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ABSTRACT

Photosynthetically available radiation (PAR) incident at the sea surface penetrates into the water column

and drives oceanic primary production. Ecosystem models to estimate phytoplankton biomass and primary

production require an estimate of sea surface PAR, which is available from satellite ocean color imagery and

atmospheric model predictions. Because the PAR values could come from either source, it is important to

understand the variability and accuracies of each. We performed spatial and temporal analyses covering

multiple years and seasons, and clear/cloudy conditions. We compare values derived from the imagery to

those from the models and to in situ measurements in the Gulf of Mexico to validate the imagery and models

and to assess PAR variability based on source. Averaged over space or time, the relative errors in PAR

between the six sources (two satellite, three model, and in situ) are generally less than 5%–7%, but they can

vary up to 11%. However, the errors and biases on a daily or pixel-by-pixel basis are larger, and the averages

can mask seasonal trends.

1. Introduction

The magnitude and distribution of solar radiation in-

cident at the sea surface impacts the physics, chemistry,

and biology of the ocean. From a physical perspective,

it penetrates into the water column and heats the up-

per layer of the ocean, driving stratification and ther-

mohaline circulation, and through ocean–atmosphere

coupling and feedback mechanisms influences air/sea

heat exchange, winds, and climate. Solar radiation also

affects the partitioning of organic matter between par-

ticulate and dissolved phases (Shank et al. 2011), as well

as the chemical speciation of the dissolved material

through oxidative process, such as the photodegradation

of chromophoric dissolved organic matter (CDOM;

Zhang et al. 2009).

Biologically, a portion of the shortwave radiation, the

photosynthetically available radiation (PAR), drives

land and oceanic primary production (Campbell et al.

2002; Carr et al. 2006; Mercado et al. 2009; Platt 1986).

Accurate estimates of sea surface PAR (and its attenu-

ation with depth) are required as input to ecosystem

models, to derive accurate estimates of phytoplankton

biomass and primary production from ocean color

(Friedrichs et al. 2009; Frouin et al. 2018; Saux Picart

et al. 2014). Too much light can lead to photooxida-

tion of phytoplankton pigments and photoinhibition

(Long et al. 1994; Nelson 1993; Platt et al. 1980). Bio-

logical production and optically active constituents of

the water column absorb light, which serves to trap heat

in the surface layer, impacting water column density,

mixed layer thickness, and even precipitation patterns

(Edwards et al. 2004; Gildor et al. 2003; Jolliff et al. 2012;

Lewis et al. 1983; Nakamoto et al. 2000; Sathyendranath

et al. 1991; Simonot et al. 1988; Zaneveld et al. 1981).

Thus, heating of the ocean surface layer occurs both

directly by the incident radiation and indirectly by ef-

fects through the biology.
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The impetus for this work derives from our efforts to

couple a hydrodynamic model with an ecological model

to describe oxygen dynamics in the hypoxic zone off the

Louisiana coast. We are coupling physical properties

from the Navy Coastal Ocean Model (NCOM; Martin

2000) with biogeochemical properties from the Coastal

General EcosystemModel (CGEM; Lehrter et al. 2017).

The biogeochemical model (CGEM) uses an estimate of

PAR to drive biological production. One goal of this

coupling approach is to simulate the effects of various

climate forcing scenarios on the magnitude and distri-

bution of primary production on the Louisiana conti-

nental shelf (LCS), and ultimately the effects on hypoxia

development. One such forcing factor, which will be the

focus of this study, is PAR. Other forcing factors include

air/water temperature, precipitation, river discharge,

nutrient loads, and water column stratification.

Estimates of PAR are available from satellite ocean

color imagery and from atmospheric model predictions.

Because there are multiple sources of PAR available as

input to hydrodynamic and ecological models, an un-

derstanding of the differences between the possible in-

put sources is critical before we can assess the impact of

PAR variability on primary production and hypoxia.

In addition, although there has been some limited

validation of the satellite-derived PAR values from

ocean color sensors (SeaWiFS, MODIS, Global Imager;

Frouin and Murakami 2007; Frouin et al. 2003, 2012;

Laliberté et al. 2016; Somayajula et al. 2018), there has

been even less work comparing shortwave radiation

values from various atmospheric models to in situ ob-

servations or to satellite values (Bouvet et al. 2002; May

et al. 2017). We are specifically interested in addressing

these shortcomings for Navy atmospheric models that

could be used as potential input sources for NCOM and

CGEM. Our objectives are to compare in situ mea-

surements of PAR in the Gulf of Mexico to estimates

derived from multiple ocean color satellites and multi-

ple atmospheric models, through multiyear time series

analyses at individual locations and spatial analyses

across satellite images. The satellites we are using include

the Moderate Resolution Imaging Spectroradiometer

(MODIS) and the Visible Infrared Imaging Radiometer

Suite (VIIRS). Themodels we are using include the Navy

Operational Global Atmospheric Prediction System

(NOGAPS), the Coupled Ocean–Atmosphere Meso-

scale Prediction System (COAMPS), and the Navy

Global Environmental Model (NAVGEM).

2. Methods

We performed temporal and spatial comparisons of

surface PAR values covering multiple years and seasons

in the northern Gulf of Mexico (GOM). Datasets are

described below. For the temporal analyses, surface

PAR values were extracted from the atmospheric

models and satellite imagery at each of three station

locations over multiple years and compared to co-

incident ground-based measurements. These analyses

include both cloudy and clear-sky conditions. For the

spatial comparisons, rather than examining single-point

locations with in situ data, we compared satellite and

model data over a large expanse of the northern GOM,

for nine specific dates (chosen for mostly clear satellite

imagery). Figure 1 shows the three locations for the time

series analyses, as well as the large region of interest for

the spatial analyses. Table 1 shows the dates of the

spatial comparisons, and the satellite andmodel datasets

available for each date. Note that not all data types

are available for all dates. VIIRS was launched on 28

October 2011, but data were not available to the public

until April 2012 (Cao et al. 2014). Also, the various at-

mospheric models have not all been operational for

the same time periods. MODIS and VIIRS imagery and

all gridded model data from NOGAPS, COAMPS, and

NAVGEM were mapped to the same equirectangular

projection and same ground resolution (1 km) for the

spatial comparisons, using Environment for Visualizing

Images (ENVI) software (Excelis Visual Information

Solutions, Inc.). Satellite imager cloud pixels were

masked and excluded from these comparisons.

