhuin et al. 2010). Another postulated 
cause is generation of turbulence in the water as wave orbital velocities interact with background 
turbulence (Babanin 2006). Though the causes are different, the equations are nearly equivalent 
(Babanin 2011). A third cause may be interpreted as a re-imagining of the first. Here, rather than 
treating the losses to the atmosphere using a friction model, they are computed by including a 
“negative wind input”. This wind input term is computed the same way as the corresponding 
positive wind input, but reduced by some factor, taking the paradigm used in the experimental 
study of Donelan (1999). 
 
Nonlinear interactions. This refers to energy- and momentum-conserving redistribution of energy 
within the spectrum. In shallow water, the fast near-resonant triad interactions are the most 
important, but these have historically been challenging to represent in phase-averaged models 
(Cavaleri et al. 2007). In the open ocean, the resonant four-wave interactions become important. 
These interactions are weak, requiring many wavelengths to effect significant change to the 
spectrum, but over the large scales of the open ocean, they become very important. Solution of 
these interactions has been a focus of much research for decades, and solution methods range 
from the fast and approximate DIA (“Discrete Interaction Approximation”, Hasselmann et al. 
1985) to exact methods which can be computationally slower by two orders of magnitude (see 
Tolman 2011). One exact method is Hasselmann and Hasselmann (1985), and there are a number 
of intermediate methods, e.g. van Vledder (2012), Tolman (2013). The implications of the 
reduced accuracy of DIA is discussed in Chapter 4.  
 
Surf breaking. This source term is sometimes referred to as depth-limited breaking. In principle 
breaking in deep water and shallow water could be represented with a single unifying source 
function (e.g. Filipot and Ardhuin 2012), but in practice, this is seldom done, and they are treated 
separately. The deep-water breaking formulations typically do not act fast enough to produce 
realistic profiles of waveheight across a beach profile, and so the surf breaking (e.g. Battjes and 
Janssen 1978) is included as an engineering solution. The source term acts as a “safety valve” to 
prevent extremely large wave heights in the nearshore, keeping in mind that in the case without 
dissipation, energy goes to infinity as depth approaches zero, due to shoaling. 
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Bottom friction. In finite depths, wave orbital motion interacts with the rigid seafloor, and that 
near-bottom boundary layer produces dissipation of the wave energy, e.g. Madsen et al. (1988). 
These source terms tend to be highly parameterized, and typically suffer from insufficient 
operational knowledge of the seafloor roughness, and variability of the same. However, the 
models at least capture the appropriate qualitative behavior, since the spectral calculation is 
based on orbital motion, which is readily calculated. 
 
Fluid mud (non-rigid seafloor). When waves propagate in shallow and intermediate depths with a 
muddy seafloor, they exert time-varying pressure, which creates a two-layer wave system, and 
energy lost to viscosity in the mud layer implies a damping of the surface waves. This damping 
can be very strong, especially in shallower depths. This can be estimated using mathematical 
models, e.g. Dalrymple and Liu (1978), Ng (2000). Models have been implemented in SWAN 
and WW3 (Winterwerp et al. (2007); Rogers and Holland (2009); Rogers and Orzech (2013)). 
Unfortunately, inputs are notoriously difficult to define, so uses of these parameterizations tend 
to be academic. Viscosity is difficult to estimate. Mud thickness can be obtained from core 
samples, but since it is always inhomogeneous and often nonstationary, sparse sampling has 
limited value to the modeler. Also, the thickness of the mud is not in fact a useful variable. 
Rather, the model needs an estimate of the fluidized mud layer thickness; the immobile fraction 
of a mud layer does not contribute to dissipation. 
 
Dissipation by vegetation. Marine vegetation can also dissipate wave energy. Wave motion in 
sea grass has been modeled as flow in and around narrow cylinders. The method of Dalrymple et 
al. (1984) has been implemented in SWAN (Suzuki et al. 2011). 
 
Dissipation by sea ice. Traditionally, the effect of sea ice on waves has been represented in wave 
models by deactivated grid points, i.e. treating them as land. This approach has been used with 
WAM, SWAN, and WW3. More recently, dissipation by sea ice has been implemented in at 
least two models, ECWAM and WW3, using physics parameterizations (Doble and Bidlot 2013; 
Rogers and Orzech 2013; Tolman et al. 2014; WW3DG 2016). There are three major groups of 
methods: 1) mathematical models which consider the dissipation that occurs within the ice layer, 
2) mathematical models which consider the dissipation that occurs below the ice layer, and 3) 
fully empirical parameterizations. In the first case, the losses are associated with friction. For the 
case of ice in a continuous sheet, there can be internal friction (hysteresis). For the case of 
suspensions of ice, e.g. brash and frazil ice, there can be losses from pumping of liquid water 
through the gaps between ice. Below the ice, the losses are associated with the boundary layer 
friction, and the boundary layer may be laminar or turbulent, just as with friction at the seafloor. 
There are further parallels: like seafloor bottom friction dissipation, all three methods of 
predicting dissipation by sea ice require information that is usually difficult to obtain: ice type 
and ice characteristics (rheology). Parameterizations and settings which provide good skill for 
one ice type cannot be expected to have skill with other ice types. However, there are causes for 
optimism. First, there has been significant progress recently to produce new, more accurate 
observational datasets for use in model development, e.g. Thomson et al. (2018), Rogers et al. 
(2018). Second, as with bottom friction, qualitative behavior can already be adequately 
represented in models, as there is a robust and intuitive increase in dissipation rate with wave 
frequency, e.g. Figure 5.2. This feature did not exist in 3GWAMs prior to 2010. Selection of the 
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power dependency of this dissipation rate vs. frequency relation is not fully resolved, but is 
coming into better focus with new research (Meylan et al. 2018). 
 
Scattering by sea ice. When wavelength is comparable to the floe size, wave-ice interaction 
enters a “scattering regime” (Bennetts and Squire 2012), in which the process should not be 
neglected. Wave energy may also be scattered in the case of propagation of swell through 
continuous ice, as the waves encounter sharp variations in ice thickness (Squire et al. 2009). This 
is a non-dissipative (conservative) process which is represented in WW3 using redistribution of 
energy within the spectrum (WW3DG 2016; Ardhuin et al. 2016).  
 
