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Advancing Short-Term Forecasts of Ice Conditions
in the Beaufort Sea
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Abstract Numerical experiments with a regional configuration of the CICE model (Los-Alamos
Community sea Ice CodE) in the Beaufort Sea assimilating Special Sensor Microwave Imager/Sounder ice
concentration (IC) and CryoSat ice thickness (IT) data acquired for September-December of 2015 are
presented. We explore sensitivity of the 24-hr IT/IC forecast skill to the system updates, which include
introduction of the IT assimilation capability, flow-dependent correlations, and Gaussianization of IC
innovations. Experiments with IC data assimilation have shown that the flow-dependent correlations
provide 5-7% improvement of the forecast skill during the freezing period (10 September to 10 November)
while Gaussianization contributes an additional improvement of 3-4% in most of the cases. In winter

(11 November to 31 December) IC assimilation did not produce any statistically significant improvement of
the skill due to the loss of dynamical information in the IC fields associated saturation of the ice cover.

In contrast, IT assimilation provides larger improvement in December compared to October-November due
to the better coverage of the Beaufort Sea by observations and their higher relative accuracy in winter.
Comparison of the IT forecast fields with independent in situ observations by two upward looking sonars
demonstrates statistically insignificant improvements. Much better improvement (15-25%) is observed
when comparing monthly mean IT assimilation runs against independent Advanced Microwave Scanning
Radiometer for Earth observing system (AMSR-E) data. Introduction of the heuristic in situ IC/IT
correlations into the background covariance model did not produce any improvements of the forecast skill.

Plain Language Summary Four-month-long observations of ice concentration and thickness
in the Beaufort Sea are processed using an updated version of the Navy Coastal Ocean Data
Assimilation system run at 2-km resolution. The updates include introduction of the ice thickness
assimilation capability, flow-dependent correlations, and improvement of the error statistics for ice
concentration. We show that daily forecasts of ice conditions improve considerably during the freezing
period in September-November. Causes of the improvement are discussed in the context of ice
information content of the satellite data.

1. Introduction

Recent studies demonstrate a substantial declining trend in area and volume of the Arctic ice cover at the
average rates of 10° km? and 600 km> per year (e.g., Cavalleri & Parkinson, 2012; Kwok et al., 2009;
Serreze & Stroeve, 2015). This decline means a significant expansion of navigable areas in the near future,
which in turn requires more timely and improved forecasting of the ice conditions in the Arctic that was
reflected in a rapid progress of ice data assimilation (DA) during the last decades.

Ice concentration (IC) remains a key parameter in the ice DA due to its importance in the ice model
dynamics and the abundance of the respective data from satellites. IC assimilation techniques are usually
similar to the ones developed for other ocean state variables and range from nudging (Lindsay & Zhang,
2006; Tietsche et al., 2013) and optimal interpolation (Stark et al., 2008; Wang et al., 2013) to ensemble
Kalman filtering (Lisdter et al., 2003; Shlyaeva et al., 2016; Yang et al., 2015) and variational methods
(Fenty & Heimbach, 2013; Koldunov et al., 2013, 2017).

Ice thickness (IT), an equally important parameter for Arctic navigation, has rarely been used in DA because
of sparse in situ data and relatively high observational errors of the space-borne platforms such as CryoSat
(Ricker et al., 2014) and Soil Moisture and Ocean Salinity (SMOS) mission (Tian-Kunze et al., 2014).
Liséter et al. (2007) was one of the first to demonstrate the importance of assimilating CryoSat IT data on
the performance of a coupled ice-ocean model. More recently, Yang et al. (2014, 2016) investigated assimila-
tion of SMOS IT data into a coupled sea-ice model using a localized Kalman filter and demonstrated a
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significant improvement of IT forecasts in the regions of the first-year ice. In their latest study, Mu et al.
(2018) assimilated combined SMOS and CryoSat-2 data jointly to extend the improvement of the model's
performance into the perennial ice.

The vast majority of the above-mentioned studies focus on the improvement of model predictions on spatial
scales significantly larger than 20 km. The objective of the present study is to explore the ways to improve the
Navy short-term (24-hr) IC/IT forecasts at 2-km spatial resolution by upgrading the Navy Coupled Ocean
Data Assimilation (NCODA) system (Cummings, 2005; Cummings & Smedstad, 2013) with new features.
These features include IT assimilation capability, introduction of flow-dependent correlations coupled with
nonlocal observations, and Gaussianization of IC innovations. The latter feature is introduced to account for
non-Gaussianity of the IC/IT error statistics in the NCODA environment, which is based on Gaussian
assumptions. In contrast, the ice error distributions strongly depend on the observed values of the respective
fields when they are close to the natural bounds of variation and, therefore, require special treatment (e.g.,
Barth et al., 2015; Bertino et al., 2003; Bocquet et al., 2010). We also address the issue of the forecast skill sen-
sitivity to variations in formulation of the background error covariance and observation operators. In a sepa-
rate series of assimilation runs, we explore the impact of IT observations on the system's performance. The
related DA experiments were performed with the Los Alamos Community Ice CodE (CICE; Hunke et al.,
2015) running in the Beaufort Sea at 2-km resolution.