PAR can be expressed in terms of the photon flux

density, the moles of photons per unit area per unit time

(molesm22 s21), or in energy units (Wm22). We follow

the energy convention to facilitate comparisons with

model-derived shortwave radiation values. PAR can

be estimated empirically as a proportion of the total

surface shortwave radiation QSW (350–2500nm) from

the atmospheric models or in situ measurements, al-

though that ratio can vary depending on atmospheric

composition (clouds, water vapor content, aerosol op-

tical thickness) and solar zenith angle (Baker and Frouin

1987; Bélanger et al. 2013; Frouin and Pinker 1995; Jitts

et al. 1976; Pinker and Laszlo 1992). We estimated this

proportionality factor from least squares regression

analysis of the MODIS and in situ shortwave radiation

datasets in the northern Gulf of Mexico, using the three

in situ locations separately and in combination. Based

on analysis of just the Terrebonne Bay datasets, the

conversion factor was calculated as 0.45 (standard error

0.0024). The value was 0.48 (standard error 0.0045) for

the Southwest Pass dataset and 0.47 (standard error

0.0024) for the Chevron oil platform (see section 2a for

description of the in situ data sites). For the three da-

tasets combined, a value of 0.45 (n 5 1089, standard

error 5 0.014) was calculated, and we used this value
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to convert daily average model and in situ shortwave

radiation values (Wm22) to PAR (Wm22) for the sub-

sequent comparisons:

PAR (Wm22)5 0:45Q
SW

. (1)

This value is also consistent with literature values

(Baker and Frouin 1987; Papaioannou et al. 1993; Pinker

and Laszlo 1992). Because we derived the conversion

factor from the MODIS and in situ datasets, it is in-

dependent of the models used in the comparisons. As

mentioned above, this conversion factor can vary de-

pending on atmospheric conditions, but we calculated it

based on our regionally specific datasets, which spanned

multiple years and seasonal cycles, so we believe it is the

best representative value for our study area. Although

the conversion factor will affect the magnitude of the

relative percent differences in the satellite, model, and

in situ comparisons [Eq. (3)], the variability is small, and

we applied the conversion factor consistently to mini-

mize impacts, so we do not expect the exact value

specified to greatly affect the results, and the summary

comparisons will still be valid as well.

a. In situ measurements

In situ QSW measurements were collected at three

locations in the northern Gulf of Mexico. Data were

collected at two locations by the Louisiana Universities

Marine Consortium (LUMCON): Terrebonne Bay

(29.18678N, 90.6088W) from January 2010 to December

2011 and Southwest Pass (28.93228N, 89.40698W)

from January to November 2006 and from January to

September 2007. Data were provided by LUMCON as

daily averages through a data request to the environmental

monitoring group (https://lumcon.edu/environmental-

monitoring/). Additional hourly data were collected

by Sonoma Technology, Inc. [under a U.S. Bureau of

Ocean Energy Management (BOEM) contract] at a

FIG. 1. Ground station locations in the northern GOM for the time series comparisons (red

squares). Large region of interest for the spatial comparisons (green polygon). Background

image is the MODIS PAR product for 21 Oct 2011.

TABLE 1. Dates, satellite, and model datasets used for the spatial PAR comparisons.

Date MODIS VIIRS NOGAPS COAMPS NAVGEM

25 Feb 2016 X X X

10 Feb 2016 X X X

27 Jan 2015 X X X

25 Oct 2014 X X X

22 Jan 2014 X X X X

4 May 2013 X X X X

18 Dec 2012 X X X X

22 Apr 2012 X X X X

21 Oct 2011 X X X
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single location: the Chevron oil platform ST-52 (28.8678N,

90.4838W) from October 2010 to March 2012. Hourly

measurements were averaged over 24 h to obtain daily

averages. The measurements and data are described in

MacDonald et al. (2013). Daily average data from these

three locations were then converted to PAR using

Eq. (1).

The LUMCON stations are close to land. The

Terrebonne Bay station is located on a fixed water plat-

form about 3–4km from land, and the Southwest Pass

station is located at the end of a dock. Because satellite

PAR estimates are only obtained for water pixels (and

the pixels are 1-km resolution), we selected the adjacent

water pixel to the Southwest Pass location for the in situ/

satellite comparisons. Because PAR values generally

vary minimally over large spatial scales in areas not

affected by clouds (at least tens of kilometers, based

on examination of ocean color PAR products, author

R.W.G. personal observation), we do not expect this

small spatial offset to impact results. For the Terrebonne

Bay and Chevron oil platform locations, satellite pixel

extractions for the comparisons corresponded precisely

to the in situ locations. However, PAR measurements

collected by a sensor near land can be impacted by land

reflectance. Photons reflected by the surface to the at-

mosphere and backscattered to the surface may not

be negligible for a PAR sensor installed over land or

at a coastal site. The spherical albedo of the atmosphere

is typically 0.2 in the PAR spectral range, and for a

surface reflectance of 0.2, for example, the effect would

be an extra flux of about 4%. In addition, the satellite-

derived PAR values near land can be impacted by an

adjacency effect as well (see section 4).

b. Satellite imagery/processing

Both the VIIRS and MODIS sensors are in sun-

synchronous, near-polar orbits. There are two oper-

ational MODIS sensors, Terra and Aqua, with morning

and afternoon overpasses, respectively, separated in

time by about 3 h. However, we are only using MODIS

Aqua data in our comparisons, because the overpass

time is closest to VIIRS (both sensors cross the equator

at approximately 1330 local time), thereby minimizing

any temporal biases in the PAR comparisons. MODIS

has a swath width of 2330km and views the entire

Earth’s surface every 1–2 days. The VIIRS swath width

is 3000km and orbits at a higher altitude than MODIS

(824 km versus 705km), enabling observation of the

entire Earth’s surface twice each day.

For the time series and spatial analyses, level 1b

MODIS and VIIRS satellite imagery covering the Gulf

of Mexico were downloaded from NASA and NOAA,

respectively (https://ladsweb.modaps.eosdis.nasa.gov/,

https://www.class.noaa.gov/). The files were subse-

quently processed through the Automated Processing

System (APS) developed at the Naval Research Labo-

ratory (NRL) at the Stennis Space Center (SSC) in

Mississippi (see description in Gould et al. 2014; Auto-

mated Processing System User’s Guide, Version 6.6.5;

https://www7330.nrlssc.navy.mil/7331/docs/aps_v6.6/html/

user/aps.xhtml). APS incorporates the latest NASA

MODIS/VIIRS code, with updates as they become

available, and enables us to rapidly produce the stan-

dard NASA ocean color products (chlorophyll, PAR,

etc.), as well as Navy-specific products (absorption/

backscattering coefficients, diver visibility, lidar pene-

tration depth) using NRL algorithms. It takes about

8–10min to process a single MODIS or VIIRS image

granule on our system, from calibrated radiances to at-

mospherically corrected, mapped, bio-optical products.