Scattering by irregular seafloor. Bragg resonance with topographical features can result in 
scattering. This can be either forward or backward scattering. Ardhuin and Herbers (2002) found 
that for a case on the North Carolina shelf, forward scattering predominates, and leads to 
significant broadening of the spectrum. This process has been included in WW3, but like some 
other source terms in this list, application tends to be for academic purposes: it requires a 
spectrum of the seafloor and can be expensive to compute. 
 
Reflection. Reflection from steep coastlines (Ardhuin and Roland 2012) and icebergs (Ardhuin 
et al. 2011) has been implemented in WW3. In the former study, the authors find that errors in 
directional spread are improved by including this effect. Reflected waves have a somewhat 
unique role whereby they produce partial standing waves, which penetrate to extreme depths and 
produce seismic noise (Longuet-Higgins 1950).  
 
Deep-water physics packages 
Collectively, the wind input source function(s), steepness-limited breaking, and non-breaking 
dissipation are known as “source term (ST) packages”. In WW3, these include: ST1 (Komen et 
al. 1984; Booij et al. 1999), ST2 (Tolman and Chalikov 1996), ST3 (Bidlot et al. 2005), ST4 
(Ardhuin et al. 2010), and ST6 (Rogers et al. 2012; Zieger et al. 2015; Rapizo et al. 2017; Liu et 
al., 2019). SWAN includes several other source term packages, such as ST1, ST6, and one by 
van der Westhuysen et al. (2007). Other source terms are selected independently from the ST 
packages. 
 
These three source terms are grouped together because their calibration is interdependent, and 
together they largely control the rate of growth and decay of wave energy in deep, open water 
(i.e. where depth-dependent processes and ice are absent). The four-wave nonlinear interactions 
are of course also very important in this situation, especially for spectral shape (e.g. Young and 
van Vledder 1993; Resio et al. 2016), but as mentioned above, it is selected independently from 
the ST packages, so for example, ST6 can be applied in conjunction with any solver for the four-
wave nonlinear interaction source term in SWAN and WW3. This leads to the obvious question: 
does a change in nonlinear solver necessitate a retuning of the source term package? The answer 
is not simple. Tolman (2011) asserts that any change to the nonlinear solver does require a 
recalibration of ST2. Results of Perrie et al. (2013) imply that this is also true in ST4 if DIA is 
replaced with a more accurate solver. Rogers and van Vledder (2013) find that change to the 
nonlinear solver does not require recalibration of ST6 in SWAN; however, it should be kept in 
mind that there was little or no swell in that study. Liu et al. (2019) find that a change to the 
nonlinear solver again does not require recalibration of wind input and breaking terms of ST6 in 
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WW3 but they do find it necessary to recalibrate the swell dissipation in a global application of 
ST6. This outcome is unsurprising: DIA is known to push too much energy to the low-frequency 
side of the spectral peak (e.g. Rogers and van Vledder 2013) and in a global application, this has 
implications for the calibration of the swell dissipation.   
 
Thorough comparison of the ST packages is beyond the scope of this chapter, this can be found 
in Stopa et al. (2016), van Vledder et al. (2016), Liu et al. (2019) and other publications. 
However, we present here two idealized comparisons. Figure 5.3 shows the fetch and duration 
waveheight growth curves for ST2, ST3, ST4, and ST6 with wind speed 𝑈10 = 15 m/s. These 
simulations are initialized from rest. The fetch and duration values reported by Moskowitz 
(1964) for fully developed conditions are marked on each plot, though it may be assumed that 
observed cases did not start from rest. The significant waveheight predicted by the Pierson-
Moskowitz (1964) (“PM”) parametric model for fully developed conditions is 5.5 m at this wind 
speed. Vertical contours indicate duration-limited conditions. Horizontal contours indicate fetch-
limited conditions. Such growth curves are a useful indicator of model behavior. For example, 
ST2 tends to be slower than WAM4 during initial growth while overpredicting energy as 
windsea transitions to swell (Tolman, personal communication), and this is reflected in the 
figures. The plots indicate strong similarity in ST3, ST4, and ST6; especially the latter two. 
Notably, the models are unanimous that the fetch/duration values reported by Moskowitz (1964) 
do not correspond to fully developed conditions. In real ocean cases of very large fetch/duration, 
that fetch/duration is defined by the storm itself, and we postulate that the apparent cessation of 
growth observed by Moskowitz was associated with the inevitable slackening of winds, rather 
than being associated with the approach towards an asymptotic limit under constant winds. The 
latter is, of course, the traditional interpretation of the PM spectrum, e.g. Booij et al. (1999).  
 
Of course, even when waveheight is identical between two models, the spectrum may be very 
different. Figure 5.4 compares frequency distributions of energy and the three primary deep-
water source functions (𝑆𝑖𝑛, 𝑆𝑑𝑠, 𝑆𝑛𝑙4). These are for the same wind speed, with unlimited fetch, 
and 15 hours duration. In terms of spectral shape, the more modern models (ST4, ST6) are in 
good agreement, while the older ST2 is an outlier, with a lower dominant wave period. Wind 
input and whitecapping in ST6 is much stronger in the high frequencies than ST2 and ST4. In the 
context of whitecapping, this implies that ST6 is closest to consistency with Pushkarev and 
Zakharov (2016), who argue that there is no dissipation near the spectral peak.  The strong 
differences in frequency distribution of wind input has implications for coupling to other models, 
since conversion from wind input to wave-supported stress (i.e. from energy flux to momentum 
flux) involves a factor 1/𝐶 where 𝐶 is the phase velocity. 

5.4 Computational Grids 

3GWAMs are solved on grids in both spectral and geographic space. The general objective with 
model resolution is to sufficiently resolve the variability that would be exhibited by the model if 
it was solved without discretization (the latter being generally impossible, of course). This 
required resolution is primarily dictated by the model forcing, e.g. the scales of variation of the 
driving winds, the currents, the ice, or the bathymetry/coastline.  
 