The paper is organized as follows. The next section contains a description of the experimental setting and the
basic features of the Global Ocean Forecast System (GOFS 3.1, Metzger et al., 2015) used for initialization
and forcing of the 2dVar CICE DA runs. In section 3, we present the results of the DA runs and assess the
efficiency of the NCODA updates in terms of the forecast skill improvement and consistency with indepen-
dent observations. Summary and discussion of the results conclude the paper.

2. Methodology

2.1. The Assimilation System

The 2dVar DA experiments were performed with CICE forced by atmospheric fields from the Navy Global
Environmental Model NAVGEM 1.2, Hogan et al., 2014) and oceanic fields from the operational run of the
GOFS 3.1 DA system. The DA component of GOFS 3.1 (NCODA) sequentially updates the HYCOM-CICE
states using the variational DA technique (Cummings & Smedstad, 2013) with two-way coupling between
the HYCOM and CICE. The NCODA update 6x of the forecast IC/IT fields is given by the relationships

6x = VCH" (HCH" +1) 'y, )
H=R'HV; &y=R"6y, ©)

where C is the forecast error correlation matrix whose elements depend only on the distance between the
correlated points, V and R are the respective forecast and observation root mean square error variance
matrices, I is the identity matrix, His the matrix representation of the linear operator interpolating state vari-
ables from the model grid on the respective observation locations, and 8y is the vector of the model-data mis-
fits at the observation points.

Daily oceanic and 3-hourly atmospheric fields from the NAVGEM and GOFS 3.1 operational runs between
10 September 2015 and 31 December 2015 were interpolated onto the 512 X 592 curvilinear orthogonal grid
(Figure 1) with 2-km horizontal resolution and then used to force the respective fine resolution CICE model
run. Excluding land, the 2-D model domain had N = 237,773 grid points. The forcing fields were the upper
layer ocean velocity, sea surface temperature, sea surface salinity, atmospheric wind stress, air temperature,
specific humidity, and shortwave and longwave radiation fields at the surface. At the open boundaries of the
domain CICE fields were relaxed to those of the GOFS reference run in a 40-km-wide sponge layer in which
relaxation times varied linearly between 0.16 and 24 hr at the outermost and innermost boundaries.

The CICE run was sequentially updated with 2dVar IC/IT increments 8x computed either with the standard,
that is, operational, or updated formulations of NCODA. In both formulations, the analysis equation (1)
involves only IC/IT fields and remains unchanged, but in the updated formulations the correlation
matrix C is specified as an operator in state space, and Gaussianization was applied to the IC innovations
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Figure 1. Left: Experimental domain with the Community Ice Code model ice thickness (meters) at the start of ice thick-
ness assimilation on 21 October with CryoSat-2 observations shown in blue. Yellow asterisks indicate locations of the
bottom-tethered moorings A (labeled 1) and D (2) deployed in the framework of Beaufort Gyre Observing System study
(Proshutinsky et al., 2009). Right: Community Ice Code ice concentration forecast on 17 September 2015. Red dots show
combined daily observations of ice concentration by Special Sensor Microwave Imager/Sounder and Advanced Microwave
Scanning Radiometer platforms. Time variation of the total number of observations (in thousands) is shown in the insert.

(section 2.3). After NCODA provided IC/IT increments, the CICE initial conditions for IC and ice volume
(a product of IT by the grid cell ice area) in different categories were updated in two stages. First, IC
increment was sequentially distributed among the ice categories starting from the thinnest one and
constrained by the condition that the ice volume update in each category did not produce IT values beyond
the boundaries for that category. We used five ice categories with lower boundary values of 0, 0.64, 1.39,
2.47, and 4.57 m (Hunke et al., 2015). After that, the IT increment was used to calculate the net ice volume
update, and the latter was used to distribute ice volume updates among the categories in the similar manner.

2.2, Data

2.2.1. Ice Concentration

The IC observations used in this study were derived from the Special Sensor Microwave Imager/Sounder

(SSMIS) and Advanced Microwave Scanning Radiometer (AMSR2) sensors. These instruments have foot-
prints of 70 x 45 and 24 x 16 km at, respectively, 25- and 10-km resolution.

0.15¢

error

0.1f

m—— Observ
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With approximately 14 orbits per day, the satellites provide daily coverage
of the experimental domain at approximately 5- to 7-km resolution (right
_ panel in Figure 1). In addition, we used the Interactive Multisensor Snow
and Ice Mapping System product (Helfrich et al., 2007) to correct IC errors
of the passive microwave sensors emerging at the ice edge in September—
1 October.

Observations entering the vector 8y were SSMIS and AMSR2 ICs acquired
1 within the 24-hr window centered on 12Z analysis time. As a result, the
computational domain received daily coverage of 2-5 x 10* observations
(inset in the right panel of Figure 1). On the average, there was one obser-

0.05

vation per five grid points in the domain, and the observation operator H
had a 4 x 4 interpolation stencil; that is, interpolation was performed
. using model values in 16 grid points surrounding an observation.