Furthermore, we can automatically extract image data

from regions of interest to facilitate time series ana-

lyses and from specific locations for matchups with

in situ ship or mooring data. All imagery was processed

with atmospheric correction and bio-optical algorithms

consistent with NASA SeaDAS version 7.1 and with

time-dependent calibration coefficients (SeaDAS ver-

sion 7.5 has recently been released by NASA and we are

in the process of incorporating those version changes,

but they do not affect the PAR algorithm).

PAR has been defined to cover the 350–700-nm

spectral range, but it is typically reduced to 400–700nm,

for practical considerations related to satellite wave-

length band restrictions (Baker and Frouin 1987;

Frouin and Murakami 2007). The Sea-Viewing Wide

Field-of-View Sensor (SeaWiFS) algorithm, which is also

applied to other ocean color sensors such as MODIS

and VIIRS, provides an estimate of the daily (24-h av-

erage) PAR incident on the ocean surface, expressed in

einsteins per square meter per day (Em22 day21; Frouin

et al. 2003). These daily averages are then converted

to watts per square meter following Morel and Smith

(1974):

PAR(Wm22)5

PAR(Em22 day21) 6:0233 1023 (quantaE21)

86 400 (s day21) 2:773 1018 (quanta s21 W21)
.

(2)

The SeaWiFS algorithm uses the top-of-the-atmosphere

radiances measured in each of the bands in the 400–

700-nm range that do not saturate over clouds (six

bands for SeaWiFS, three for MODIS, and five for

VIIRS). Thus, PAR values will be estimated for both

clear and cloudy pixels.
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c. Atmospheric models

Gridded solar radiation fields used to force ocean hy-

drodynamic models are typically provided by numerical

weather prediction products (Wallcraft et al. 2008). For

example, for NCOM, the solar radiation can come

from NOGAPS, COAMPS, or NAVGEM. These atmo-

spheric models calculate QSW through radiative transfer

calculations, and the estimates are then used as input

to the hydrodynamic model heat budget calculations

(Hodur 1997; Hogan and Rosmond 1991; Hogan et al.

2014; Ko et al. 2016; Rosmond 1992; Rosmond et al. 2002;

Shulman et al. 2017, 2013). Using 3-hourly analysis

fields from each of the three atmospheric models, we

calculated daily average shortwave radiation values and

then converted those values to PAR using the same

method as for the in situ daily averages [Eq. (1)].

NOGAPS is a global model gridded at 0.58 spa-

tial resolution that ended operational use in October

2013 and was replaced with NAVGEM. It uses the

Harshvardhan et al. (1987) parameterization for long-

wave radiation and the Davies (1982) parameterization

for shortwave radiation (Hogan and Rosmond 1991;

Rosmond 1992). COAMPS Central America model is

a regional, 0.28 resolution model that uses the Fu–Liou

radiation parameterization (J. Doyle 2016, personal

communication; http://www-cave.larc.nasa.gov/pages/

flp200503_web.htm); it ended operational use in May

2014 and was replaced with the COAMPS Equatorial

Americas model at 0.158 resolution. The model resolu-

tion, grid, and parameterization changed with the new

version, and at the time of our analyses those model

results were not available to us. NAVGEM is a global

0.58 resolution model that started operational use in

February 2013 (Hogan et al. 2014). It uses the RRTMG

radiation parameterization (Clough et al. 2005; http://

rtweb.aer.com/). The atmospheric models do not as-

similate MODIS or VIIRS radiances in their calculation

of shortwave radiation; thus, the satellite and model

PAR and QSW estimates are independent.

3. Results

a. PAR comparisons: Temporal

We performed multiyear temporal comparisons be-

tween coincident model, satellite, and in situ datasets at

the three station locations shown in Fig. 1. In situ data

were available for different time periods at each location

(see section 2). For the temporal comparisons, model

values were extracted at the three in situ locations for

the time periods corresponding to the in situ data. Only

MODIS satellite data were used in the temporal com-

parisons because VIIRS was not operational during the

time periods of the in situ data collections. Single

satellite pixels and model grid points closest to the

in situ data locations were selected for all comparisons.

These analyses include both cloudy and clear-sky

conditions from the satellites, although matchups

with percent differences between the in situ and sat-

ellite values that exceeded 50% were excluded from

the analyses. This is because the satellite daily-average

PAR values are based on the pixel conditions at the

time of the satellite overpass, whereas the in situ

measurements were collected hourly and averaged

over the entire day. Thus, any diurnal cloud variability

would be captured by the in situ measurements, but

not by the satellite estimate, and the results would be

biased. Relative percent difference (RPD) was calcu-

lated for each day as

RPD (%)5
(PAR

truth
2PAR

sat,model
)3 100

PAR
truth

. (3)

Average RPD (ARPD) was calculated as

ARPD(%)5
�
n

i51

RPD
i

n
. (4)

In Eq. (3), the subscript ‘‘sat, model’’ indicates that

either a satellite or model dataset is the comparison

dataset with the ‘‘truth’’ dataset. When available, the

in situ data are always used as ‘‘truth.’’ For the satellite-

model comparisons, the satellite data are used as truth.

For the model–model comparisons, the model selected

as ‘‘truth’’ for the comparison is arbitrary (but consis-

tent); it is indicated in the legend for Table 2. For the

scatterplots in Figs. 2–4, the dataset selected as ‘‘truth’’

is always on the x axis.

Figures 2–4 illustrate a variety of model, satellite, and

data comparisons for Terrebonne Bay, Southwest Pass,

and oil platform ST-52, respectively. The red lines in

the left-hand panels of each figure represent a Type II

least squares regression best fit to the data. The red

lines in the right-hand panels of each figure represent

a Savitzky–Golay 60-point smoothing of the data.

The comparison values discussed below are shown in

Table 2, which summarizes the temporally averaged

results. Significant daily variability is observed in all the

comparisons, as indicated by the wide spread of points

on the scatterplots and the large, high-frequency ‘‘spikes’’

on the time series plots.

1) TERREBONNE BAY

Although MODIS and in situ measurements agree

quite closely when averaged over time (Fig. 2a;
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ARPD 5 21.48%), a seasonal trend is also observed

in the comparison, with MODIS values exceeding the

ground truth measurements in the summer (Fig. 2b).

This trend is masked if just the ARPD is exam-

ined. COAMPS values are generally less than the

in situ values, with a bias of 210.58Wm22 and

a consistently positive ARPD of 9.02% (Figs. 2c,d).