Frequency space is defined on a logarithmic spacing, implying smaller steps for lower 
frequencies. When the DIA is used for four-wave nonlinear interactions, the spacing is usually 
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according to 𝑓𝑖 = 1.1𝑓𝑖−1 , where 𝑓𝑖 indicates a bin in the frequency grid. The increment factor 
1.1 is preferred because it was used in the original development and calibration of the DIA. For 
general cases, e.g. a global wave model, the starting frequency has traditionally been around 0.04 
Hz, but it can be set significantly higher in restricted basins (e.g. lakes and enclosed seas) with 
defined climatology for expected spectral range. More recently, lower starting frequencies have 
been adopted in global wave models, e.g. 0.035 Hz, recognizing that extreme extratropical 
storms can produce energy at these frequencies. Even when the low frequency bands (0.035-0.40 
Hz) contribute little to the wave height within the storm, the swell energy that radiates outward at 
these frequencies can be important at remote locations, especially when energy at higher 
frequencies is absent or suppressed (e.g. Ardhuin et al. 2016). The high frequency limit is 
typically between 0.5 Hz and 1.0 Hz with modern physics packages, e.g. 0.6 to 0.7 Hz is used in 
WW3 by Ardhuin et al. (2010). Beyond this limit of the prognostic frequency grid, a diagnostic 
tail is added; this can be either fixed (e.g. 1.0 Hz in Booij et al. (1999) and generally 
recommended for SWAN) or a flexible limit based on local wind speed and/or mean period (e.g. 
Tolman 1991). Of course, if a 3GWAM is being used to model only swell in restricted domains, 
forced at lateral boundaries, one may safely use a narrower frequency range.  
 
For the directional grid, uniform spacing is used, typically around 10q, which implies 36 
directional bins to represent waves from any direction. Though again, for modeling of only 
swell, with restricted coastal domains and forcing at the boundaries, one may elect to omit some 
directions (e.g. ones directed offshore) to reduce computation time.  
 
Geographic grids exist in three main categories: structured regular, structured irregular, and 
unstructured. Further, they can be in a Cartesian system (𝑥, 𝑦) or a spherical (latitude/longitude) 
system (𝜙, 𝜆). “Structured” is used here to indicate that the grid is logically rectangular. A 
structured irregular grid in Cartesian system would have all grid points defined on 𝑥(𝑖 =
1…𝑛, 𝑗 = 1…𝑚), 𝑦(𝑖 = 1…𝑛, 𝑗 = 1…𝑚) where 𝑛 and 𝑚 are the number of rows and columns 
(thus “logically rectangular”). “Regular” is used here to indicate uniform spacing, e.g. (Δ𝑥, Δ𝑦). 
A Cartesian structured regular grid also has points defined on 𝑥(𝑖, 𝑗), 𝑦(𝑖, 𝑗), but because of 
uniform spacing, this simplifies to 𝑥(𝑖), 𝑦(𝑗). Unstructured grids are not logically rectangular; 
here grid points are defined in a list, 𝑥(1…𝑛), 𝑦(1…𝑛), where 𝑛 is the number of nodes. 
Unstructured grids can be composed of triangular grid cells, but this is just one type. Another 
example of an unstructured grid is one which is made by taking a regular grid and deleting some 
grid points, e.g. to have larger spacing offshore or larger longitude spacing Δ𝜆 at extreme 
latitudes. 
 
Selection of grid type often involves weighing the cost of grid creation against the cost of 
running an inefficient model. Regular grids are the easiest to create, and in the context of 
SWAN, can be changed by simply modifying a few numbers in an input file. However, they can 
be inefficient. For example, high resolution may be applied to describe a coastline and 
bathymetry, but this same high resolution is then applied in offshore portions of the same grid, 
where it is not needed. A global grid with regular latitude/longitude spacing implies highly non-
uniform spacing in terms of real distances, which in the case of conditionally stable propagation, 
forces use of an inefficiently small time step (a small fraction of grid cells dictate a small time 
step for the entire grid). Irregular and unstructured grids can address these inefficiencies. For 
example, in the global context, we can use regular spacing at low latitudes, Lambert conformal 
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projections at mid-latitudes, and polar stereographic projections at high latitudes to create 
modeling systems which permit large time steps for propagation. For modeling coastlines, the 
unstructured grids are most efficient, since high resolution can be applied where it is needed, and 
coarse resolution applied offshore, where wave conditions are more homogeneous. The cost, of 
course, is that irregular grids and unstructured grids—especially the latter—can require more 
effort to create and manage. Creation of unstructured grids usually requires specialized software, 
and the creation of boundary forcing for grids with irregular boundaries can be troublesome. 
Also, there exists a caveat for the case of unstructured grids which apply high resolution where 
needed: these grids usually require an unconditionally stable propagation scheme, since 
otherwise, the smallest grid cell will dictate the propagation time step.  
 
Tolman (2008) created an ingenious approach for WW3 which combines the simplicity of 
regular grids with the efficiency of irregular and unstructured grids. This uses a regular grid, but 
with offshore portions masked out, meaning that those locations are computed in a host grid 
which provides boundary forcing. This idea unfortunately creates a new challenge of defining 
irregular, internal boundaries not oriented with the four cardinal directions. Tolman (2008) 
implemented this idea alongside a “mosaic approach” of two-way nesting, which automates the 
boundary management, though not the grid creation. 
 
The strategy of “applying high resolution only where it is needed” is problematic in cases where 
the determining factors are non-stationary: if it is desirable to resolve high-resolution details of 
the dynamic model inputs (e.g. surface currents, winds), then adaptive (non-stationary) grid 
methods should be used, e.g. Popinet et al. (2010). Such technology is still relatively new.  

