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Waveform of gravity and capillary-gravity waves over a bathymetry
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We examine the waveforms of linear waves over a fully submerged, arbitrarily periodic
bed, using the recent Floquet theory for gravity waves and extending it to the regime
of capillary-gravity waves. The exact solutions illustrate the complex features of wave-
form geometry that are frequency dependent, including the modulation of propagating
waveforms in space-time, spatially modulated standing waveforms, asymmetric waveforms
over a symmetric bed profile, and high-curvature wave-crest forms. These features are in
contrast to the trivial and invariant sinusoidal waveform of the ordinary linear waves on
a flat bed, but reminiscent of nonlinear waveforms. The effect of surface tension is seen
to counteract wave scattering by topography, tending to restore the waveform towards a
symmetric and sinusoidal geometry. These features are the general characteristics of linear
waves over a periodic bed since they are the properties of eigenmodes, and can inspire and
guide applications.
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I. INTRODUCTION

For two-dimensional time-harmonic motions over a horizontal flat bed, the classical Sturm-
Liouville eigenvalue problem in the vertical z direction gives a complete basis of linear modes: For
any frequency ω, there are two oppositely directed propagating waves of wave-number vectors ±k,
respectively. The wave number (eigenvalue) k satisfies the well-known dispersion relationship ω2 =
gk tanh(kh), where h is the water depth and g is the gravitational acceleration. Correspondingly,
the eigenfunctions are proportional to e±ikx cosh k(z + h), respectively. For that same frequency ω,
there are also two infinite families of evanescent modes that are identified by the eigenvalues ±κn,
where ω2 = −gκn tan(κnh), n = 1, 2, . . .. Correspondingly, the eigenfunctions are proportional to
e±κnx cos κn(z + h), respectively. The amplitudes of these evanescent modes rapidly decay (or grow)
in x, since (n − 1/2)π < κnh < nπ hence is in general large. Until recently, this set of flat-bottom
propagating and evanescent waves was the only known complete basis of linear modes for water
waves and has played important roles in various problems involving lateral boundary conditions
in the x direction, e.g., in engineering problems of floating body dynamics and wave-structure
interactions [1]. It also has a significant place in numerical modeling of water waves. For instance,
for rapidly varying topographies, one approach is to discretize the bottom into small pieces of
horizontal steps, on each of which the solution is represented as a linear combination of these
flat-bottom waves and evanescent modes appropriate to the local depth (see, e.g., Ref. [2] and
references therein).

For an arbitrarily periodic bed, without any constraint on the undulation amplitude and shape but
being fully submerged in a mean constant water depth, the studies in Refs. [3–5] have provided an
approach that can be considered as a definitive solution to this type of problem. By constructing
a conformal map and invoking the Floquet theory, the eigenvalue problem in the vertical direction
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(which is no longer the ordinary type of Sturm-Liouville eigenvalue problem as in the flat-bottom
case) becomes tractable. The exact Floquet solutions given in [5] consist of a family of two wave
modes and two infinite families of evanescent modes, analogous to the set of flat-bottom modes.
This has become the second complete basis for water waves and can indeed be used, in a manner
similar to the use of the flat-bottom basis, to solve a class of linear problems involving a periodic
bed in confined or closed domains. Such applications (particular problems) include, for example,
Bragg scattering by a patch of bottom corrugations confined between two flat beds [6] and resonant
standing waves in a closed basin with a corrugated bottom [3,7].

While the evanescent modes are needed in practical problems to deal with the lateral boundary
conditions in the x direction, it is the wave modes that are manifested away from boundaries. Since
their focus was to construct the exact solutions on an arbitrarily periodic bed, Yu and Howard [5]
did little to explore the waveforms (eigenfunctions), but classified the wave modes on the frequency
domain based on the eigenvalues. The present study intends to fill this gap, i.e., to elucidate the
physical phenomena that are obscured by the mathematical complexity of the solutions. As we will
see, in contrast to a flat-bottom linear wave whose waveform is trivial, being sinusoidal regardless
of the frequency and invariant in space-time as the wave propagates, the linear waveforms on a
periodic bed are spatially complex and frequency dependent. While their nonsinusoidal geometry
may be readily anticipated, some features are far from obvious and intriguing: The waveforms are
spatially modulating when the wavelengths (the horizontal distance between two adjacent wave
crests or troughs) are not an integer multiple of the topography period. The waveforms can be
asymmetric with respect to wave crest (or trough) even though the bed profile is symmetric in x.
Furthermore, the waveforms are not permanent, continuously changing their shapes as the waves
propagate. These features are almost never associated with linear time-harmonic waves on a flat
bed, but typically arise from nonlinear effects. These above mentioned features are the general
characteristics of linear waves over a periodic bed, since they are the properties of eigenmodes.
Moreover, since these features arise from the nonuniformity of surface oscillation that is caused
by the variability in topography (see Sec. IV), it is reasonable to expect that some of them may
similarly occur in the case of a nonperiodic bed. Since linear solutions are often applied in practical
problems and are the first step in many nonlinear analyses, the results of this study will contribute
to the literature and guide applications.

To have a complete study of the waveforms over a periodic bed, we will first extend the exact
theory of [5] to the regime of capillary-gravity waves, since this class of waves can feel the changes
in the water depth and hence be affected by the bed variations. For linear capillary-gravity waves on
a flat bed, the dispersion relationship is well known, i.e.,

ω2 = gk tanh(kh)[1 + T k2/ρg], (1)

where T is the surface tension and ρ is the fluid density. In the limit of an infinite depth, a critical
wave number kc = √

ρg/T can be identified where the wave speed is minimal [8]. The critical
wavelength λc = 2π/kc is a reference length separating the regimes of capillary waves (g = 0) and
gravity waves (T = 0). For finite depths, such a minimum wave speed does not exist when the depth
is sufficiently shallow (kch <

√
3). Nevertheless, in the vicinity of λc the dispersion relationship of

a capillary-gravity wave is significantly different from that of a capillary wave or a gravity wave
(see Fig. 1). Because of the triviality of linear waveforms on a flat bed, research interests have
been mostly directed to nonlinear capillary-gravity waves (see the reviews in Refs. [9,10] and the
references therein). While many studies in the literature focus on the case of infinite fluid depth,
there does exist interest in cases of finite depths (e.g., Refs. [9,11–13]). However, there has been
little effort to address the effect of a variable bed on capillary-gravity waves.