NOGAPS comparisons to in situ data show similar

trends (Figs. 2e,f). COAMPS (Figs. 2g,h) and NOGAPS

(Figs. 2i,j) values are also less than MODIS, and

the biases and RMSEs (21.94 and 20.24Wm22, re-

spectively) are higher, as are the ARPD values (10.56

and 7.61%, respectively). The two models (NOGAPS,

COAMPS) agree quite closely with each other (Figs. 2k,

l), with NOGAPS values slightly exceeding COAMPS,

on average (ARPD 5 25.77%).

2) SOUTHWEST PASS

The seasonal trend between the MODIS and in situ

data that was observed at Terrebonne Bay is also ob-

served here, although the ARPD is greater (Figs. 3a,b;

ARPD 5 26.13%). At this location COAMPS and in

situ data agree quite closely on average (Fig. 3C, D),

with bias, RMSE, and ARPD values of 21.62Wm22,

17.64Wm22, and 1.57%, respectively. The NOGAPS

comparison to the in situ data is quite similar (Figs. 3e,f).

Some seasonal variability is also observed in the

COAMPS and NOGAPS comparisons with the in situ

data (Figs. 3d,f). Both COAMPS and NOGAPS are

again lower thanMODIS, with bias, RMSE, and ARPD

values (8.72% and 6.76%, respectively) similar to those

at Terrebonne Bay (Figs. 3g,h and 3i,j, respectively).

As at Terrebonne Bay, the average NOGAPS and

COAMPS values are quite similar (Figs. 3k,l), with an

ARPD 5 22.61%.

3) CHEVRON PLATFORM ST-52

The seasonal trend that was observed between

the MODIS and in situ values at Terrebonne Bay

and Southwest Pass is not apparent at this location.

Here, MODIS values show a positive bias, with an

ARPD 5 26.76% (Figs. 4a,b). As at Terrebonne Bay,

COAMPS values are generally less than in situ values,

with a bias of 26.68Wm22 and a consistently posi-

tive ARPD of 6.27% (Figs. 4c,d). As at Southwest

Pass, the NOGAPS values are quite similar to the

in situ, however, with a bias of 1.73Wm22 and

ARPD 5 23.06% (Figs. 4e,f). As at the other two

locations, both COAMPS and NOGAPS are again

lower than MODIS, with ARPD values of 10.93% and

3.70% (Figs. 4g,h and 4i,j, respectively). NOGAPS

and COAMPS do not agree as closely as at the other

two locations. Here, NOGAPS generally exceeds

COAMPS (bias 5 5.71Wm22, ARPD 5 28.32%).

TABLE 2. Temporal PAR comparisons between satellite (MODIS), model (COAMPS, NOGAPS), and in situ measurements from

three ground locations (Terrebonne Bay, Southwest Pass, and Chevron oil platform ST-52). Corresponding figures are indicated. Time

periods covered at each location are indicated in parentheses. For the two comparison datasets, the second dataset listed is the ‘‘truth’’

dataset in Eq. (3).

Comparison Figures N R2 Bias (Wm22) RMSE (Wm22) ARPD (%)

Terrebonne Bay (January 2010–December 2011)

MODIS, in situ Figs. 2a,b 562 0.985 1.763 13.449 21.48

COAMPS, in situ Figs. 2c,d 655 0.967 210.584 19.853 9.02

NOGAPS, in situ Figs. 2e,f 624 0.966 26.705 17.002 4.68

COAMPS, MODIS Figs. 2g,h 563 0.970 212.928 21.945 10.56

NOGAPS, MODIS Figs. 2i,j 561 0.968 210.414 20.243 7.61

NOGAPS, COAMPS Figs. 2k,l 639 0.974 3.183 14.592 25.77

Southwest Pass (January–November 2006 and January–September 2007)

MODIS, in situ Figs. 3a,b 250 0.972 7.563 18.636 26.13

COAMPS, in situ Figs. 3c,d 469 0.966 21.624 17.644 1.57

NOGAPS, in situ Figs. 3e,f 446 0.965 1.045 18.620 21.18

COAMPS, MODIS Figs. 3g,h 285 0.968 211.868 22.228 8.72

NOGAPS, MODIS Figs. 3i,j 280 0.973 29.312 20.174 6.76

NOGAPS, COAMPS Figs. 3k,l 549 0.969 0.979 17.992 22.61

Chevron oil platform ST-52 (October 2010–March 2012)

MODIS, in situ Figs. 4a,b 425 0.987 5.941 12.287 26.76

COAMPS, in situ Figs. 4c,d 455 0.961 26.680 16.602 6.27

NOGAPS, in situ Figs. 4e,f 436 0.969 1.730 12.440 23.06

COAMPS, MODIS Figs. 4g,h 443 0.966 211.923 20.445 10.93

NOGAPS, MODIS Figs. 4i,j 445 0.967 24.960 15.300 3.70

NOGAPS, COAMPS Figs. 4k,l 462 0.970 5.716 14.728 28.32
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FIG. 2. Temporal PAR comparisons, Terrebonne Bay. (a) MODIS vs in situ.

(b)RPDbetweenMODIS and in situ vs date. (c)COAMPSvs in situ. (d)RPDbetween

COAMPS and in situ vs date. (e) NOGAPS vs in situ. (f) RPD between NOGAPS and

in situ vs date. (g) COAMPS vs MODIS. (h) RPD between COAMPS and MODIS vs

date. (i) NOGAPS vs MODIS. (j) RPD between NOGAPS and MODIS vs date.

(k) NOGAPS vs COAMPS. (l) RPD between NOGAPS and COAMPS vs date.

APRIL 2019 GOULD ET AL . 541



FIG. 3. Temporal PAR comparisons, Southwest Pass. (a)MODIS vs in situ. (b)RPD

between MODIS and in situ vs date. (c) COAMPS vs in situ. (d) RPD between

COAMPS and in situ vs date. (e) NOGAPS vs in situ. (f) RPD between NOGAPS

and in situ vs date. (g) COAMPS vsMODIS. (h)RPDbetweenCOAMPS andMODIS

vs date. (i) NOGAPS vs MODIS. (j) RPD between NOGAPS and MODIS vs date.

(k) NOGAPS vs COAMPS. (l) RPD between NOGAPS and COAMPS vs date.
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FIG. 4. Temporal PAR comparisons, Chevron oil platform ST-52. (a) MODIS vs in

situ. (b) RPD between MODIS and in situ vs date. (c) COAMPS vs in situ. (d) RPD

between COAMPS and in situ vs date. (e) NOGAPS vs in situ. (f) RPD between

NOGAPS and in situ vs date. (g) COAMPS vs MODIS. (h) RPD between COAMPS

andMODIS vs date. (i)NOGAPSvsMODIS. (j)RPDbetweenNOGAPSandMODIS

vs date. (k)NOGAPSvsCOAMPS. (l)RPDbetweenNOGAPSandCOAMPSvs date.
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To summarize the results of the temporal PAR com-

parisons, which include both cloudy and clear-sky

conditions:

MODIS PAR. in situ PAR$ NOGAPS PAR

.COAMPS PAR.