0 4
0 0.2

Figure 2. Dependence of the observation and forecast ice concentration
root mean square error variances on the background ice concentration
values retrieved from the operational Navy Coupled Ocean Data

0.4

0.6 0.8 1 NCODA uses the diagonal RMS observation error variance matrix R with

ice concentration the minimum RMS error o of 0.05 (gray line in Figure 2). In the numerical

experiments described below, observations with IC values less than 0.1%
were assumed to be open water and prescribed to have the minimum
value of o. At the daily analysis times (12Z) the NCODA also provides

Assimilation run averaged over the assimilation domain between 10 an estimate of the forecast root mean square error v = diag V (black line in

September 2015 and 13 November 2015.

Figure 2) based on the previous history of assimilation with the time-
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weighting function applied to the respective increment fields. In the open water the diagonal elements of V
were bounded from below by 0.001.

2.2.2. Ice Thickness

The source of IT data was the 2-day-averaged CryoSat-2 observations from the Center for Polar Observations
and Modeling (http://www.cpom.ucl.ac.uk/csopr/seaice.html). These observations have a relatively small
footprint (0.3 X 1.6 km), which allows to measure sea ice freeboard and estimate IT using a combination
of the freeboard measurements and estimates of snow depth and density derived from a climatology
(Warren et al., 1999). CryoSat-2 satellite tracks (Figure 1, left panel) cover the Arcic basin up to 88°N and
provide statistically confident IT estimates in the areas of relatively high (>0.5 m) IT. Laxon et al. (2013) con-
ducted a detailed description of the CryoSat-2 data processing, and a brief analysis of the possible errors in
the IT observations. The errors are mostly due to uncertainties in estimation of the snow loading and
ice/water densities, employed when converting freeboard to IT. More recently, King et al. (2018) utilized
the in situ IT observations in the area north of Svalbard and found that in this region covered by deep
(~1 m) snow, CryoSat-2 tends to overestimate IT by 50-100%. Taking into account that snow loading should
be less significant at the beginning of the winter season, we use data from http://www.cpom.ucl.ac.uk/
csopr/seaice.html portal with minor averaging over the surrounding (located within 4 km from a data point)
model bins and without any bias correction.

Compared to IC data, IT observations were approximately 10 times less numerous, and, therefore, their
assimilation required additional validation. For that purpose, we used two independent data sets. The first
one contains in situ ice draft observations obtained from two bottom-tethered moorings deployed in the
framework of Beaufort Gyre Observing System study (Proshutinsky et al., 2009). The Upward Looking
Sonars positioned 50 m below the surface recorded the ice draft. Daily averaged observations were con-
verted into IT using the algorithm of Bourke and Paquette (1989) with the regression ratio of 1.115.
For larger-scale validation of the IT assimilation, we also used monthly mean estimates of ice draft in
the November and December from AMSR-E radiometer converted into IT using the algorithm of
Tateyama et al. (2013). The method was adjusted to the Beaufort Sea region using calibration against
the mooring data described above (see Krishfield et al., 2014, for a detailed description of the
data conversion).

2.3. Updates of the Assimilation Algorithm

For this study, we modified NCODA's assimilation in several aspects and investigated sensitivity of the fore-
cast skill to these changes. The major modifications considered are introduction of the (2) nonlocal foot-
prints of satellite observations, (b) flow-dependent correlations, (c) IT assimilation capability, and (d)
Gaussianization of the IC innovation statistics.

2.3.1. Nonlocal Observation Operators

The numerical implementation of equation (1) in NCODA is tailored for accurate treatment of pointwise
observations using analytic expressions for the matrix elements of C. In particular, the operator H is used
in NCODA only for computing the innovations, while the elements of the matrices CH and HCH™ are com-
puted explicitly under the assumption that the respective observations are made exactly at the locations spe-
cified by the geographical coordinates of the data points. In reality, IC/IT observations from satellites have
finite footprints whose size is several times larger than the model grid step (see section 2.2). Therefore, it
could be more practical to consider the finite footprint size and explicitly use interpolation operators H with
the observation footprint size in computing the products CH” and HCH". In the present study, we used 2-D
spline interpolation with the footprint size of 8 X 8 km, which is consistent with the resolution of both IC and
IT satellite data sets.

2.3.2. Flow-Dependent Correlations

Nonlocal treatment of observations requires specifying the correlation matrix C on the model grid. A
numerically efficient method of doing this is to represent the action of C on a state vector by a rational func-
tion of the diffusion operator. This technique has been used in oceanographic practice for several decades in
isotropic/homogeneous settings (e.g., Derber & Rosati, 1989; Di Lorenzo et al., 2007; Egbert et al., 1994;
Weaver & Courtier, 2001; Weaver et al., 2003). More recently, it was adopted for inhomogeneous case
(e.g., Beckers et al., 2014; Weaver & Mirouze, 2013; Weaver et al., 2015; Yaremchuk & Carrier, 2012;
Yaremchuk et al.,, 2013), but its applications in operational oceanography are rare. In the present study,
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Figure 3. Left: the histogram of ice concentration (IC) innovations on 25 September 2015 obtained from the standard
Navy Coupled Ocean Data Assimilation run in the model domain by excluding the open water points. Right: ice thick-
ness (IT) innovations on 20 December 2015. Innovations are normalized by the respective observation errors. Vertical axes
show the number of values within a bin. The best fit to the histograms by the Gaussian curve (black line) is shown to
illustrate the departure of the innovation statistics from Gaussianity.

we implement the action of C on a state vector by explicit solution of the diffusion equation with anisotropic
and horizontally inhomogeneous diffusion tensor, whose principal axes orientation and magnitude are
defined by the background ice velocity field (Yaremchuk & Nechaev, 2013). In addition, we explored the
impact on the forecast skill of a heuristic model characterizing local IC/IT correlations. More details on
the adopted correlation model can be found in the appendix.