5.5 Numerics 

Discretization in numerical models results in numerical error, and coarser discretization 
generally implies larger error. However, it is not the resolution itself that increases error, but 
rather the resolution relative to the curvature (and other spatial derivatives) of the thing being 
propagated: in our case, spectral density. Also important: the numerical scheme used and the 
Courant number, 𝜇 = 𝐶Δt/Δ𝑥, where 𝐶 is the speed at which energy is advected, usually taken 
as the sum of the group velocity and the mean current. Different schemes have different 
dependency on resolution and Courant number. For example, the first order scheme of SWAN 
has less error with smaller Courant numbers. The first and third order schemes of WAM and 
WW3 have opposite behavior: they have less error with larger Courant number, though they 
become unstable beyond a value near 1.0.  
 
Numerical error falls into two broad categories: diffusion error and phase error. Again, different 
numerical schemes include these in different proportions. Diffusion tends to smooth a swell field 
as it propagates, so that maxima are reduced and minima increased, and also it tends to bleed 
energy into regions which it would not propagate into using an exact method (e.g. ray tracing). 
One example of the latter is excessive propagation of wave energy into sheltered regions behind 
islands, and this error can become so large that it increases RMS error in comparisons against 
observations (Rogers et al. 2002). Phase error is the deviation of the numerical propagation speed 
from the true (intended) propagation speed for individual Fourier components of the numerical 
solution (Petit 2001).  When these components separate during propagation, they can manifest as 
oscillations in the solution if they are not damped by diffusion, and these are known as 
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“wiggles”. These wiggles tend to be most severe in higher order implicit schemes such as the one 
used in SWAN. Thus, a user is faced with the dilemma of choosing between larger numerical 
error with no wiggles (the diffusive first order implicit scheme) vs. numerical error that is 
significantly smaller but also more visibly non-physical. Further, unfortunately, the selection is 
not case-dependent, since the same thing that creates diffusion in the first order scheme 
(curvature of the wave field) also creates wiggles in the higher order scheme. Thus the selection 
is largely based on user preference. 
 
The above dilemma is an outcome of the use of implicit schemes in SWAN which is in turn a 
result of the requirement of unconditional stability, which is in turn a result of SWAN’s primary 
design criterion: efficient modeling at high resolution. WAM and WW3 take a different 
approach. These models were originally designed for larger-scale modeling, which implies 
coarser resolution (e.g. greater than 2 km), so conditional stability is not objectionable. This 
allows use of explicit schemes which have higher overall accuracy and speed than their 
counterparts in SWAN.  
 
WW3 is not without problems, however. It separates x- and y-propagation into separate 
sequential steps, in contrast to SWAN which solves for propagation in both dimensions with a 
single operation. In extreme canonical cases, this “splitting error” results in a distortion of 
features: initially round features become more square in appearance after propagation.  
 
The higher order schemes of both SWAN and WW3 have numerical diffusion that is so small 
that it produces yet another problem: the “Garden Sprinkler Effect”, whereby the spectral 
discretization causes distinct features to become visible in the geographic distribution of swell 
fields after propagation. This is most severe when spectral discretization is coarse. With first 
order schemes, the effect is mostly masked by diffusion. In both SWAN and WW3, methods 
exist to counteract the effect (Booij and Holthuijsen 1987; Tolman 2002). 
 
The problems mentioned above are not necessarily apparent in skill scores, particularly in the 
open ocean where the curvature of the wave field tends to be smaller. Rather they are first 
evident as aesthetic problems, e.g. in spatial distribution of swell energy. In a time series 
comparison against observations, diffusion will manifest as a reduction in the variance of the 
model time series, but again, this does not necessarily affect traditional skill scores such as RMS 
error when larger errors (e.g. from wind forcing) dominate. 
 
SWAN has an additional method for improving the efficiency of high resolution modeling: 
stationary computations. Here, the assumption is made that the waves are in steady state, having 
achieved balance with the local winds and boundary conditions. This is more appropriate for 
small regions, e.g. 25 km by 25 km, and error becomes significant for larger areas, e.g. with 
waves reacting too quickly to changes in wind, or swells arriving too early (Rogers et al. 2007). 
 
The time step also plays a role in numerical error. Similar to the x/y propagation issue above, 
WW3 separates the computations of propagation from computation of source terms, where 
SWAN solves this simultaneously. The impact of the split time stepping in WW3 is largely in 
the control of the user. By using infrequent reconciliation of source term integration and 
propagation, computations can be accelerated, but with a loss of accuracy. 



 11 

 
SWAN has a time step problem which is arguably more severe. It applies a “limiter” such that 
large changes to the spectrum (from one time step to the next) are prevented. This improves 
model stability. However, it means that the model solution can become dependent on the time 
step size (Tolman 2002). This implies that in cases of rapid wave growth, e.g. a sudden squall 
following relative calm, the growth will be underpredicted by SWAN during the initial hours. 
However, like with the case of propagation error, the problem is most evident in idealized cases. 
In hindcasts of real scenarios, this author has not observed significant sensitivity to time step 
size. WW3 solves the limiter problem by dynamically reducing the time step size according to 
the strength of the net source terms (Tolman 1992).  

5.6 Inputs  

The non-uniform input permitted for 3GWAMs include: wind at 10 meters, wind stress, 
bathymetry, surface currents, air-sea temperature difference, water levels, bottom friction 
parameter(s), sea ice concentration, sea ice thickness, other sea ice parameters, iceberg 
parameters, mud parameters, and vegetation parameters. Of course, there is significant variation 
between models and no single model includes every item in this list. Moreover, there are 
differences between models with respect to which fields are permitted to be nonstationary. Just 
as wave models can be created for many different scales (global models, surf zone models, etc.) 
and different conditions  (swell propagation through a tropical archipelago, windsea in an ice-
infested sea, waves under a tropical cyclone, swells arriving at a muddy coastline, etc.), the 
crucial input variables will be different. At global scale and larger regional scales, the accuracy 
of the wind input is often the primary factor determining wave model skill, even more so than the 
model physics parameterizations (Cardone et al. 1996, Bidlot et al. 2002, Rogers et al. 2005). 
This implies that, in those situations, the wave modeler can only influence the second-order 
errors. Further, the wind problem is not unique. Bathymetry error, coupled with shoreline- and 
depth-dependent physics, can cause severe difficulties. Some coastlines, especially in the 
military context, may be inaccessible for traditional bathymetric surveys. At an exposed sandy 
coastline, the beach profile is seasonal and determined by storm events (CERC 1973). A third 
example is the situation in and near the ice edge, where even modest errors in the ice edge 
position can make accurate wave forecasting impossible (e.g. Rogers et al. 2018), and that 
position can change much even during the short (4 to 24 hour) window between satellite 
overpasses. 
 