The summary ARPD values averaged over all three

locations are listed in Table 3.

b. PAR comparisons: Spatial

We performed spatial comparisons across the green

region of interest in Fig. 1. Model-derived PAR values

were remapped to the 1-km satellite grid, extracted over

the region of interest, and compared to satellite values at

each pixel location, for each of the nine individual sat-

ellite scenes listed in Table 1. Cloud pixels were masked

for these analyses to prevent different cloud patterns

between MODIS and VIIRS scenes (due to time dif-

ferences) and spatial resolution differences between the

imagery (1 km) and the models (0.28–0.58) from biasing

results. Because of the time differences between the

MODIS and VIIRS overpasses on the same day, dif-

ferent pixels will be cloud covered in the two images due

to the cloud movement. If we do not mask the cloud

pixels, we would be introducing a bias in the results, by

comparing clouded pixels in one image with cloud-free

pixels in the other image. Thus, these analyses represent

only clear-sky conditions.

Satellite scenes selected for the spatial analyses were

chosen based on clear coverage (i.e., fewest clouded

pixels over the entire extent of the green region of in-

terest in Fig. 1), to facilitate the cloud-screening pro-

cess and ensure a maximal number of matchups. To

mask clouds, we first combined the satellite and model

data for an individual day into a single, remapped file

at 1-km spatial resolution (the highest spatial resolu-

tion of the datasets, which corresponded to the satel-

lite resolution). Cloud masking was performed on each

of these daily combined files separately using a band-

threshold approach on the satellite PAR data. Through

visual examination (e.g., PAR below a certain value),

we determined whether a pixel was clouded in either

the MODIS or VIIRS image. If cloudy, it was masked

and not included in the analyses (thus, the associated

remapped model grid cells were also excluded). The

model data files were not cloud-screened separately,

but visual inspection determined that our satellite

cloud-screening process on the combined file also re-

moved nearly all of the model cloud-contaminated

grid cells as well, so the impact of any remaining

cloud-contaminated satellite pixels and/or model grid

cells will be minimal.

Cloud masking was not performed for the time series

analyses because only a single satellite sensor was used

in the comparisons with the in situ and model datasets

(MODIS, VIIRS data were not available), so the time

differential problem does not exist. Thus, the time se-

ries analysis, which includes both cloudy and cloud-

free conditions, allows for performance assessment

for cloudy conditions. Figure 5 shows the PAR values

derived from MODIS, COAMPS, and NOGAPs for

21 October 2011, to illustrate the three products at

their native spatial resolutions (VIIRS resolution is

the same as MODIS, 1 km, and NAVGEM resolution

is the same as NOGAPS, 0.58). However, as mentioned,

the model results were remapped to the satellite grid for

the spatial analyses.

In the RPD calculation for the spatial comparisons,

the satellite (MODIS or VIIRS) data are used as the

‘‘truth,’’ instead of the in situ data as for the temporal

comparisons [Eq. (3)], because in situ data are only

available at three specific locations, not spatially across

the image and model domains. For the MODIS–VIIRS

comparisons, MODIS was selected as ‘‘truth,’’ although

that designation is arbitrary (it just needs to be consis-

tent). For the model–model comparisons, the model

selected as ‘‘truth’’ for each comparison is also arbitrary

but consistent; it is indicated in the legend for Table 4.

For Figs. 6–10, the dataset selected as ‘‘truth’’ is always

on the x axis.

The comparison values discussed below are shown

in Table 4, which summarizes the spatially averaged

results. Comparisons of coincident satellite (MODIS,

VIIRS) and model (NOGAPS, COAMPS, NAVGEM)

datasets listed in Table 1 are shown in Figs. 6–8. Note

the axis ranges change due to seasonal PAR variability.

The comparisons of both COAMPS and NOGAPS

to MODIS show fairly good agreement (Figs. 6, 7),

with ARPD values ranging from 24.77% to 2.16%.

Both NOGAPS and COAMPS PAR values are gener-

ally slightly higher than MODIS (i.e., negative ARPD

values), except COAMPS on 21 October 2011 and

TABLE 3. Temporal PAR comparisons between satellite

(MODIS), model (COAMPS, NOGAPS), and in situ measure-

ments from three ground locations (Terrebonne Bay, Southwest

Pass, and Chevron oil platform ST-52). Summary of results aver-

aged over all three locations (cloudy and clear-sky conditions).

Comparison result ARPD (%)

MODIS . in situ 4.79

In situ . COAMPS 5.62

In situ . NOGAPS 0.15

MODIS . COAMPS 10.07

MODIS . NOGAPS 6.02

NOGAPS . COAMPS 5.57
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22 January 2014 (Figs. 7a,e). For 22 January 2014, the

distribution of COAMPS data is split between positive

and negative biases, resulting in a low, positive ARPD

(0.42%; Fig. 7e). Both COAMPS andNOGAPS are also

higher than VIIRS, for all comparisons (Figs. 6, 7), and

to a greater extent than they are for MODIS (ARPD

values from 28.61% to 24.68%). In contrast, MODIS

values are higher than NAVGEM values in all five

comparisons, while VIIRS values are close to NAVGEM

(Fig. 8). ARPD values between NAVGEM and MODIS

ranged from 2.72% to 7.61%, and ARPD values between

NAVGEM and VIIRS ranged from 22.10% to 3.04%.

The MODIS and VIIRS scenes on 22 April 2012 and

4 May 2013 show smaller ranges of PAR variability

compared to the other dates (Figs. 6–8, 10). This is

possibly due to the smaller range of PAR variability

across this latitudinal band (258–308N) during this time

period (late spring) relative to the other image dates

(fall and winter). See Fig. 1 in Campbell and Aarup

(1989), which shows latitudinal/seasonal variability

in PAR. The lower PAR ranges for these dates are

also evident to some degree in the NOGAPS and

COAMPS model data (Figs. 6, 7). The horizontal

‘‘striations’’ in Figs. 6–8 data give an indication of

the model subgrid variability (i.e., there are multiple

MODIS and VIIRS pixels at 1-km resolution contained

in a single COAMPS grid cell at 0.28 resolution or a

NOGAPS or NAVGEM grid cell at 0.58 resolution).