For gravity waves, we have known that strong topographic scattering occurs when the surface
wavelength λ is comparable to the bed period λb. In view of Fig. 1, we expect that the effects of bed
topography and surface tension on surface waves are comparable when λ, λb, λc, and the fluid depth
are of similar magnitude. In oscillatory flows, the effect of viscosity typically is confined within the
Stokes boundary layer of thickness proportional to

√
2ν/ω (for Newtonian fluids), where ν is the
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FIG. 1. Dispersion relationship for water waves on a flat bed. For kcd = 2.0: ——, a capillary-gravity
wave; – – –, a capillary wave (g = 0); · · · · · · , a gravity wave (T = 0). For deep water (kcd � 1): – · – · –, a
capillary-gravity wave. The critical wave speed cmin = √

2g/kc.

fluid viscosity. For high frequencies that are appropriate for capillary-gravity waves, this viscous
layer can be very thin. For example, for water λc = 17.12 mm, but the Stokes layer thickness is
of 0.18 mm or thinner for a frequency of 10 Hz or higher. Thus, we anticipate that the potential
theory of capillary-gravity waves in this study can be useful in some small-scale applications where
manipulations of periodic boundary geometry and oscillation frequencies are of interest.

The outline of the paper is as follows. In Sec. II we present the exact solutions for capillary-
gravity waves over an arbitrarily periodic bed. To be self-contained and sufficiently clear, some
mathematical details are included, despite their familiar appearance in the previous studies.
Calculations of the dispersion relationship are shown in the Appendix, where the limiting case
of a flat bed is included for verification. Bragg resonance bands (gaps) are shown for selected bed
profiles in Sec. III. The frequencies inside these bands are forbidden for waves over a periodic bed of
indefinite length, but of special interest in cases where the periodic bed is confined to a patch of finite
length or enclosed in a domain. In Sec. IV we discuss the properties of gravity and capillary-gravity
waveforms for the frequencies outside a resonance band and for the threshold frequencies at the
boundaries of a band. The apparent similarities to nonlinear waveforms are explained. Concluding
remarks are in Sec. V.

II. EXACT FLOQUET THEORY OF CAPILLARY-GRAVITY WAVES

Consider a layer of homogeneous fluid over a periodic seabed. Denoting the dimensional
variables by the prime, in the vertical plane (x ′, z′), z′ = 0 is the undisturbed free surface and
the seabed is at z′ = −h′

0 + h′
b(x ′), where h′

b(x ′) describes an arbitrarily periodic bed profile.
The spatial period of h′

b is λb, which sets the intrinsic periodicity of the medium in which waves
propagate. Without losing any generality, we will make h′

b(x ′) have a zero average in x ′ so that
h′

0 represents the mean undisturbed fluid depth. The bed elevation varies over a vertical range of
�h′

b = h′
b,max − h′

b,min, which is called the undulation height.
Let φ′(x ′, z′, t ′) be the velocity potential and ζ ′(x ′, t ′) be the surface elevation measured from

z′ = 0. We define a wave number

kB = π/λb (2)

that corresponds to a surface wavelength of 2λb and choose the normalization

x = kBx ′, z = kBz′, t = t ′
√

gkB, φ = φ′/(a
√

gkB/kB ), ζ = ζ ′/a, (3)
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FIG. 2. (a) Sketch of a homogeneous fluid layer over a periodic bed for −∞ < x < ∞ and −h0 + hb(x ) �
z � 0. (b) Uniform strip of the flow domain upon conformal transformation for −∞ < ξ < ∞ and −h � η �
0. (c) Orthogonal curvilinear grids in the (x, z) plane that correspond to the Cartesian grids ξ = const and
η = const, showing the terrain-following contours near the bottom.

where the surface amplitude a is arbitrarily small compared to the fluid depth and surface
wavelength. The dimensionless bed profile hb(x) = kBh′

b(x ′) is π periodic and the mean water
depth h0 = kBh′

0. The linearized equations for φ are

φxx + φzz = 0 for − h0 + hb(x) < z < 0, (4)

φxhb,x = φz at z = −h0 + hb(x), (5)

ζt = φz at z = 0, (6)

φt + ζ − κζxx = 0 at z = 0, (7)

where

κ = T k2
B/ρg (8)

is the inverse of the Bond number based on the length λb/π and the t , x, and z subscripts denote
partial derivatives. Note that κ = (kB/km)2 and hence compares the effects of surface tension and
topographic scattering: A larger value of κ means that the capillary effect is more important than
wave scattering by topography.

The scaling in Eq. (3) is most appropriate when λb/λ is small or finite. For sufficiently short
waves, scattering by topography is ineffective since the waves would be either in deep-water
conditions or locally on an approximately flat bed (if the water depth is very shallow). Whereas
the exact Floquet theory still is valid in this case, it may be more efficient to treat the waves as in
deep waters (or approximately on a flat bed).