Notably, there is no explicit method in these models for providing them with gridded information 
about bottom type or ice type. For example, a model of the northern Gulf of Mexico is not 
explicitly instructed regarding where the southern Louisiana coastline is muddy or the Florida 
panhandle is sandy. However, extending SWAN or WW3 to allow multiple sediment types in a 
single grid would be only a modest technical challenge, since corresponding dissipation 
mechanisms already exist in the models. The larger technical challenge is to provide the model 
with nonstationary and non-uniform information required by these mechanisms, such the depth 
of fluidization of the mud layer and the state of a sandy seafloor as it transitions between a flat 
surface where the roughness is associated with the sand grains, and a rippled surface, where the 
roughness is associated with the bedforms. In both the mud and sand cases, it is of course a 
coupled problem, with the wave orbital motion impacting the state of the seafloor (Winterwerp et 
al. 2012, Smith et al. 2011), but application to deterministic modeling is still relatively academic. 
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Similarly, with respect to ice type: many parameterizations for dissipation by sea ice exist in 
WW3 (WW3DG 2016; Rogers et al. 2018). Some are purely empirical, while others are 
solutions to boundary value problems or otherwise based on theoretical calculations. Regardless, 
parameterizations or settings with parameterizations are sometimes associated with specific ice 
types, e.g. grease ice, thick frazil ice, pancake ice, sheet ice, or floes from broken sheet ice. The 
intuitive conclusion is that if we know the ice type, we can more accurately estimate the 
dissipation of wave energy. Unfortunately, the analogy to seafloor interaction still holds: 
estimation of sea ice type is still not a reality for operational use. We can imagine that this 
situation will improve soon, as satellite technology and process models improve. Again, like the 
seafloor, it is a coupled problem, both with ice breakup by waves (e.g. Williams et al. 2013a,b; 
Collins et al. 2015; Boutin et al. 2018) and the role of waves in ice formation (Shen et al. 2001, 
2004; Doble 2009; Thomson et al. 2017).  
 
Two issues with wind forcing are worth further discussion. One is the modification of the 
effective wind speed by surface currents, such that the wind speed used for source term 
calculation is reduced when the wind and currents are aligned, which is of course not 
uncommon. However, a wave modeler must be judicious when including this effect. In the real 
ocean, such a scenario results in lower drag on the atmosphere and thus an increase in wind 
speed. As such, it may be problematic to apply in cases where the atmospheric model does not 
also include the currents. The second issue is air-sea stability. Wave modelers often assume a 
stable atmospheric boundary layer, since it is inconvenient to provide the air-sea temperature 
differences to the model, the effect on wave growth is usually small, and the available stability 
corrections are not routinely evaluated for effectiveness. However, as our models steadily 
improve, small errors, previously unnoticeable, may now be otherwise. Figure 5.5 compares 
model waveheight errors against air-sea temperature differences for a hindcast with the NRL 
global model, run without this stability information. The correlation is especially remarkable if 
one considers that over much of the ocean, swell dominates, implying that wave height is not 
determined by the local winds. The result suggests that a well-crafted stability correction would 
provide significant benefit. 
 
For wave model grids that are not global and not in enclosed seas, boundary forcing must be 
provided. This is most often in the form of directional spectra. Ideally, the geographic resolution 
of the boundary forcing should approximately match the resolution of the model providing the 
forcing, so that computed spatial variability of the wave field is not lost during the nesting 
process. The transition from open water to coastal regions can reveal errors that are not as 
apparent offshore. Errors in spectral shape offshore can become errors in significant wave height 
nearshore.  For example, accurate prediction of the blocking of swell by islands demands high 
accuracy directional distribution (Rogers et al. 2007). Also, strongly frequency-dependent 
reactions to bathymetry enhance the impact of spectral error, even for validations that focus 
primarily on significant wave height. 

5.7 Validation 

Validation establishes the degree to which output from a model can be trusted. It quantifies the 
skill of the wave model, and (if done carefully) provides attribution or evidence for the cause of 
error, so that future predictions can be improved. The most conventional wave parameters 
included in validation are significant wave height 𝐻𝑠 and dominant wave period, for which peak 
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period 𝑇𝑝 is sometimes used. However, experienced wave modelers avoid 𝑇𝑝 because the model 
frequency resolution is often coarse relative to the natural variability of peak period during a 
wave event, resulting in step-wise time series. They instead use a metric for dominant wave 
period that is calculated via integration of the spectrum (discussed below). Experienced modelers 
include the 10-meter wind speed 𝑈10 in even the most basic validation, since atmospheric forcing 
is always the first suspect when windsea is poorly predicted. Also, it is always a good idea to 
compute bulk parameters using integration over a common frequency range. For example, if the 
buoy spectra stop at 0.4 Hz, the model integration should also stop at 0.4 Hz. This requires 
additional work organizing and managing spectra, but it is most often worthwhile. We 
summarize our three recommendations for the most elementary validation: 1) include wind 
speed, 2) use a wave period metric based on spectral integration, and 3) use consistent limits on 
frequency integration.  
 