However, additional statistical analysis of these da-

tasets to more stringently estimate subgrid variabil-

ity (such as calculating the standard deviation of all

MODIS pixels contained in each of the individual

COAMPS, NOGAPS, and NAVGEM grid cells) is

beyond the scope of this work.

For the model/model comparisons (Fig. 9), COAMPS

and NOGAPS agree quite well with low biases, ex-

cept for 21 October 2011 (Fig. 9a), which has a

somewhat larger bias of 24.90Wm22. Both positive

(COAMPS . NOGAPS) and negative biases are ob-

served (Table 4; Figs. 9a– d). There is only one COAMPS

and NAVGEM comparison (22 January 2014); in

Fig. 9e, COAMPS values generally exceed the NAVGEM

values (bias 5 2.10Wm22, ARPD 5 22.58%).

For the satellite/satellite comparisons, MODIS values

exceed the VIIRS values for all comparisons (Fig. 10),

with ARPD values ranging from 3.20 to 5.36% (Table 4)

and an average value of 4.33% (Table 5). VIIRS and

MODIS Aqua have similar afternoon overpass times

with a local equatorial crossing time of about 1330. The

time differentials between the MODIS and VIIRS

overpasses in our comparisons range from about 5 to

65min (MODIS pass is generally later than VIIRS, but

not always). Because the PAR algorithm integrates over

the length of the day, the time of overpass should not

matter (i.e., should not contribute to the observed bia-

ses). Thus, the persistent observed trend with MODIS

PAR . VIIRS PAR is unrelated to differences in

overpass times between the two sensors. The 4.33%

ARPD between MODIS and VIIRS is slightly larger

than the 2%–3% intersensor biases between SeaWiFS,

MODISAqua, andMODISTerra reported for clear-sky

conditions in Frouin et al. (2012). They attributed the

differences to the accuracy of the clear-sky model and

the calculation of the spectrally integrated transmittance

functions. In addition, sensor calibration differences

FIG. 5. PAR comparison, 21 Oct 2011. (a) MODIS, 1-km reso-

lution. (b) COAMPS, 0.28 resolution. (c) NOGAPS, 0.58 resolution
(NAVGEM is also 0.58 resolution, but model results are not

available for this date). For spatial comparisons, model data were

resampled to 1-km satellite resolution.
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could contribute to the observed biases, as mentioned

in Laliberté et al. (2016). The ‘‘box type’’ shapes toward
the upper right of the scatterplot distributions in

Figs. 10e–g are due to cloud-edge pixels that were not

completely removed from the analyses due to inade-

quacies with the cloud screening process for those days.

As expected, spatial variability over the limited extent

examined is much less than the multiyear temporal

TABLE 4. Spatial PAR comparisons between satellite (MODIS, VIIRS) and model (COAMPS, NOGAPS, NAVGEM) values for nine

dates. Corresponding figures are indicated. For the two comparison datasets, the second dataset listed is the ‘‘truth’’ dataset in Eq. (3).

Comparison Figures N Bias (Wm22) RMSE (Wm22) ARPD (%)

21 Oct 2011

COAMPS, MODIS Fig. 7a 167 553 22.27 2.89 2.16

NOGAPS, MODIS Fig. 6a 167 553 2.62 3.05 22.50

COAMPS, NOGAPS Fig. 9a 167 553 24.90 5.18 4.54

22 Apr 2012

COAMPS, MODIS Fig. 7b 167 553 2.11 2.27 21.44

COAMPS, VIIRS Fig. 7b 167 553 7.21 7.28 25.12

NOGAPS, MODIS Fig. 6b 167 553 1.48 3.19 21.02

NOGAPS, VIIRS Fig. 6b 167 553 6.58 7.20 24.68

COAMPS, NOGAPS Fig. 9b 167 553 0.62 2.69 20.46

VIIRS, MODIS Fig. 10a 167 553 25.10 5.15 3.49

18 Dec 2012

COAMPS, MODIS Fig. 7c 167 186 0.55 0.83 20.73

COAMPS, VIIRS Fig. 7c 165 077 4.68 4.74 26.46

NOGAPS, MODIS Fig. 6c 167 186 1.31 1.43 21.71

NOGAPS, VIIRS Fig. 6c 165 077 5.44 5.48 27.50

COAMPS, NOGAPS Fig. 9c 167 186 20.76 0.92 0.96

VIIRS, MODIS Fig. 10b 164 837 24.11 4.14 5.36

4 May 2013

COAMPS, MODIS Fig. 7d 167 402 7.12 7.21 24.77

COAMPS, VIIRS Fig. 7d 49 162 12.44 12.46 28.61

NOGAPS, MODIS Fig. 6d 167 402 4.47 5.30 23.00

NOGAPS, VIIRS Fig. 6d 49 162 9.40 10.59 26.51

COAMPS, NOGAPS Fig. 9d 167 402 2.65 3.90 21.76

VIIRS, MODIS Fig. 10c 49 162 24.77 4.83 3.20

22 Jan 2014

COAMPS, MODIS Fig. 7e 167 553 20.43 3.46 0.42

COAMPS, VIIRS Fig. 7e 167 553 3.81 5.08 24.73

NAVGEM, MODIS Fig. 8a 167 553 22.53 2.57 2.93

NAVGEM, VIIRS Fig. 8a 167 553 1.71 1.82 22.10

COAMPS, NAVGEM Fig. 9e 167 553 2.10 3.86 22.58

VIIRS, MODIS Fig. 10d 167 553 24.24 4.26 4.92

25 Oct 2014

NAVGEM, MODIS Fig. 8b 166 107 22.78 2.98 2.72

NAVGEM, VIIRS Fig. 8b 165 840 1.41 1.76 21.46

VIIRS, MODIS Fig. 10e 164 765 24.19 4.20 4.12

27 Jan 2015

NAVGEM, MODIS Fig. 8c 163 987 26.76 6.93 7.61

NAVGEM, VIIRS Fig. 8c 163 235 22.56 3.00 3.04

VIIRS, MODIS Fig. 10f 161 059 24.20 4.20 4.72

10 Feb 2016

NAVGEM, MODIS Fig. 8d 163 977 25.18 5.36 5.24

NAVGEM, VIIRS Fig. 8d 164 612 20.72 1.54 0.74

VIIRS, MODIS Fig. 10g 162 144 24.47 4.47 4.54

25 Feb 2016

NAVGEM, MODIS Fig. 8e 152 540 25.51 5.59 5.00

NAVGEM, VIIRS Fig. 8e 167 294 20.81 1.28 0.76

VIIRS, MODIS Fig. 10h 152 339 24.69 4.69 4.26
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variability. To summarize the results of the spatial

PAR comparisons, which include only clear-sky

conditions:

NOGAPS PAR $ COAMPS PAR $ MODIS PAR

.VIIRS PAR $ NAVGEM PAR.