2.3.3. Gaussianization

Error statistics of temperature, salinity, velocity, and sea surface height fields can be described by the
Gaussian probability density function (pdf) within a reasonable degree of accuracy because the magnitude
of respective fluctuations is too small for the pdfs to be affected by the natural bounds of variability of these
quantities. In contrast, IC and IT are strictly bounded from below by zero, while IC has an additional con-
straint IC < 1. These constraints considerably affect the daily error statistics, especially when the ice fields
approach open water condition (zero value) or, in the case of IC, to complete ice cover.

Preliminary analysis of the innovation statistics has shown that IT errors could be approximated by the
Gaussian pdf with a reasonable degree of accuracy (right panel in Figure 3), while IC errors were character-
ized by a much larger departure from Gaussinaity (Figure 3, left panel). This could be explained by the fact
that CryoSat-2 observations are predominantly acquired in regions of relatively thick ice, where IT values are
rather far from zero, where the typical observation errors range within 20-40% of the observed values. On
the contrary, the normalized SSMIS observations have many points with low concentrations, which predo-
minantly populate the sharp central peak in the left histogram of Figure 3. The long tails can be attributed to
the errors in the position of thick ice field edges whose IC values are close to 1, while the NCODA-generated
observation errors can sometimes be as low as 0.2-0.3.

This analysis reveals a certain inconsistency between the update formula (1) derived under the Gaussianity
assumption and the IC error statistics exposed in Figure 3. In an attempt to remove this disagreement, the
normalized IC innovations were transformed prior to the daily analyses by applying the standard
Gaussianization technique (e.g., Brankart et al., 2012). The simplifying assumptions were independence of
the transformation function on horizontal coordinates and validity of the NCODA background correlation
matrix C (equation (1)) in Gaussianized variables. After the solving equation (1), the inverse of the
Gaussianization transform was applied to the IC increments before the standard NCODA postprocessing
was made to obtain the final analysis. Although the utilized approach does not impose strong constraint
on the limits IC variation, it still provides a more consistent treatment of the IC innovation statistics, espe-
cially in the tails clearly visible in the left panel of Figure 3.

2.3.4. IT Assimilation

IT data were treated similar to IC with the only exception that Gaussianization was not performed prior to
the analysis. The IT correlation matrix was identical to the matrix C used for IC assimilation (see
the appendix).

To explore the impact of IC-IT cross-correlations on the forecast skill, we assumed the following form of the
joint correlation matrix:
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where D, is the diagonal matrix whose nonzero elements D.(x) are defined by the local IC values c(x) as
follows:

De(x) = y{1—4[c(x)—0.5]"}. )

With this formulation IC-IT correlations are positive, reach the maximum value (defined by the tunable
parameter 0 < ¥ < 1) at ¢ = 0.5, and vanish at the boundaries of IC variation. The factorized representation
(3) keeps the spatial structure of cross-correlations similar to the adopted correlation model and maintains
the positive-definite property of Cy,.

3. Results

In this section we explore sensitivity of the NCODA performance with respect to the modifications of the
assimilation procedure described in section 2. Performance of the system was evaluated in terms of the
24-hr forecast skill S, computed using the methodology of Hebert et al. (2015), who assessed skill improve-
ment of the Arctic Cap Nowcast Forecast System (ACNFS) using the following formula:

(Axi-") (Fe-5")

S*(alr) =1- (ﬁxy_§n)T(ﬁx:,_§,n)

: ©)

where x", and x", are the analyzed and reference 24-hr forecasts at nth time andy" is the respective vector of
IC observations. In the following, we will use two types of reference forecasts. The first type is computed
using the assumption of IC/IT persistence during the 24-hr period (Hebert et al., 2015) and abbreviated by
p- The second type, denoted by s, is taken from the standard (nonmodified) NCODA (NC) run. Using this
notation, the forecast skill of a run featuring a modification m with respect to the standard NC run is denoted
by S(mls) among others. Statistical significance of the time-averaged forecast skill was assessed by compar-
ison with the standard deviation obtained by averaging over the respective time interval.

3.1. Flow-Dependent Correlations and Nonlocal Observations

Experiments with the flow-dependent IC correlation model (hereinafter abbreviated by f) were conducted
with drift velocities u taken from the background CICE fields used in the analyses. During the assimilation
period (10 September 2015 to 31 December 2015), 90% of CICE ice velocities did not exceed 0.3 m/s, with
only 0.25% of the velocities being larger than 0.6 m/s, and sometimes reaching 1-1.3 m/s in magnitude.
The horizontal variation of u had a typical scale of 100-200 km, indicating that ice was primarily driven
by winds.