The moments of the non-directional spectra are particularly useful in validation: 𝑚𝑛 =
∫𝐸(𝑓)𝑓𝑛𝑑𝑓. In the spectral context, significant wave height 𝐻𝑠 is defined using the zero-
moment waveheight: 𝐻𝑚0 = 4√𝑚0. The third moment 𝑚3 is proportional to surface Stokes drift 
in deep water (e.g. Ardhuin et al. 2009), and the fourth moment 𝑚4 is proportional to mean 
square slope in deep water (e.g. Liu et al. 2000; Li et al. 2013). These higher moments are 
particularly useful when studying the impact of source terms on the spectral tail (e.g. dissipation 
by sea ice, Rogers et al. 2016). However, for the same reason, they are sensitive to measurement 
errors which are often larger in the spectral tail, so model-data misfit must be interpreted 
carefully. The 𝑚2 moment is related to mean square of particle velocities (orbital motion). The 
𝑚−1 moment, which places more emphasis on lower frequencies, is proportional to energy flux 
in deep water. Mean periods are defined using ratios of moments, e.g. 𝑇𝑚,−1,0 is calculated using 
𝑚−1 and 𝑚0 and is a superior alternative to 𝑇𝑝 as a metric for dominant period. Additional 
emphasis can be placed on energy at the spectral peak in the period metric by using the moments 
on 𝐸4(𝑓) rather than those of 𝐸(𝑓) (Collins and Rogers 2017). The period 𝑇𝑚,0,1 is perhaps the 
most commonly used definition of “mean period”. The mean period 𝑇𝑚,0,2 places more emphasis 
on the shorter waves and in deep water is close to the “zero up-crossing period” 𝑇𝑧 calculated 
from sea surface time series, just as 𝐻𝑚0 is close to 𝐻1/3, being, respectively, the spectral and 
time series definitions of 𝐻𝑠. 
 
A group of metrics for non-directional spectra is related to frequency width or its inverse 
(narrowness). The so-called “peakedness” parameters fall into this category. The metrics are 
often used for evaluation of simulations of idealized wave growth, establishing basic model 
behaviors (e.g. Hasselmann et al. 1985), and in fact such comparisons are simple enough that 
they are sometimes performed qualitatively, without defining a metric (e.g. Alves et al. 2002). 
Validation with width/narrowness parameters using scatter plots and skill scores is quite 
challenging to interpret, since in one part of a time series may be windsea only, so the width 
parameter will reflect the width of the windsea, and another part of a time series may be a mixed 
sea/swell scenario, and the same parameter indicates the separation and relative size of the two 
systems. This can be addressed by restricting usage to unimodal spectra, e.g. by looking at 
windsea-dominated cases, Rogers and van Vledder (2013), or by isolating the system of interest. 
The spectral narrowness is associated with groupiness and probability of freak waves (e.g. 
Janssen 2002, 2003). Many metrics have been proposed, e.g. Longuet Higgins (1957), Goda 
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(1985), Babanin and Soloviev (1998). An excellent review can be found in Saulnier et al. (2011). 
We do not recommend the use of metrics which require fitting to an idealized spectrum, e.g. the 
JONSWAP peakedness parameter 𝛾, since it is indirect and impedes reproducibility. 
 
The bulk parameters described above are calculated from the entire wave spectrum. A highly 
effective alternative to this is calculation of energy within a handful of frequency bands, e.g. one 
for low frequencies, two for middle frequencies, and one for highest frequencies. Frequency 
bands can either be fixed in frequency (𝑓) space, e.g. Rogers et al. (2005), or in normalized 
frequency (𝑓/𝑓𝑝) space, e.g. Rogers and Wang (2007).  
 
Directional accuracy is sometimes included in validations. Most often, this comes in one of two 
forms: 1) qualitative side-by-side comparisons of directional spectra (e.g. WAMDIG 1988) or 2) 
quantitative evaluation of time series of a “mean direction” or “peak direction” metric (e.g. 
Moon et al. 2003). When the ground truth comes from a directional buoy, the best approach is to 
use the “directional moments” computed from the Fourier coefficients describing directional 
distribution at each wave frequency, e.g. Kuik et al. (1988). It is not advisable to apply a 
directional estimator (e.g. Maximum Likelihood Estimator) to the buoy data when skill statistics 
are the ultimate goal; this adds an unnecessary step, and some estimators will even modify the 
directional moments. Mean wave direction and directional spread are the low order moments. 
Shape parameters skewness and kurtosis are higher order moments, though quantitative 
comparisons with these are rare, and with good reason. Thorough quantitative comparison with 
the lower order moments are already difficult: since they are frequency dependent, the modeler 
must adopt a strategy for condensing into manageable form. Skill scores are more meaningful if 
the parameters are not computed by integrating/averaging over all frequencies. One useful 
approach is to compute the parameters integrating frequencies near the spectral peak (Ardhuin et 
al. 2003). Another approach is to analyze the skill for several frequency bands (Rogers and 
Wang 2007). A third approach is to focus on a short time series and present analysis on the full 
frequency distribution (Romero and Melville 2010).  
 
Any validation effort should be mindful of the agency of the model. For example, if observations 
indicate a major influence of a physical process on a wave parameter, and the model captures 
most of this variability in the parameter via its parameterization of the process, with, say, 15% 
error in the parameter, that may be a success. In another case, with very low spatial/temporal 
variability of the same parameter, 15% error may be intolerable. In another case, errors in wind 
forcing (or ice, bathymetry, etc.) may make accuracy of the model’s parameterizations irrelevant. 
In a final example, if a swell prediction model is compared to observations only a short distance 
from the offshore boundary, then it is primarily a validation of the boundary forcing rather than 
the parameterizations of the model. 
 
Validation should also be mindful of measurement error. This is especially important when 
looking at spectra, higher moments of spectra, or directional information. We should also be 
careful when dealing with new measurement types (e.g. new buoy designs).  One approach is to 
attempt to estimate measurement uncertainty, e.g. Alves et al. (2002) include a quantification of 
statistical uncertainty due to sampling variability. However, there are other types of measurement 
error, more difficult to estimate. For example, Thomson et al. (2015) find a major impact of 
biofouling of a Datawell buoy on the higher moments of the non-directional spectrum. O’Reilly 
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et al. (1996) argue that NDBC (National Data Buoy Center) buoys have problems with 
directional spreading estimates, relative to Datawell buoys. The strength (or lack thereof) of the 
noise filter used during processing may affect the spectrum. In the largest wave experiment 
during the ONR-funded Sea State campaign field experiment, there are major discrepancies 
between data from two drifting buoy types, deployed in the same area, and this had major impact 
on interpretation of comparisons against WW3 hindcasts (Rogers et al. 2018). In recent 
unpublished work, we have found that the response function used in 3-meter NDBC discus 
buoys is non-optimal in the higher frequencies, which can result in incorrect conclusions about 
the magnitude (and even the sign!) of model bias in low-pass mean square slope (proportional to 
𝑚4).  
 