The summary ARPD values averaged over all dates are

listed in Table 5.

4. Discussion

We compared model and satellite-derived PAR esti-

mates to in situ measurements in the northern Gulf of

Mexico, both spatially and temporally. For the temporal

comparisons, we examined differences between in situ

measurements (at specific locations) and satellite and

model values (at 1-km and 0.2–0.58 resolutions, re-

spectively). It is possible that the spatial resolution

mismatch could impact results, as there will likely be

somewhat greater variability in the larger model grid

cell than in the smaller satellite pixel. However, due to

the fairly large spatial scales over which PAR varies, and

the similar satellite/in situ and model/in situ errors ob-

served at all three stations (Figs. 2–4; Table 2), we do not

believe resolution differences are significant (i.e., model

errors are not significantly higher).

We observed a seasonal trend in the in situ/satellite

differences at the two coastal stations, but not at the

offshore station (oil platform). It is possible that prox-

imity to land could be contributing to the seasonal pat-

tern observed at the coastal stations. Recent work by

Bulgarelli and colleagues indicates that the presence of

nearby land can impact top-of-the-atmosphere radiance

values of coastal water pixels (adjacency effects;

Bulgarelli and Zibordi 2018a). Furthermore, these ef-

fects can lead to seasonal patterns in the ocean color

remote sensing reflectance spectra (and therefore in

derived properties, such as PAR, as well; Bulgarelli

and Zibordi 2018b). Another (less likely) possibility is

that there could be nearshore seasonal aerosol changes

that are not adequately accounted for (removed) by the

atmospheric correction routine applied to the satellite

imagery.

FIG. 6. Spatial PAR comparisons, NOGAPS vs MODIS and VIIRS. (a) 21 Oct 2011. (b) 22 Apr 2012. (c) 18 Dec

2012. (d) 4 May 2013.
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The Frouin et al. (2003) algorithm we applied to

estimate PAR from the ocean color satellite data as-

sumes the effects of clouds and clear atmosphere can

be decoupled, and this is modeled as a clear-sky at-

mosphere positioned above a cloud layer. With this

approach, it is unnecessary to distinguish between

clear and cloudy regions within a pixel, and there is no

need for assumptions about cloud coverage distribu-

tion. The algorithm works on a pixel-by-pixel basis, for

each pixel not contaminated by sun glint (glint areas

would be interpreted as clouds by the algorithm).

Assumptions in the satellite PAR algorithm can cause

some of the daily discrepancies with the model and

in situ values. For example, the cloud-surface system

is assumed stable during the day, and corresponds to

the satellite observation. The daily average is derived

from the radiance measurements at the time of the

overpass. In other words, if a pixel is cloudy at the

time of the overpass, it is assumed cloudy for the entire

day; if clear during the overpass, clear all day. Thus,

PAR accuracy is degraded where clouds exhibit

strong diurnal variability. This is a weakness for daily

FIG. 7. Spatial PAR comparisons, COAMPS vs

MODIS andVIIRS. (a) 21Oct 2011. (b) 22Apr 2012.

(c) 18 Dec 2012. (d) 4 May 2013. (e) 22 Jan 2014.
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comparisons with model and in situ results, but spatial

and temporal averaging can reduce the effect (Frouin

et al. 2003).

For the temporal comparisons, we observed that

COAMPS and NOGAPS PAR values , MODIS

values, whereas for the spatial comparisons, we ob-

served the opposite. This could be related to the in-

clusion of both clear and cloudy conditions in the

temporal comparisons and only clear conditions in

the spatial comparisons. However, it could also re-

late to the limited temporal variability encompassed

by the spatial comparisons. The spatial comparisons

for MODIS/COAMPS/NOGAPS are only for four or

five scenes (two in winter, two in spring, and one in fall;

see Table 1) and thus represent only limited temporal

variability (the variability observed in the spatial com-

parisons was much less than the variability observed

in the multiyear temporal comparisons). So, it is also

possible that if we were to examine a more complete,

extensive time series of the spatial scenes, the pattern

might switch to match that observed for the temporal

comparison. It is difficult to say with any certainty why

FIG. 8. Spatial PAR comparisons, NAVGEM vs

MODIS and VIIRS. (a) 22 Jan 2014. (b) 25 Oct 2014.

(c) 27 Jan 2015. (d) 10 Feb 2016. (e) 25 Feb 2016.
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we see this different pattern between the temporal and

spatial comparisons.

Cloud coverage and aerosols impact the amount of

PAR reaching the sea surface, its spatial distribution,

and the fraction of diffuse radiation. Both satellite

observations and model results show decreased cloud

coverage over the Gulf of Mexico over a 25-yr period

(Norris et al. 2016). Climate change could further alter

cloud coverage (Collins et al. 2013), but the treatment of

aerosols and clouds contribute the largest uncertainty

in estimates of the downwelling shortwave radiation at

the surface (Zhang et al. 1995) and in Earth’s changing

energy budget by general circulation models used to

predict future climate (Boucher et al. 2013). In fact, the

uncertainty in the estimated radiative forcing attributed

to aerosol–cloud interactions has not decreased over the

past four Intergovernmental Panel on Climate Change

(IPCC) cycles (Seinfeld et al. 2016).

The ratio of PAR to total irradiance can vary depending

on cloudy or clear-sky conditions, because cloud trans-

mittance in the 350–700-nm range is higher than over

the entire solar spectrum (Baker and Frouin 1987).

FIG. 9. Spatial PAR comparisons. COAMPS vs

NOGAPS: (a) 21 Oct 2011. (b) 22 Apr 2012. (c) 18

Dec 2012. (d) 4 May 2013. COAMPS vs NAVGEM:

(e) 22 Jan 2014.
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FIG. 10. Spatial PAR comparison, VIIRS vs MODIS. (a) 22 Apr 2012. (b) 18 Dec 2012. (c) 4 May 2013.

(d) 22 Jan 2014. (e) 25 Oct 2014. (f) 27 Jan 2015. (g) 10 Feb 2016. (h) 25 Feb 2016.
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Higher photosynthetic efficiency has been observed

under diffuse light conditions (Mercado et al. 2009).

In addition, river discharge patterns in the future

could be altered due to climate change, as a result of

changing precipitation patterns (Sperna Weiland et al.