The IC forecast skill (equation (4)) computed with respect to the assimilation run with the homogeneous cor-
relation model shows the flow-dependent correlations provide certain improvement of the skill (positive
values in Figure 4, right axis). The improvement is statistically significant in September (0.07 + 0.03) and
to a lesser extent (0.05 + 0.04) in October. During these months, a considerable part of the Beaufort Sea
was ice-free, and changes in ice cover better reflected the impact of drift due to higher spatial variations of
the IC values. Starting from 25 October, more than 90% of the sea was covered by ice (blue line in
Figure 4), and the area-mean IC values quickly rose above 90% by the beginning of November, whereas their
RMS variation dropped from 35% in October to 3% in November. Consequently, the IC field lost information
on ice motion causing gradual reduction of S by the flow-dependent correlation model to a statistically insig-
nificant (—0.8 + 1.9%) value in November-December. It is noteworthy that winter freezing had similar
diminishing effect on the forecast skill in the experiments with Gaussianization (section 3.3).

Model runs with assimilation using nonlocal observation operators (abbreviated by ) did not produce any
statistically significant improvement of the skill for both flow-dependent and isotropic correlation models.
The respective values of S(nls) averaged over the “open water period” (10 September 2015 to 13 November
2015 in Figure 4) were found to be —0.6 + 3.7% and 0.2 + 2.3%, respectively. We partly attribute the result
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Figure 4. Percent of the domain in Figure 1 occupied by ice-covered areas (blue line) and the mean ice concentration (IC)
averaged over these areas (thin black line). The red line (labeled on the right axis) shows S(fls) values over the entire
time interval. The vertical gray line delineates the end of the “open water period” (10/9-13/11.2015), when IC variations
were strong enough to contain information on ice dynamics.

to a relatively small (5-7 km) footprint of SSMIS observations compared to model grid step, so that the effect
of taking the correct spatial interpolation stencil was lost on the background of much larger errors associated
with uncertainties in the correlation model and error statistics generated by NCODA.

3.2. Impact of Gaussianization

Similar to experiments with flow-dependent covariances, experiments with Gaussianization (hereinafter
abbreviated by g) demonstrated noticeable improvement of the skill only during the open water period
(10 September to 13 November).

Figure 5 shows the time dependence of S(gls), S(glp), and S(slp) during this period. The value of S(gls) (thick
blue line in Figure 5) stays positive most of the time with the average value of 0.09, which appears to be quite
substantial compared to S(slp) = 0.40 reported by Hebert et al. (2015) for the ACNFS in February-June 2015.
It is noticeable that time dependence of S(gls) is characterized by two distinct periods. The first month (10
September 2015 to 9 October 2015) has a moderate skill improvement ranging within 0.03-0.07 and several
instances of slightly negative skill. This period was characterized by a relatively stable ice-covered area (55—
65%, thick blue line in Figure 4) with the mean IC gradually increasing from 35% to 70%. In the next period
(9 October 2015 to 13 November 2015), the computational domain was subject to rapid freezing and became
completely ice covered by 15 November (the mean IC increased from 70% to 96%). During this rapid transi-
tion period, the impact Gaussianization was more profound, with the values of S(gls) averaging to 0.17. As
noticed earlier, starting from mid-November, the values of S(gls) dropped dramatically, demonstrating no
improvement with respect to the standard NCODA run.

Comparison between the Gaussianized and standard NCODA runs made with respect to persistence (thin
black and blue lines in Figure 5, respectively) also shows a noticeable impact: the time-averaged value
0.37 of S(glp) is almost 20% better than S(slp). It should be noted that compared to the pan-Arctic run of
Hebert et al. (2015), our experiments were conducted at two times higher (2 km vs. 3.5-4 km) spatial

T T T
— S(gls)
i S(slp) il
S@lp)
S 041 1
7]
<
d 02 d
NA~—AN
\ 4 v \"4 ‘
September October November
02 I L 1 1
9/10 9/20 9/30 10/10 10/20 10/30 11/09

Figure 5. The forecast skill of the NC (thin blue line) and gNC (thin black line) runs with respect to persistence. Thick
blue line shows the gNC skill with respect to NC run.
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resolution in a smaller domain, resulting in a relatively small value of
S(slp) = 0.31 (thin blue line in the Figure 5) and a relatively high (up to
] — 20%) improvement of the forecast skill.

Statistics of the increments produced by the NC and gNC assimilation
runs (Figure 6) demonstrate that Gaussianization tends to be more bene-
ficial at locations with IC close to its range boundaries (0 and 1), where the
Gaussianity assumption underlying the analysis equation (1) becomes
invalid. It is noteworthy that the respective innovations occur more often

50, © 70 8 S0 o in the vicinity of the abrupt changes in IC near the ice edge when either

IC(%) open water or a high IC value are observed against the opposite back-

ground. In other words, IC innovations near the ice edge have a tendency

Figure 6. Distribution of the space and time-averaged innovation magni- 4 populate the tails of the 8y histogram in Figure 3. In the standard

tudes over 10 ice concentration (IC) categories for the NC run (white bars)
and gNC run (black bars). Gray bars show relative numbers of the respective

observation points.