It is uncommon for validation exercises to address phase error in the time series. However, this is 
an issue of practical importance. For example, if the forecast swell amplitude is accurate, but is 
early or late, this will affect operational planning. This is especially true for the case of older 
swells, since there is a longer duration for phase errors to accumulate. It may be caused by 
numerical error, incorrect frequency distribution, or physical processes that are omitted from the 
modeling. For a good example of this type of model evaluation, the reader is referred to Jiang et 
al. (2016). 
 
Most wave validation studies evaluate the skill of model hindcasts or analyses. However, in an 
operational context, the forecast skill is obviously of interest. For forecasts that are further in the 
future (longer horizons), the error is larger, and this is primarily caused by larger errors in the 
wind forcing, and in the case of the Marginal Ice Zone, the ice forcing. Good examples of 
evaluations of forecast skill are Bidlot and Holt (1999), Bidlot et al. (2002), Tolman et al. (2002), 
and Bernier et al. (2016). 
 
Finally, a validation exercise requires selection of statistical measures (e.g. bias, RMS error, 
correlation, scatter index) for each parameter. The measures used by Cardone et al. (1996) are a 
good starting point. In cases where only one to three bulk parameters (e.g. wave height, wind 
speed, and dominant period) are included, it is not difficult to include several statistical 
parameters. In other cases, there is risk of overwhelming the reader with numbers. In recent 
years, the Taylor diagram (e.g. Tolman et al. (2013); Zieger et al. (2015); Stopa et al. (2016)) has 
become a popular method of presenting several statistical measures visually, rather than in a 
table. Correlation is a popular choice as a statistic, but it can be highly misleading, especially 
when used out of context. For example, a model with severe bias may have perfect correlation. A 
second example: when standard deviation of a parameter is small (e.g. common in a short time 
series of dominant wave period), a model may exhibit high skill but with very poor correlation 
(failure to follow the minor changes in observational time series). Similarly, measures which 
involve a normalization by the observed values can favor models with negative bias and result in 
misleading statistics; Mentaschi et al. (2013) recommend an alternative method of normalization. 

5.8 Other challenges  

A wave modeler is faced with a number of difficulties. We have already discussed what is 
arguably the primary challenge: accurate input fields. This difficulty is heightened in cases where 
the model solution is required near rapid spatial and/or temporal changes of the fields, or if the 
variable is inherently difficult to determine (e.g. ice type from satellite).  
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Another challenge is in the spectral tail. Traditionally, e.g. with ECWAM with Janssen (1991) 
physics and WW3 with ST2 physics, the challenge is obviated by attaching the parametric tail 
(see Chapter 4) at a relatively low frequency, e.g. 0.30-0.45 Hz. However, recently there has 
been an increase in efforts to explicitly model a larger frequency range, and with greater 
attention to accuracy in this portion of the spectrum (ST4 and ST6). An argument can be made 
that this is not the energy-containing region of a typical ocean spectrum, and for most 
applications, the benefit of modeling “more of the spectrum” is intangible. However, one can 
imagine certain benefits. If we compute source terms in the tail more accurately than a 
parametric extension, this is useful for coupling to other models, e.g. wave-to-ocean momentum 
flux from breaking. Also, if the prognostic portion of the tail (e.g. 0.4 to 1.0 Hz) is more accurate 
than a parametric tail in the same range, then it is reasonable to assume that where the parametric 
tail is used (beyond 1.0 Hz in this example), there will also be a benefit to accuracy. This will 
facilitate comparison to some satellite products, e.g. radiometers that estimate a mean square 
slope including very high frequencies.  
 
The broad objective just mentioned is more accurate tail level. A more specific objective is the 
accurate prediction of the point of transition of the non-directional energy spectrum from 
𝐸(𝑓)v𝑓−4 to 𝐸(𝑓)v𝑓−5 . Authors have proposed dependencies of this transition point on 
inverse wave age 𝑈/𝐶𝑝 (Forristal 1981, Kahma and Calkoen 1992) or a combination of wave age 
and wind speed (Babanin 2011), where 𝑈 is wind speed and 𝐶𝑝 is the phase velocity of the peak 
frequency. Progress in prediction of the tail level has been substantial in recent years, as 
evidenced by the skill of 𝑚4 prediction in Figure 5.6. Progress in prediction of transition 
frequency has been slower, but in WW3, new results are promising (Liu et al., 2019) 
 
The efficient coupling between multiple models (atmosphere, ocean, ice, wave, sediment, 
hydrology, aerosol) presents a number of major challenges which are primarily technical in 
nature. The first problem is regridding. It is not necessarily a good idea to run the wave model on 
the same grid that is used by another model. Computational costs are dissimilar between models 
on a per-grid-cell basis, making it necessary to run the wave model at a coarser resolution than 
the ocean model. Running the wave model on a decimated version of the ocean model is not 
necessarily wise either. For example, we have found that WW3 is inefficient when run on the 
“tripole” grids used by the Navy’s ocean models because these grids (e.g. Barron et al. 2007) 
have highly non-uniform resolution. In the case of coastal coupling, the motivations for high 
resolution are similar (resolving bathymetry, coastlines, coastal currents, etc.) but not identical. 
Thus, different grids are often used, which necessitates rapid re-gridding of fields during 
runtime. Export (or import) of fields from (or to) WW3 is especially difficult in cases where the 
multi-grid feature of WW3 is used. At the time of writing, this challenge has not been fully 
addressed. Another challenge is purely technical: building the code to allow all of these models 
to compile together and run as a single executable, so that the fields can be exchanged through 
system memory. Lastly (also purely technical), in an operational environment, there must be 
careful coordination and scheduling of required tasks for each model, e.g. field exchange, data 
assimilation, pre- and post-processing. 
 