In [5], a conformal map is given that transforms the flow domain −∞ < x < ∞, −h0 + hb(x) �
z � 0 into a uniform strip −∞ < ξ < ∞, −h � η � 0 (see Fig. 2). The transformation functions
are quoted here:

x = ξ − h

∞∑

j=1

(bj sin 2jξ − cj cos 2jξ )
cosh 2jη

sinh 2jh
, (9a)

z = η − h

∞∑

j=1

(bj cos 2jξ + cj sin 2jξ )
sinh 2jη

sinh 2jh
. (9b)
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The depth h in the mapped plane and coefficients bj and cj are implicitly determined by

−h0 + hb(x) = −h + h

∞∑

j=1

(bj cos 2jξ + cj sin 2jξ ), (10)

where

x = ξ − h

∞∑

j=1

(bj sin 2jξ − cj cos 2jξ ) coth 2jh, (11)

and subject to the condition

h + h2
∞∑

j=1

j
(
b2

j + c2
j

)
coth 2jh = h0. (12)

The map (9) preserves the intrinsic periodicity, since it is π periodic in both x and ξ . A method is
given in [5], using a fast Fourier transform to compute the map parameters bj , cj , and h (hereafter
collectively denoted by B = {h, bj , cj , j = 1, 2, . . .}). The Jacobian of the transformation is

J = x2
ξ + x2

η . (13)

Under the transformation, Eqs. (4)–(7) become

φξξ + φηη = 0 for − h < η < 0, (14)

φη = 0 at η = −h, (15)

φtt + J−1/2φη − κJ−1/2(J−1/2(J−1/2φη )ξ )ξ = 0 at η = 0. (16)

In obtaining Eq. (16) we have combined the free-surface boundary conditions (6) and (7) and made
use of xη = 0 at η = 0. For a time-harmonic motion, φ = ϕ(ξ, η)e−iσ t + c.c., where

σ = ω/
√

gkB (17)

is the dimensionless frequency. The solution, which satisfies Eqs. (14) and (15), is of the Floquet
type, i.e.,

ϕ(ξ, η) = eμξP (ξ, η; μ, σ ), (18)

where

P (ξ, η; μ, σ ) =
∞∑

n=−∞
Dne

inξ cosh[(n − iμ)(η + h)]

cosh[(n − iμ)h]
(19)

is the periodic factor for the Floquet exponent μ. By satisfying the free-surface boundary condition
(16), we obtain the eigenvalue condition for μ, given a frequency σ , and the corresponding Fourier
coefficients Dn in the eigenfunction (18). While the inclusion of surface tension does not change
the general methodology, it does introduce some complexities in obtaining the eigenvalue condition
due to the additional higher-order derivatives in Eq. (16). Defining

F (ξ ) ≡ J 1/2|η=0 = 1 − h

∞∑

j=1

(bj cos 2jξ + cj sin 2jξ )2j/sinh 2jh, (20)

we write, from Eq. (16),

−σ 2Fϕ + ϕη − κ (G3ϕηξξ − G2ϕηξ − G1ϕη ) = 0 at η = 0, (21)
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where

G1 = − 1
2 (F−2)ξξ , G2 = − 3

2 (F−2)ξ , G3 = F−2. (22)

Since they are π periodic in ξ , without losing any generality, we can write

G1 =
∑

j=1,∞
(g1j e

i2jξ + g∗
1j e

−i2jξ ), (23)

G2 =
∑

j=1,∞
(g2j e

i2jξ + g∗
2j e

−i2jξ ), (24)

G3 = g30 +
∑

j=1,∞
(g3j e

i2jξ + g∗
3j e

−i2jξ ), (25)

where the asterisk stands for the complex conjugate and g30 is real. The Fourier coefficients g1j ,
g2j , and g3j are functions of the map parameters B and hence known. Substituting Eqs. (18) and
(23)–(25) into Eq. (21) and canceling the factor eμξ , we collect the coefficients of einξ and obtain

LnDn +
∑

j=1,∞
�−

njDn−2j + �+
njDn+2j = 0, (26)

where

Ln = −σ 2 + Zn + κ[(n − iμ)2g30]Zn, (27)

�−
nj = σ 2 h(bj − icj )j

sinh (2jh)
+ κ[g1j + i(n − 2j − iμ)g2j + (n − 2j − iμ)2g3j ]Zn−2j , (28)

�+
nj = σ 2 h(bj + icj )j

sinh (2jh)
+ κ[g∗

1j + i(n + 2j − iμ)g∗
2j + (n + 2j − iμ)2g∗

3j ]Zn+2j , (29)

and

Zn = (n − iμ) tanh[(n − iμ)h]. (30)

Now the recurrence relation (26) is formally the same as that in [5], except for the expressions
of Ln and �±

nj . It is a homogeneous system Ax = 0, where A is an infinite square matrix and the
column vector x holds Dn. The expression of A is shown in [5] and omitted here for brevity. For
nontrivial Dn, the determinant of A must vanish. This gives the eigenvalue condition for μ(σ ), i.e.,
the dispersion relationship for linear waves, given the surface tension, the fluid depth, and a periodic
bed profile. Defining �(σ,μ; κ, h0,B) ≡ det(A), we have

�(σ,μ; κ, h0,B) = 0. (31)

The null vector of A gives Dn, which completes the eigenfunction (18) for the pair (μ and σ ) that
satisfies Eq. (31).

It can be seen from Eq. (26) that Dn for even and odd n do not couple since the coefficients in
Eq. (21) are π periodic. Thus, the Fourier series in Eq. (19) can be represented using only odd or
even n, corresponding to P being 2π or π periodic, respectively. A full Fourier series using all n is
not necessary. This is the advantage of making the intrinsic periodicity be π . As is pointed out in
Ref. [3], a solution represented with only odd n in Eq. (19) can be transformed into one with only
even n, by replacing μ with μ + i or μ − i, and vice versa. Even if we stick to a representation, say,
with only odd n, by replacing μ with μ ± 2i we should get different representations of the same
kind. This artificial nonuniqueness can be suppressed by requiring that −1 < Im(μ) � 1.