NCODA run these extreme innovations generate persistently larger incre-
ments compared to the Gaussianized case and, therefore, have a tendency
to produce larger and more frequent shocks to the model state than it was
assumed in the derivation of the analysis equation (1). In that respect, a more consistent treatment of the
innovation statistics at the ice edge provides the major contribution to the improvement of the forecast skill
by the Gaussianized run.

3.3. IT Assimilation

A series of numerical experiments were conducted to assess the impact of IC-IT cross-correlations on the
performance of NCODA. Since the heuristic model (equations (3)-(4)) is far from perfection, we varied
the maximum correlation parameter y in an attempt to detect improvements in the forecast skill.
Experiments were conducted in the flow-dependent mode of C without IC Gaussianization but failed to pro-
vide a statistically significant improvement of the forecast skill compared to the case with zero IC-IT cross-
correlations (D.; = 0 in equation (3)).

We attribute this failure to the “complimentary” nature of SSMI and CryoSat-2 observations in terms of the
forecast skill improvement: As noted in the previous section, IC assimilation delivers a statistically signifi-
cant improvement only in September-October (Figure 4), while in November-December IC fields are too
close to saturation (100%) and contain no useful information on ice dynamics. On the contrary, CryoSat-2
observations are completely absent before October 21, being most abundant and accurate in November-
December, when IC data become practically useless in terms of supplying additional information on the
CICE state. In that respect, augmenting CryoSat-2 data with SMOS observations that cover regions with
intermediate IC values (Mu et al., 2018) may potentially result in noticeable IC-IT coupling of error statistics
and therefore have better potential for the forecast skill improvement.

Figure 7 highlights the major results of the combined IC/IT assimilation. The most prominent impact is a
significant (~20 cm or ~20-25%) decrease of the domain-averaged IT in the run with assimilation (dashed
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Figure 7. Domain-averaged absolute value of the model-data misfits (cm) between the 24-hr forecasts produced by the
runs with (thin solid line) and without (thin solid line) assimilation of CryoSat-2 data. Black segments on the thick
solid line indicate periods of ice thickness (IT) forecast improvement by assimilation. The blue dashed line shows decrease
of the domain-averaged IT caused by IT assimilation.

YAREMCHUK ET AL.

814



nnnnnnnnnnnnnn

10.1029/2018JC014581

40F T T T T T T =

w
o
T
1

N
o
1

-
o
T
1

o
b
.

IT difference, cm

'
_
o

T
s
¥
.
’
&
a
¥
1

.....
--------

1

L 1 1 1
10/26 11/5 1115 11/25 12/5 12115 12/25

Figure 8. Reduction of the model-data misfits in two moorings produced by assimilating CryoSat-2 ice thickness (IT) data.
Positive values correspond to smaller misfits of the assimilation runs.

line in Figure 7). This agrees well with the results of the Allard et al. (2018), who found that ACNFS system
tends to overestimate the mean IT without proper initialization using CryoSat-2 observations. It is interest-
ing that the effect of the CryoSat-2 DA is negligible in period of rapid ice cover expansion (late October—
November) until the mean IT over the domain reaches 0.5-0.6 m by 25 November. After that, the model
without assimilation has a visible tendency to overestimate the ice accumulation in the area. This is clearly
seen from the linear trend of approximately 0.5 cm/day visible during 11/25-12/31 (dashed line in Figure 7).
The effect could be attributed to the fact that CryoSat-2 data in November are mostly available only for the
northern part of the region, where IT exceeds 0.5 m. The southern part of the domain is ice-free or covered by
the thin ice barely detectable by the observations. Therefore, the integrated impact of assimilating the
CryoSat-2 data should be less visible before the 25 November. After that, the entire Beaufort Sea basin
was covered by relatively thick (well-observed) ice resulting in less ice production in December by the
assimilation run.

Solid lines in Figure 7 demonstrate model-data misfits computed for 24-hr forecast fields with and without
IT assimilation. Although IT assimilation demonstrates a certain improvement (decrease) of the forecasted
misfits (70% of time, and 0.4 + 3.8 cm in the time average), it appears to be statistically insignificant. This can
be explained by sparse daily coverage of the domain by the CryoSat-2 tracks: Consecutive tracks cross the
model domain in a random pattern (a typical example shown in Figure 1). As a consequence, the mean dis-
tance (~110 km) between observation points separated by 24 hr in time is considerably larger the typical dis-
placement (10 km) of the IT field features in the same period.

A more reliable validation of the assimilation quality can be obtained by comparison with independent IT
observations. Figure 8 shows improvement in IT model-data misfits derived from the in situ ice draft data
on two moorings (yellow stars in the left panel of Figure 1) deployed in the Beaufort Sea during the assim-
ilation period (section 2.2.2). The model-data misfits at the first mooring demonstrate a statistically signifi-
cant (4.8 + 4.6 cm) improvement during the observation period, while the results from the second mooring
appear to be less conclusive (—3.9 + 4.1 cm). Note that improvement on the first mooring is especially sig-
nificant in December, when ice cover was considerably thicker and the CryoSat-2 data were available at
the mooring locations two times more often than in October. The second mooring location was less covered
by CryoSat-2 observations (four track crossings vs. six for the first mooring) and had much larger discrepancy
with in situ data compared to the first mooring (0.4 m vs. 0.2 m). This may partly explain worse skill of IT
assimilation versus in situ data at the second mooring, which may also be attributed to a somewhat larger
bias estimate at that location. However, due to a small number of CryoSat-2 crossings of the mooring loca-
tions, it is difficult make more confident conclusions due to large errors in bias estimates.