Various forms of observational data have been assimilated into wave models, either 
operationally or as technical demonstrations: Synthetic Aperture Radar (SAR, Breivik et al. 
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1998, Abdalla et al. 2006, Aouf et al. 2006); altimetry (Lionello et al. 1992, Komen et al. 1994, 
Wittmann and Cummings 2004); buoy data (Voorips et al. 1997, Portilla 2009, Veeramony et al. 
2010, Orzech et al. 2013); and coastal radar (Panteleev et al. 2015). Some use optimal 
interpolation to modify the model initialization and others use one of several approaches to three- 
or four-dimensional variational (3D-Var or 4D-Var) assimilation, in which the latter improves 
the simulation dynamically. One often-cited problem with ocean-scale data assimilation is the 
tendency of windsea to quickly “forget” the data assimilation, relaxing to a state that is in 
balance with the local winds (Komen et al. 1994); this has been addressed in some cases through 
modification of the wind forcing (e.g. Bauer et al. 1996). Quality control is always a challenge, 
especially when the observational methods are less mature or robust (e.g. SAR and WERA radar, 
in our experience). Altimetry, on the other hand, is very robust, but is impaired by the fact that it 
only provides the total energy of the wave spectrum. These observations can be used to adjust 
the entire spectrum up or down, but in cases of both wind sea and swell components, this is 
problematic, and one can easily imagine situations where one component is adjusted such that 
the bias of this component is actually made worse. When skill is quantified using only wave 
height, such assimilation may improve the skill of short term forecasts while yielding mixed 
outcomes for the longer forecast horizons.  

5.9 Common mistakes 

This section is specifically for readers that are new to phase-averaged wave modeling. We 
review some common mistakes. Of course, several of these mistakes are not specific to this type 
of modeling.  
Familiarize with the manual. Though most users’ manuals are over 100 pages long, it is always 
worthwhile to at least scan the contents before starting, and repeat the process periodically. It is 
not uncommon for a user to become aware too late of key instructions or advice. 
Avoid excessive numbers of grid points. This problem is especially common with regular grids. 
There is a temptation to model a large region at high resolution. This is usually unwise. The user 
should instead consider irregular or unstructured grids, or nesting. If a model implementation 
runs too slowly, the user should first ask if the number of grid points is the primary problem, 
before looking for non-standard shortcuts in the model physics, spectral grid, or numerics. 
Use correct bounds of integration. As noted in Section 5.7, during validation, the bulk parameters 
should be calculated using consistent frequency range, model vs. observations. Doing this 
incorrectly usually has only minor consequence for wave height and dominant period, but it is 
often severe for parameters computed from higher moments of the spectrum, e.g. 𝑇𝑚,02 and 𝑚4. 
Also, it can have severe consequences for all parameters in cases where the climatological 
dominant period is not much lower than the buoy’s maximum frequency, e.g. a large buoy 
deployed in a lake. 
Check for blunders. Of course, the possibilities of human blunder are virtually limitless, but one 
example is to perform visual spot checks of input fields (bathymetry, ice, wind, etc.) by 
outputting these fields from the wave model and plotting them, thus verifying that they were not 
read in upside down, missing a factor 100, offset by 180q longitude, etc.  
Be suspicious. We have already discussed how one should consider measurement error, 
especially when dealing with higher spectral moments or new measurement platforms. Similarly, 
notwithstanding the review process, the published literature can contain errors in methods, 
reasoning, and interpretation. A good example is the interpretation of idealized model results. 
Such experiments are useful, but one should avoid naïve extrapolation from these results to 
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realistic applications. A thorough study is supported by results from both types of simulations 
(idealized and realistic). 
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Figure 5.1. Significant waveheight (colors, in meters) and mean wave direction (arrows) from a WAVEWATCH III 

hindcast, south of Alaska. The three contours indicate waveheights of 12, 13, and 14 meters. 

 
Figure 5.2. Comparison of the frequency distributions of dissipation of wave energy by sea ice. Wadhams et al. 

(1988), Ardhuin et al. (2016), Doble et al. (2015), and Meylan et al. (2014) are observational studies. The “WA3” 
lines are based on model-data inversion using method similar  to that used by Rogers et al. (2016, 2018), from Wave 
Array 3 (Thomson et al. 2015) of the ONR-supported “Sea State” field experiment. “SWIFT”, “UK”, and “NIWA” 
are buoy types. Acknowledgments: SWIFT buoy data are from Jim Thomson and Madison Smith (UW/APL). UK 

buoy data are from Martin Doble (Polar Scientific) and Peter Wadhams (Cambridge U.). NIWA buoy data are from 
Alison Kohout (NIWA).  
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Figure 5.3. Fetch/duration comparisons of four model. Model source term package is indicated in title above each 

plot. See text for explanation. 
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Figure 5.4. Results from four models, for a duration-limited case, with 10-meter wind speed of 15 m/s after 15 hours 
duration, starting from rest. 𝐸(𝑓) is energy density. 𝑆𝑖𝑛(𝑓), 𝑆𝑑𝑠(𝑓) , 𝑆𝑛𝑙4(𝑓) are source terms for wind input, 
whitecapping, and four-wave nonlinear interactions, respectively. 𝑆𝑡𝑜𝑡(𝑓) is the summation of the three source 
terms, and is the growth/decay rate, since advection terms are zero (unlimited fetch).  
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Figure 5.5. Histograms of waveheight error from a WAVEWATCH III hindcast. Observed waveheight is from 
buoys. Color scaling indicates air-sea temperature differences (qC) taken from buoy observations. 
Acknowledgments: The WW3 hindcast was performed by Yalin Fan. Buoy co-locations were performed by Yalin 
Fan (NRL) and Silvia Gremes (U. New Orleans). 

 

 
Figure 5.6. Validation of 𝑚4 for three models: ST1/SWAN, ST4/WW3, and ST6/SWAN, using Waverider buoy 
CDIP 166, at Ocean Station Papa, owned and operated by APL/UW. Time period is 0400 UTC 4 Nov. to 1200 UTC 
25 Dec. 2015. The 𝑚4 parameter is proportional to the contribution to the mean square slope of the sea surface by 
frequency components up to 0.58 Hz. [These figures are taken from a poster presented by the author in 2017.]  