Whereas either representation can be used for a solution, one is more convenient than the other,
depending on the mode considered. This is tied in with the fact that μ is not arbitrary but must
satisfy Eq. (31), which comes from the homogeneous system (26). By closely examining the
asymptotic behaviors of the Floquet solutions at the limit when the bed becomes flat (�hb → 0)
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b

FIG. 3. First and second Bragg resonance tongues for a sinusoidal shape of bed profile for h0 = π/4: ——,
κ = 0.6169; · · · · · · , κ = 0.

and the properties of the infinite determinant, the previous studies [3–5] have provided a guideline
that also applies here: For the wave modes, it is convenient to use an odd-n representation for
the frequencies that are close to the odd m Bragg resonance bands (see Sec. III) and an even-n
representation for those that are close to the even m resonance bands such that μ is pure imaginary
or real corresponding to σ being outside or inside a band. Obviously, Bragg resonant wave modes
(μ is real and small) cannot exist as free waves over an unbounded periodic bed, but must be
considered in a finite domain where the lateral boundary conditions restrict the spatial decay (or
growth) of the wave amplitude.

The focus of this study is on the wave modes which have spatially periodic flow fields, excluding
Bragg resonant wave modes. The latter have been extensively studied during the development and
in the applications of the exact Floquet theory [4–7]. To be used in Sec. IV, the waveform is given
as follows. The surface elevation is ζ = ζa (x)e−iσ t + c.c., where

ζa (x) = iσ−1F−1
∞∑

n=−∞
Dne

i(n−iμ)ξZn, (32)

following from the surface boundary condition (6), and

x = ξ − h

∞∑

j=1

(bj sin 2jξ − cj cos 2jξ )/sinh 2jh (33)

at z = 0 (η = 0) according to the map (9).

III. BRAGG RESONANCE BANDS AND SPATIALLY PERIODIC MOTIONS

For gravity waves (κ = 0), Yu and Howard [5] have shown that on a periodic bed there are
isolated narrow bands (or gaps) of frequencies for which μ is real. These are Bragg resonant
frequencies, for which the eigenfunctions are standing waves with amplitudes varying exponentially
(slowly) in space. Spatially periodic motions exist only for the frequencies outside a band where μ is
pure imaginary or at the boundaries of a band where μ = 0. This similarly occurs in the dispersion
relationship (31) for capillary-gravity waves (κ 	= 0).

Define a relative undulation height εb = �hb/h0, where εb < 2 to avoid the bed crests touching
the free surface. This parameter may be used to measure the strength of nonuniformity of the
medium. Given h0 and the shape of the bed profile, the resonance bands form isolated tongues in the
εb-σ plane. The boundaries of these tongues are the threshold frequencies σ (εb ) for which μ = 0.
As εb increases, these tongues sweep towards low frequencies while the bandwidths increase, due
to the decrease of effective depth h [5]; see Figs. 3–5 for selected bed profiles, where the cases
of κ = 0 and κ 	= 0 are compared. Each resonance tongue emanates from the frequency of the
flat-bottom wave whose wavelength λ = (2/m)λb, where m = 1, 2, 3, . . .. The width of a band is
wider compared to its counterpart for κ = 0, due to the greater downshift of the lower boundary
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(a)
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FIG. 4. (a) First, second, and third Bragg resonance tongues for a sawtooth shape of bed profile for
h0 = 0.5: ——, κ = 0.25; · · · · · · , κ = 0. (b) Bed profile for εb = 1.5. The inversion of η = −h is included
(dotted curve) and indistinguishable from the solid curve, indicating the accuracy of the conformal map that is
constructed.

of the tongue. For a sinusoidal bed profile, the m > 1 resonance tongues are extremely narrow. For
other shapes, the bandwidths for m > 1 can be comparable to that of the primary band.

For a square-wave bed profile, the boundaries of the m = 2 resonance tongue transversally cross
at εb 
 0.78, leading to a pocket of unstable frequencies (cf. Fig. 5). This similarly occurs for the
m = 4 resonance, but at a higher εb. (It is not shown here, but is shown for κ = 0 in [5].) As was
discussed in Refs. [4,5], these Bragg resonance tongues bear some similar features to the unstable
gaps for Mathieu’s and Hill’s equations, even though neither of the two equations directly appears in

(a)

b

(b)

x

FIG. 5. (a) First, second, and third Bragg resonance tongues for a square-wave shape of bed for h0 = 0.5:
——, κ = 0.25; · · · · · · , κ = 0. (b) Bed profile for εb = 1.3. The inversion of η = −h is shown as the dotted
curve (indistinguishable).
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the problem of water-wave Bragg resonances (except for the case of shallow water waves and small
bed amplitude). For Hill’s equation, transversal intersections of instability boundaries are known to
occur when the periodic coefficient is a square wave (see, e.g., Ref. [14]).

IV. WAVEFORMS

For the frequencies outside a resonance band, μ = ±iν, ν > 0, and the eigenfunctions give two
oppositely propagating waves. For the threshold frequencies at the boundaries of a resonance band,
μ = 0 and the eigenfunctions give standing waves. These are the two kinds of spatially periodic
motions that can exist as free waves over a periodic bed of indefinite length.

Since we will be dealing with spatially modulated linear waves, we must distinguish the
wavelength of a wave and the spatial period of the flow under a wave. For a simple sinusoidal
flat-bottom wave, the wavelength λ is defined as the horizontal distance between two consecutive
corresponding points of a propagating waveform, say, two adjacent crests or troughs. The waveform
identically repeats itself over one λ and so is the flow field under the wave. This is what we
normally call a spatially periodic wave. Over a periodic bed, we may still define the wavelength
λ as the horizontal distance between two adjacent wave crests (or troughs), even though the two
crests may not be identical due to the spatial modulation. This wavelength λ cannot be directly
deduced from μ = ±iν in most cases, since it is determined by the eigenfunction, but λ usually is
close to its flat-bottom counterpart for the same given frequency in the depth h0. The spatial period
of the flow field under the wave may be equal to or longer than λ, depending on the frequency. If
the spatial period of the flow field is the same as the wavelength, the wave is spatially periodic, i.e.,
the waveform identically repeats itself over one λ. Otherwise, the wave is spatially modulated.