Monthly averaged AMSR-E IT data described in section 2.2.2 allow obtaining a more statistically reliable
validation, partly because IT estimates derived from AMSR-E by Krishfield et al. (2014) were carefully cali-
brated against numerous ice draft observations from all available moorings deployed in the Beaufort Sea
during the period and, therefore, could be considered to be unbiased. We found that assimilation of IT data
from CryoSat-2 results in 15% to 25% reduction of the monthly and spatially averaged model-data difference
in November and December, respectively. We assume that this improvement is statistically significant com-
pared to the above assessment via in situ data at two locations. The improvement also indicates that AMSR-
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E/CryoSat-2 bias during this period was considerably smaller than the bias between nonassimilative model
runs and CryoSat-2 data.

3.4. Combined Effects

Additional experiments were performed to assess NCODA's performance with different combinations of the
updates outlined in section 2. As expected, the largest effect was achieved by combining the flow-dependent
correlations (S(fls) = 6.7%) with Gaussianization, which produced the overall S(fgls) = 9.9% improvement in
the forecast skill. Robustness of the effect was additionally tested against the standard NCODA run with the
second-order autoregressive (SOAR) correlation model (abbreviated by s’). Since the SOAR model cannot be
represented by the diffusion equation, the decorrelation scale was adjusted to provide the best approxima-
tion of the SOAR function by the Gaussian with the background decorrelation scale r = 6(8/m)"/? ~9.2 km
(Yaremchuk & Smith, 2011). Improvement in the SOAR case was approximately twice as small
(S(fgls) = 4.6%) as compared to the run with flow-dependent Gaussian correlations. The difference could
be attributed to at least two factors: 20% approximation error of the SOAR correlation function by the
Gaussian one and a somewhat larger value (S(s'Ip) = 33%) of the standard run skill with the SOAR correla-
tion versus persistence.

Experiments with the combined IC-IT assimilation did not detect any statistically significant improvements
in either IC or IT forecast skills when IC (IT) observations were augmented by the complimentary IT (IC)
type of data. The effect appeared to be robust and insensitive to the variations of the empirical correlation
coefficient y (equation (4)). We attribute this failure to the fact that IC assimilation delivers a statistically sig-
nificant improvement only in September-October (Figures 4 and 7), while in November-December IC
observations become virtually absent due to IC saturation near 100%. On the contrary, IT observations are
completely absent until the end of October and become abundant only at the beginning of November when
IC data become practically useless in terms of supplying additional information on the CICE state.

It is necessary to note that combined IC-IT did improve the monthly mean misfits with independent AMSR2
observations from 27/43 cm in November/December with IC assimilation only to 24/32 cm in the case when
both IC and IT data were analyzed by the system.

4. Conclusions and Discussion

The presented study addresses the issue of improving the short-term (1 day) forecast skill of a high-
resolution (2 km) ice model driven by observations collected in the Beaufort Sea during the freezing period
(September-December 2015). Improvement of the skill was explored along several lines that are currently
not implemented in the operational system: These are the IT assimilation capability, introduction of spa-
tially inhomogeneous flow-dependent correlations coupled with nonlocal observations, and
Gaussianization of IC innovations. Performance of system has been tested in a series of 2dVar assimilation
experiments with NCODA assimilating SSMIS, AMSR2 IC data, and CryoSat-2 IT observations into the
CICE model driven by HYCOM and NAVGEM forcing.

Comparison with NCODA runs performed in the standard (operational) configuration has shown that intro-
duction of the flow-dependent correlations improves the forecast skill by 5-7% during the freezing period (10
September 2015 to 13 November 2015) with no significant impact on the forecast skill later, when the area-
mean IC becomes close to saturation. Gaussianization contributes an additional improvement of 3-4% dur-
ing the freezing period and has no effect on the skill after mid-November.

Introduction of the IT assimilation capability did not show any statistically significant improvement of the
24-hr forecast skill with respect to CryoSat-2 data. We attribute this to the fact that IT features observed
on consecutive CryoSat-2 tracks are too far away from each other to be casually related within the 24-hr fore-
cast time frame. The situation may improve in the regions of denser coverage (north of 80°N), where daily
CryoSat-2 tracks are separated by less than 50 km and relative accuracy of the observations is higher due
to thicker ice. Comparison with independent in situ observations by two upward looking sonars demon-
strated only a minor (1-3 cm) improvement at a statistically insignificant level. At the same time, we
detected a much more noticeable (15-25% or 3-11 cm) improvement in the model's discrepancy with inde-
pendent monthly mean AMSR-E IT data (Krishfield et al., 2014). An alternative cross-validation method
(e.g., based on withholding a part of CryoSat data) could be performed in the regions with denser
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coverage by IT observations, but domain under consideration is covered too sparsely for statistically confi-
dent assessment of the 24-hr forecast skill.