2012), which would lead to associated regional in-

creases or decreases in nutrients and CDOM in coastal

areas. Nutrients impact phytoplankton production and

CDOM attenuates light, so both of these processes

will alter the vertical distribution of PAR. In addi-

tion to estimating the correct magnitude of PAR,

we must also correctly estimate the attenuation of

PAR spatially, both horizontally and vertically with

depth (Jolliff et al. 2012; Ko et al. 2016; Shulman et al.

2017). Thus, there are many interacting processes that

affect water column and benthic light levels and pri-

mary production that are difficult to separate, but

coupled biophysical ecological modeling provides one

approach.

Some previous work has assessed the satellite ocean

color PAR product as well as modeled shortwave radi-

ation. Frouin et al. (2003) noted that the SeaWiFS PAR

product (same algorithm used here) overestimated

in situ values with a 5.3% bias and a 15%RMSE. Frouin

and Pinker (1995) observed about 10% PAR accuracies

on daily time scales that decreased on longer (monthly)

time scales. Laliberté et al. (2016), using the same PAR

algorithm, observed a positive bias of 2% and a 20%

RMSE for comparisons with in situ data at high

northern latitudes.

Our uncertainty results for PAR from NOGAPS,

COAMPS, and NAVGEM are similar to those reported

for other radiative transfer models. Bouvet et al. (2002)

reported an uncertainty of 5.2% when the radiative

transfer model PARsat was validated against in situ

mooring data. For NAVGEM, May et al. (2017)

observed a mean absolute percent error (MAPE) of

55.6% when compared to in situ data. This value is not

directly comparable with our calculated error statistic

(ARPD), however, because MAPE is calculated using

the absolute value of the errors whereas ours is not

(thus, for ARPD, positive and negative errors ‘‘cancel’’

each other and the values are lower than MAPE). Ex-

cept for the temporal comparison between COAMPS

and MODIS, with an ARPD 5 10.07%, all other

averaged model comparisons to in situ and satellite

data yielded ARPD values between 0.15% and 6.23%

(Tables 3, 5).

The atmospheric models used operationally by the

Navy are updated periodically, as illustrated by the shift

from NOGAPS to NAVGEM in 2013. However, we

need to assess the performance of the new model to

determine if it represents an improvement over previ-

ous models/versions. The work here is an attempt to

do that in a limited fashion, for just the model PAR

(shortwave radiation) product. Thus, our focus is to

compare model PAR values (derived from shortwave

radiation) to satellite-derived estimates and in situ

measurements, and to intercompare multiple models.

For the model intercomparison, we calculated ARPD

values between the model pairs ranging from 0.82%

to 5.57%.

Currently, most coupled biophysical ocean models

rely on gridded PAR (shortwave radiation) fields pro-

vided by an atmospheric model. One reason is that

the model outputs are available over shorter time steps

(e.g., every 3 h) than what is available from the satel-

lite ocean color imagery (one or several scenes available

per day for a given area). In addition, the values on

model grids are completely filled in through assimilation

and interpolation techniques, whereas the satellite im-

agery can have missing values due to sunglint or clouds.

Another limitation of imagery is that the PAR estimate

at time of overpass is assumed to be representative

of the whole day. Thus, on days with high cloud vari-

ability, the satellite estimate may not be representative

of the rest of the day. However, polar-orbiting sensors

with PAR capability may observe the same location

several times during daytime at middle and high lati-

tudes, and several satellite sensors are concurrently

providing data, which should decrease uncertainties

in daily PAR estimates. These shortcomings notwith-

standing, satellite PARwill likely be assimilated into the

models in the future. The main difficulty for NOGAPS,

NAVGEM, or COAMPS to predict PAR more accu-

rately is that the models lack the resolution as well

as the full physics to make accurate cloud predictions

and, to a lesser extent, the reflection from sea surface.

This difficulty cannot be overcome without substan-

tial research efforts. Although NAVGEM has replaced

NOGAPS as the Navy operational global model, based

TABLE 5. Spatial PAR comparisons between satellite (MODIS,

VIIRS), model (COAMPS, NOGAPS, NAVGEM), and in situ

measurements from nine dates (see Table 1). Summary of results

averaged over all nine dates (clear-sky conditions only).

Comparison result ARPD (%)

NOGAPS . MODIS 2.06

COAMPS . MODIS 0.87

NOGAPS . VIIRS 6.23

COAMPS . VIIRS 6.23

MODIS . NAVGEM 4.70

NOGAPS . COAMPS 0.82

COAMPS . NAVGEM 2.58

VIIRS . NAVGEM 0.20

MODIS . VIIRS 4.33
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on our limited comparisons it is not clear that NAVGEM

provides improved results, in terms of shortwave radi-

ation estimates. We have assessed both model and sat-

ellite variability relative to each other and to in situ data.

5. Conclusions

PAR values, which are required as input to bio-

geochemical physical models, are available from multi-

ple sources, such as in situ observations, satellite

imagery, and/or atmospheric models, and each source

has intrinsic limitations. Prior to evaluating the impact

of PAR variability on biogeochemical model results due

to future environmental change, for example, it is im-

portant to understand the accuracy and the limitations

of each potential PARdata source and how closely these

values agree. We compare PAR values derived from

ocean color satellite imagery to those from atmospheric

models and in situ measurements in the Gulf of Mexico,

to validate the imagery and models, and to assess PAR

variability based on source. We performed spatial and

temporal analyses covering multiple years and seasons,

and clear/cloudy conditions.

Averaged over space or time, the relative errors in

PAR between the six sources (two satellites, three at-

mospheric models, and in situ) are generally less than

5%–7% average relative percent difference, but they

can vary up to 11%. It is unlikely the relatively small

5%–7%differences will have a substantial impact on the

overall outcome of biogeochemical models, although an

error twice that magnitude, such as the observed 11%

differences in some cases, could conceivably have an

impact. However, these averages can also bemisleading.

The errors on a daily, pixel-by-pixel basis are much

larger for all of the data sources, and may reach 50%

in magnitude; thus, the averages can mask significant

variations, as well as seasonal differences. In addition,

because the daily, pixel-by-pixel PAR products are the

ones more likely to be assimilated into biogeochemical

models (rather than the spatial or temporal averages),

the larger associated errors could have a potentially

significant impact on model predictions over short

temporal and small spatial scales. The biases, although

relatively small, will affect the longer-term model pre-

dictions, and can have a larger impact as the length

of the simulation increases, for ‘‘free-running,’’ non-

assimilative models. Thus, although the PAR errors

are similar between the various data sources (satellite

or atmospheric model), they can potentially impact

biogeochemical model results, depending on the time

and space scales of interest. In a companion paper, we

are evaluating the sensitivity of primary production

and hypoxia estimates from a biogeochemical model

(CGEM) to PAR variability, based on this study and

potential climate change scenarios.
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