The standing waves for μ = 0 may also be spatially modulated, again depending on the fre-
quency (see Sec. IV B). It should be emphasized that these standing waves are not the superposition
of two oppositely directed waves as in the flat-bottom case. For these threshold frequencies at the
boundaries that separate the spatially periodic and nonperiodic motions, linear waves can only exist
in the form of standing waves due to the scattering by topography.

To avoid confusion in the discussion that follows, it should also be mentioned that there are
multiple frequencies σ that satisfy Eq. (31) for a given μ (see the Appendix). The eigenfunction
(18), however, is uniquely determined, since the null vectors are distinct for individual pairs (σ,μ).
This in fact is seen in the case of μ = 0. The nonunique correspondence between μ and σ is well
known in the study of Bloch waves in solids which are given in Floquet forms.

A. Propagating waves: μ = ±iν

Over a periodic bed, spatially periodic propagating waves, in the sense that the waveform
identically repeats itself over one wavelength, can only occur when λ = mλb and the integer m > 2.
Otherwise, the two adjacent wave crests (or troughs) are not identical, since they are situated above
the different parts of the bed profile at any given time, and the wave must modulate in space. The
modulation period is 2π/(1 − ν). These may also be called quasispatially periodic waves, as the
waveform nearly repeats over one λ. In this study, the quasispatially periodic waves and spatially
modulated waves are interchangeable. Clearly, high-frequency waves of λ < λb always modulate in
space.

The waveforms at different phases of a wave cycle are shown in Fig. 6 for a sinusoidal bed,
comparing the cases of gravity (κ = 0) and capillary-gravity wave (κ 	= 0). In both cases, we
choose a spatially periodic wave of λ = 3π (μ = −i 1

3 ) and a quasispatially periodic wave of
λ = 1.5π (μ = i 1

3 ) that modulates over a spatial period of 3π . The sign of μ is chosen for the
propagation in the +x direction. Recall that the dimensionless bed period is π . For both classes
of gravity and capillary-gravity waves, the waveforms are not permanent: As the wave propagates,
the relative position between the surface waveform and the bed profile changes. Consequently, the
waveform must continuously changes its shape over a wave cycle. The instantaneous waveform can
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FIG. 6. Propagating waveforms at different times of a wave cycle and oscillation amplitude |ζa | on a
sinusoidal bed of height εb = 1.5 for h0 = π/4. On the left is a spatially periodic wave of λ = 3π (μ = −i 1

3 ):
——, σ = 0.4930 for κ = 0.6169; · · · · · · , σ = 0.4314 for κ = 0. On the right is a spatially modulated wave
of λ = 1.5π (μ = i 1

3 ): ——, σ = 1.3118 for κ = 0.6169; · · · · · · , σ = 0.9111 for κ = 0. The bed profile zb is
included for easy identification of the relative locations of surface wave crests and troughs, |ζa |max and |ζa |min,
with respect to the bed crest and trough; see the text in Sec. IV A.

be asymmetric with respect to the wave crest (or trough), even though the bed profile is perfectly
left-right symmetric; see Fig. 6 at σ t = π/2. The surface wave patterns in space-time are illustrated
in Fig. 7. The oscillation amplitude |ζa| varies at the scale of bed period π , regardless of the
surface wavelength (cf. Fig. 6), and is symmetric in x, following the symmetry of topography.
The variability in |ζa| is greater for the wave of λ = 1.5π , indicating stronger wave scattering
by topography when the frequency is closer to the primary Bragg resonance band. The spatial
periodicity of |ζa| distinguishes these waves from the partially reflected flat-bottom waves. In the
latter case, the oscillation intensity varies over one half the surface wavelength, manifested by the
spacing of surface envelope maxima (or minima).

For capillary-gravity waves, the waveform geometry depends also on the surface tension κ . This
is in contrast to the flat-bottom case where surface tension only modifies the dispersion relationship
and does not affect the geometry of linear waveforms. Given a wavelength, the waveform for
κ 	= 0 is noticeably smoother than that for κ = 0. The variability in |ζa| is reduced with κ 	= 0,
suggesting that the capillary effect tends to counteract the effect of higher harmonic generation in
wave-topography interaction. On an asymmetric bed profile, the effect of surface tension tends to
reduce the spatial asymmetry in the waveform; see Fig. 8 for propagating waves over a nonsmooth
bed profile.

B. Standing waves: μ = 0

Given a bed undulation height εb and mean depth h0, there are two threshold frequencies at
the boundaries of the mth band. Correspondingly, there are two independent standing waves, both
having the same wavelength λ = 2λb/m. Although the frequencies are fairly close because of the
narrow bandwidth, the two standing waves have drastically different waveforms (eigenfunctions).
For m = 1, 2, λ = 2λb and λ = λb, respectively, and the standing waves are spatially periodic,
i.e., the two adjacent waveforms are identical. For m > 2, they are quasispatially periodic standing

014806-10



WAVEFORM OF GRAVITY AND CAPILLARY-GRAVITY …

(a ()

0 5 10 15 20 25

0

2

4

6

-1
0
1

t 

x 0 5 10 15 20 25

0

2

4

6

-1
0
1

t 

x

(c

b)

() d)

0 5 10 15

0

2

4

6

1
0
1

t 

x 0 5 10 15

0

2

4

6

1
0
1

t 

x

FIG. 7. Surface wave patterns in space-time of the propagating waves in Fig. 6, for λ = 3π in (a) κ =
0.6169 and (b) κ = 0 and for λ = 1.5π in (c) κ = 0.6169 and (d) κ = 0.