Assimilation experiments have also shown that there is no significant improvements in the skill across the
two types of ice observations. The result was robust and did not depend on the magnitude of the local IC-IT
correlation coefficient ¥ introduced by the heuristic correlation model (equations (3)-(4)). The IT forecast
skill was also insensitive to introduction of the flow dependence in the spatial structure of the
correlation model.

The relatively poor results of IT assimilation can be explained by the sparsity of IT data (2 x 10° IT vs. 3 x 10°
IC observations) and larger uncertainties of the remotely sensed IT data as compared to IC observations. In
particular, a recent study by King et al. (2018) indicates that CryoSat-2 data in the Atlantic sector of the
Arctic Ocean could be biased due to the uncertainties in the snow loading estimates. To assess possible
impact of this bias, we made three additional assimilation experiments with CryoSat-2 data multiplied by
1.2, 0.8, and 0.6. In all three cases the results were worse than those obtained with original data, suggesting
a minor impact of the snow load in the Beaufort Sea. This can be attributed to at least two factors: small snow
accumulation in November-December compared to March April and negligible impact of the
Atlantic cyclones.

To summarize, our results indicate that introducing flow-dependent covariances and Gaussianization into
ice assimilation may improve the short-term forecast skill at fine (2 km) resolution by several percent.
However, this conclusion should not be treated as a universal guidance, because improvements may strongly
depend on the features of a specific DA system. In particular, flow dependence of the correlation could be
better represented by the localized ensemble perturbations than by the heuristic model based on the back-
ground drift velocities used in the present study. Availability of the ensemble environment is also essential
for consistent transformation of the covariances and for compensating possible biases introduced by the
Gaussianization (e.g., Bishop, 2016), especially near the ice edge, or at other locations where the forecast
field is close to the limits of its variability.

Due to relatively high uncertainties and sparsity of IT data, and low information content of IC observations
in thick ice, the joint IC-IT assimilation failed to reveal statistically significant IC/IT correlations and
improvements in the daily IT forecast skill. However, IT observations did have a noticeable positive impact
on the assimilation results in terms of the agreement with independent IT observations (in situ moorings,
AMSR?2 data), especially at large spatial and temporal scales. We believe that much better improvement
may take place in the regions to the north of the Beaufort Sea (78-88°N), where the CryoSat-2 data density
is significantly higher and the ice cover is more persistent and thicker. At the same time, enriching IT data by
SMOS observations may bring new benefits to IC-IT assimilation, because SMOS data extend IT assimilation
into the regions with relatively thin ice where IC data are capable to provide more information on
ice dynamics.

The major objective of the present study was to improve the forecast skill of the operational (ensemble-free)
version of NCODA on relatively short spatial and temporal scales in the absence of the ensemble environ-
ment. Because of that, we simplified the standard ensemble-based Gaussianization approach by assuming
that the heuristic correlation model was valid in the Gaussianized variables by neglecting horizontal inho-
mogeneity of the IC statistics. To reduce errors associated with these assumptions, the Gaussianization
transform was applied to model-data misfits, preventing the analysis fields to be constrained by the bounds
of IC variability and thus requiring additional analysis correction similar to the one present in the opera-
tional algorithm running without Gaussianization. Despite these simplifications, the Gaussianization
approach resulted in a noticeable improvement of the forecast skill. One may expect more substantial
improvement if higher quality observations of ice conditions and/or atmospheric forcing were employed
in controlling the models. These advances require substantial expansion of observational networks and
improvement remote sensing technology.

Work underway will extend the approach to include SMOS observations into the NCODA. Another prospec-
tive line of development is transitioning NCODA to ensemble formulation featuring local Gaussianization
transformations of the arbitrary sets of non-Gaussian variables. This activity is planned to start in the
near future.
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Appendix A: The Background Error Correlation Model

In the present study we employ an implicit representation of the correlation matrix by the kernel of the heat
transfer equation, so that the action of C on a scalar 2d field f = f(x) is represented by

Cf=N(x) exp [1/2 V'D(x) V] f. (A1)

Here N is the diagonal rescaling matrix of normalization factors, V is the matrix representing the discretized
2-D gradient operator on the model grid, T denotes transposition, and D is the 2-D diffusion tensor field
represented by 2 X 2 positive definite matrices specified in every grid point x of the model domain. The
advantage of this formulation is that it guarantees positive definiteness of C in strongly inhomogeneous
cases (typical for ice dynamics), which may not be handled properly by the current NCODA formulation.

To ensure numerical positive definiteness of the operator in the square brackets of (A1), the diffusion tensor
was represented in the square root form D = D2 D2 with

D/2(x) — r[/l(x) 0} { cosf(x)

0 1]|—sinf(x)

sinf(x)
cosf(x) ]’

where r = 6 km is the isotropic decorrelation scale, 4 is the square root of the principal axis of D, and 6 is its
orientation. In the computations, we assumed that the principal axis is aligned with the vector of the ice drift
velocity u, while A% = max(1,lul/uy), where uo = 7 cm/s is the rms magnitude of isotropic noise defined by the
uncertainty of the drift velocity field. As a consequence, the diffusion was isotropic (D = #* I) in all the grid
points where the magnitude of ice drift velocity was less than 7 cm/s.
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