waves since λ < λb. The modulation period of the standing waves is 2λb for odd m or λb for even
m. Examples are given in Fig. 9 for a sinusoidal bed and in Fig. 10 for a square-wave bed profile.
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FIG. 8. Propagating waveforms at different times of a wave cycle and oscillation amplitude |ζa | on a
sawtooth bed of εb = 1.5 for h0 = 0.5. On the left is a spatially periodic wave of λ = 3π (μ = −i 1

3 ): ——,
σ = 0.4063 for κ = 0.25; · · · · · · , σ = 0.3830 for κ = 0. On the right is a spatially modulated wave of
λ = 1.5π (μ = i 1

3 ): ——, σ = 0.9611 for κ = 0.25; · · · · · · , σ = 0.7992 for κ = 0.
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FIG. 9. Shown on the left are instantaneous surface waveforms and on the right oscillation amplitudes |ζa |
of standing waves for the threshold frequencies of the mth resonance band on a sinusoidal bed of εb = 1.5 for
h0 = π/4. The instance is when the oscillations at antinodes reach the maximum. The case for κ = 0 is shown
in dotted curves. For m = 1, (a) and (b) σ = 0.7089 for κ = 0.6169 and σ = 0.5550 for κ = 0 and (c) and
(d) σ = 1.0236 for κ = 0.6169 and σ = 0.8027 for κ = 0. For m = 2, (e) and (f) σ = 2.2898 for κ = 0.6169
and σ = 1.2246 for κ = 0 and (g) and (h) σ = 2.3199 for κ = 0.6169 and σ = 1.2415 for κ = 0. The bed
profile is included for easy identification of the relative locations of the surface wave crests and troughs (left
column) and surface antinodes and nodes (right column), with respect to the bed crest and trough; see the text
in Sec. IV B.

For m = 1, the surface antinodes (or nodes) are λb apart. For the lower threshold frequency,
the antinodes and nodes are, respectively, above the bed troughs and crests. This leads to a surface
waveform with a broad wave crest [cf. Figs. 9(a) and 10(a)]. For the higher threshold frequency, the
antinodes are at the bed crests. Consequently, the surface waveform has a sharp wave crest due to
the shallow water depth under the antinode [cf. Figs. 9(c) and 10(c)]. For gravity waves, the wave
crests can become protuberant when the bed crests are sufficiently high [cf. Fig. 10(c)]. The surface
tension reduces the geometric extreme in the waveform, tending to restore the sinusoidal form. For
time-harmonic motions, the phase of oscillation at a give location reverses every half wave cycle
in time. The standing oscillations at two adjacent antinodes are completely out of phase. Thus, a
broad wave crest becomes a broad wave trough (for the lower frequency) and a sharp crest becomes
a sharp trough (for the higher frequency), at every half wave cycle.

For m = 2, the surface antinodes (or nodes) are λb/2 apart. For the lower threshold frequency,
the antinodes are above the slopes between the bed crests and troughs, while the locations of
nodes alternate between the bed crests and troughs. This renders the waveform nonsymmetric in
x even though the bed profile is symmetric. This is particularly noticeable for gravity waves [cf.
Fig. 9(e)]. For the higher threshold frequency, the waveform is symmetric since the locations of
surface antinodes alternate between the bed crests and troughs. Thus, at an instance the waveform
appears to have a sharp wave crest over the bed crest followed by a broad wave trough over the
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FIG. 10. Shown on the left are instantaneous surface waveforms and on the right oscillation amplitudes |ζa |
of standing waves for the threshold frequencies of the mth resonance bands on a square-wave bed of εb = 1.2
for h0 = 0.5. The instance is when the oscillations at antinodes reach the maximum. The case for κ = 0 is
shown in dotted curves. For m = 1, (a) and (b) σ = 0.4701 for κ = 0.25 and σ = 0.4182 for κ = 0 and (c)
and (d) σ = 0.7558 for κ = 0.25 and σ = 0.6686 for κ = 0. For m = 2, (e) and (f) σ = 1.4607 for κ = 0.25
and σ = 1.0114 for κ = 0 and (g) and (h) σ = 1.5396 for κ = 0.25 and σ = 1.0796 for κ = 0. For m = 3,
(i) and (j) σ = 2.5592 for κ = 0.25 and σ = 1.4133 for κ = 0 and (k) and (l) σ = 2.7172 for κ = 0.25 and
σ = 1.4962 for κ = 0.

bed trough [cf. Fig. 9(g)]; a half wave cycle later, a sharp wave trough will appear at the bed crest
followed by a broad wave crest at the bed trough. The oscillation amplitude is greater over the bed
crests [cf. Fig. 9(h)]. The effect of surface tension considerably increases |ζa| at the bed trough,
tending to render the waveform spatially sinusoidal. In the case when the boundaries of a resonance
tongue transversely cross, the properties of the waveform stay with the respective boundaries. For
example, for the square-wave profile, the m = 2 resonance tongue has a transversal crossing at
εb = 0.78 (cf. Fig. 5). The asymmetric and symmetric waveforms are affiliated, respectively, with
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FIG. 11. Instantaneous surface waveforms and oscillation amplitudes |ζa | of standing waves for the
threshold frequencies of the m = 2 resonance band on a square-wave bed of εb = 0.7, showing the affiliations
of waveform with the appropriate boundaries before the transverse crossing of instability boundaries occurs
(comparing with that for εb = 1.2 after the crossing in Fig. 10). The case for κ = 0 is shown in dotted curves.
(a) and (b) σ = 1.6721 for κ = 0.25 and σ = 1.1812 for κ = 0 and (c) and (d) σ = 1.6792 for κ = 0.25 and
σ = 1.1842 for κ = 0.

the lower and higher threshold frequencies for εb < 0.78, but with the higher and lower frequencies
for εb > 0.78 [cf. Fig. 11 and Figs. 10(e)–10(h)].

For m > 2, λ < λb and the spacing between two adjacent surface antinodes (or nodes) is less
than λb/2. As a result, the antinodes can be above the bed crests, the bed troughs, ad the slopes in
between. Consequently, there is a mixture of asymmetric and symmetric standing waveforms within
a modulation period; see Figs. 10(i)–10(l) for m = 3.

C. Reminiscences of nonlinear waveforms

Modulations and asymmetry of waveform would have arisen from nonlinear effects for waves on
a flat bed, but occur for linear waves over a periodic bed. For the linear standing wave over a bed of
large undulation height [cf. Fig. 10(c)], the geometry of the protuberant wave crests bears striking
resemblance to that of highly nonlinear standing waves in deep water [15]. The high curvature in
the waveform geometry manifests higher-order spatial harmonics. These observed reminiscences of
nonlinear waveforms are intriguing and not coincident.

The apparent similarities are related to the generation of spatial harmonics, hence spatial
nonuniformity in oscillations, which mathematically traces back to quadratic interactions between
waves. For two-dimensional nonlinear wave motions, the quadratic products φxζx and |∇φ|2 in the
free-surface boundary conditions generate time harmonics and simultaneously spatial harmonics.
This makes the oscillation amplitude nonuniform in space and time, causing the nonlinear waveform
to be spatially and temporally nonsinusoidal, hence modulating in space-time, or even becoming
unstable. As the oscillation becomes temporally nonsinusoidal, the wave crest and tough (corre-
sponding to the two opposite extreme phases of a time cycle) are no longer the mirror reflections
of each other as in the case of linear waves. For the nonlinear standing waves in Ref. [15], the
wave troughs are flat while the wave crests are protuberant. On a periodic bed, the interaction
of the wave and bed is manifested by the quadratic product J−1/2φη and its derivatives in the
free-surface boundary condition (16), where the Jacobian of transformation J represents the bed. If
we regard the periodic bed as a wave of zero frequency, wave-bottom interaction is mathematically
a special case of quadratic wave-wave interaction that generates only spatial harmonics but not
time harmonics. Thus, the waveform is spatially nonsinusoidal and modulates as it propagates in
responding to the spatially nonuniform oscillations. The dynamics of the flow still is linear due to
the inability to generate time harmonics by wave-bottom interaction. For time-harmonic motions,
the wave crest and trough thus remain mirror reflections of each other, despite the spatial complexity
of the waveform. This of course will be changed when the nonlinearity takes effect. Whereas there
seems to be a mathematical basis for some similarities in the waveforms, this does not suggest
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any analogy between the physics of wave-bottom interaction and that of nonlinear wave-wave
interaction, especially not from a dynamical point of view.

V. CONCLUSION

We have given an extensive examination of the waveforms of linear waves over a periodic
bed, using the exact Floquet theory for gravity waves in [5] and its extension to capillary-gravity
waves developed in this study. For these waves, the waveform geometry is frequency dependent
and affected by surface tension, having complex features that cannot be anticipated based on the
knowledge of ordinary linear harmonics waves. For the frequencies outside a Bragg resonance band,
the propagating waves can be spatially periodic or spatially modulating, depending on whether or
not the surface wavelength is an integer (m > 2) multiple of the bed period. In both cases, the
waveform geometry changes in time over a wave cycle, as the wave propagates. The instantaneous
waveform can be left-right asymmetric with respect to the wave crest (or trough) even though the
topography is symmetric. Of particular interest are the standing waves for the threshold frequencies
at the boundaries of the mth Bragg resonance band. For each m, two independent standing waves can
be found, having the same wavelength 2λb/m but slightly different frequencies. Their waveforms
(eigenfunctions) are drastically different, e.g., one is left-right symmetric with respect to the wave
crest (or trough) and the other is not, even though they are on the same symmetric topography.
The standing waves can have high-curvature wave-crest forms that resemble the nonlinear standing
waveforms in deep waters. For both propagating and standing waves, the effect of surface tension
is seen to counteract wave scattering by topography, tending to reduce the geometric extremes and
asymmetry in the waveforms.

The results presented here are fundamental to linear waves over a variable (periodic) bed,
since they are based on the eigenmodes of the system, not from the solution of a particular
problem or application. We expect that the understanding of these general solutions will inspire new
applications and open scientific questions for further studies. For instance, are the standing waves
at the threshold frequencies of a resonance band both stable? Considering that their frequencies are
so close and yet their waveforms are so different, does one standing wave tend to be more stable to
perturbations than the other? Can they be sufficiently stable to be observed?

By definition, linear waves are of infinitesimal amplitude. The exact Floquet solutions therefore
will breakdown when surface nonlinearity kicks in. This can particularly be an issue when the
oscillation intensity becomes strongly nonuniform in space due to topographic scattering and causes
the waveform to locally develop high curvatures. Since the linear waveforms are already frequency
dependent, one may expect that these waves are more susceptive to frequency perturbations in the
subsequent nonlinear wave propagation, compared to their flat-bottom counterparts. Nachbin [16]
and most recently Fokas and Nachbin [17] studied weakly nonlinear shallow water waves interacting
with variable topographies, using a numerical conformal transformation of Schwarz-Christoffel
type. In those studies, the flat-bottom dispersion relationship and linear sinusoidal wave were
assumed (or implied). In the presence of a bed topography, the frequency for a given surface
wavelength is downshifted and the linear waveforms can significantly deviate from their flat-bottom
counterparts in a number of aspects, as we have seen in this study. It is interesting to see how
the exact Floquet theory of linear water waves can be incorporated into some existing methods of
nonlinear analyses.

For future research, some improvements and applications are worth mentioning. (i) Some
physical phenomena examined here are expected to similarly occur in the interfacial waves in
layered fluids over a periodic bed. This can be studied using the exact theory of Yu and Maas
[18]. (ii) In practical applications, the effects of viscosity can be important. For gravity waves, Yu
[19] presented a terrain-following wave boundary layer model. This can be adapted to study the
Stokes boundary layers under capillary-gravity waves, combined with the solutions in this paper.
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(iii) Some applied problems are interesting, e.g., resonant standing waves on the surface of a fluid
in a vibrating tank or container with a corrugated bottom, considering one- and two-layer fluid, and
the effects of surface tension.
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APPENDIX: CALCULATIONS OF THE DISPERSION RELATIONSHIP (31)

For brevity, we will use the notation �(σ,μ), suppressing the dependence on κ , h0, and B. For
κ = 0, Yu and Howard [5] have proven that �(σ,μ) is real for pure imaginary or real μ, based on
the symmetry properties of A. For the case κ 	= 0, some of the symmetry properties are lost, since
�+

nj and �−
nj are no longer complex conjugates [cf. Eqs. (28) and (29)]. However, the calculations

show that �(σ,μ) is real (or can be scaled to be so) when the periodic factor (19) is represented
using the appropriate odd- or even-n representation (cf. Sec. II). The convergence of the infinite
determinant was discussed in [5]. This similarly holds for κ 	= 0. Since multiplying the rows by
suitable (positive) factors will not affect the roots of Eq. (31), one can improve the condition number
of A by appropriate normalization.

The function �(σ,μ) can readily be computed, e.g., using MATLAB, hence finding the roots
of Eq. (31). We will first consider the limiting case of a flat bed (�hb = 0) for the purpose of
verification. When �hb = 0, ξ = x, η = z, and h = h0. The Floquet solution (18) should reduce to
the simple sinusoidal waves and Eq. (31) should give the same frequency–wave-number relation as
described by the flat-bottom dispersion relationship (see Sec. I), which upon using the normalization
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FIG. 12. (a) Plot of �(σ, μ) with μ = i 1
3 for a flat bed (�hb = 0): ——, Re(�); – – –, Im(�). Dotted

curves are �f (σ ) for k/kB = 2/3, 4/3, 8/3, and 10/3. (b) Waveforms at t = 0 calculated using Eq. (32) for
the first three roots in (a): —–, σ = 0.6368 (λ = 3π ); – – –, σ = 1.4773 (λ = 3π/2); · · · · · · , σ = 5.0894
(λ = 3π/4), for h0 = π/4 and κ = 0.6169.
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FIG. 13. (a) Plot of �(σ,μ) with μ = i 1
3 for a bed profile hb/h0 = 3

4 cos(2x ) and h0 = π/4, showing the
first three roots, with ——, Re(�) and – – –, Im(�), and plot of �f (σ ) for k/kB = 2/3, with - · - · -, using
h0 = π/4, and · · · · · · , using the depth h = 0.4571 in the mapped plane for κ = 0.6169. (b) Corresponding
graph of �(σ ) and �f (σ ) with κ = 0.

in Eq. (3) is written as

�f (σ,μf ) ≡ μf tanh(μf h0)
(
1 + κμ2

f

) − σ 2 = 0, (A1)

where μf = k/kB .
For μ = ±iν, ν > 0, the spatial period of the Floquet solution is 2π/(1 − ν). Since wave-

lengths (1/m)2π/(1 − ν), m = 1, 2, 3, . . ., can all fit into this spatial period, there are multiple
frequencies σ that satisfy Eq. (31) for a given μ, corresponding to wave numbers k/kB =
m(1 − ν). In Fig. 12(a), �(σ,μ) is plotted for �hb = 0, showing the first four roots σ =
0.6389, 1.4773, 3.7329, 5.0894 for μ = i 1

3 . These are the frequencies for wave numbers k/kB =
2
3 , 2( 2

3 ), 4( 2
3 ), 5( 2

3 ), i.e., wavelengths 3π, 3
2π, 3

4π, 3
5π . These results are confirmed by the graphs of

�f (σ,μf ) in Fig. 12(a). For each pair of (σ,μ), the state of motion is unique and given by the
eigenfunction (18). The waveform ζ is computed using Eq. (32) for the first three frequencies and
seen to be precisely sinusoidal in x with the anticipated wavelengths [see Fig. 12(b)]. Note that
the frequency for λ = π , i.e., k/kB = 3( 2

3 ), is missing in Fig. 12(a) but can be recovered using an
even-n representation where P is π periodic.

Keeping the mean fluid depth h0 and surface tension parameter κ the same as in Fig. 12,
the graph of �(σ,μ) for a sinusoidal bed profile is plotted in Fig. 13(a), showing the roots
σ = 0.4930, 1.3118, 3.4990, . . . for μ = i 1

3 . The lowest frequency corresponds to the wave of
wavelength 3π , while the higher ones are for the shorter waves that modulate over the spatial period
of 3π . Comparing with the above values of σ for �hb = 0, the presence of a bed topography causes
the frequency of motion to downshift for a given wavelength. Since the surface waves are more
affected by the bed crests and less so by the bed troughs that are deeper, the depth that characterizes
the propagation of waves is less than the mean depth h0, being effectively given by the depth h in
the mapped plane [5]. This explains the downshift of frequency. For the sinusoidal bed in Fig. 13,
h = 0.4571 for h0 = π/4. In fact, using h in the flat-bottom dispersion relationship above, one can
obtain an estimate of the frequency for the periodic wave of λ = 3π , fairly close to the result given
by Eq. (31) [cf. Fig. 13(a)]. This quick estimate becomes less accurate for spatially modulated waves
(see Sec. IV A).

To fix the idea, suppose we consider a thin layer of water over a sinusoidal bed. The parameters in
Fig. 13(a) can be obtained based the physical values: the mean depth h′

0 = 2.73 mm, the bed period
λb = 10.90 mm, and undulation height �h′

b = 1.5h′
0 mm, compared with the critical wavelength

λc = 17.12 mm.
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