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Abstract

Observation space-time resolution limits the scales at which ocean forecast systems provide skillful information. The ocean processes
of concern are mesoscale instabilities for which an ocean forecast system requires regular corrections of initial conditions to maintain
skillful forecasts, and the observations considered are the regular satellite and in situ. Predominantly, the satellite altimeter constellation
is the main observing system for this problem. We define constrained scales as those in which the forecast system has skill. The con-
strained scales are determined by successively filtering small-scale variability from 1 km resolution assimilative model experiments to
reach a minimum error relative to ground truth data. Independent observations are from the LAgrangian Submesoscale ExpeRiment
(LASER) consisting of over 1000 surface drifters persisting for three months in the Gulf of Mexico. We also vary the decorrelation scale
of the assimilation system to determine the decorrelation scale that produces the smallest forecast trajectory errors. In present ocean
forecast systems using regular observations, the constrained scales are larger than defined by a Gaussian filter with e-folding scale of
58 km or ¼ power point of 220 km. The decorrelation scale of 36 km used in the assimilation second order auto-regressive correlation
function provides lowest trajectory errors. Filtering unconstrained variability from the model solutions reduces trajectory errors by 20%.
Published by Elsevier Ltd on behalf of COSPAR.
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1. Introduction

Satellite altimeter observations have become a critical
data stream to enable ocean forecasts (Le Traon et al.,
2017). Ocean mesoscale eddies have horizontal length
scales on the order of 200 km in tropical latitudes to
20 km at high latitudes, and these features are instability
processes (Chelton et al., 1998; Jacobs et al., 2001). Ocean
models integrate initial conditions forward in time, and any
error in the initial state grows exponentially. At some point
in the forecast period, the ocean model features have real-
istic energy, amplitude, and size, but positions are not coin-
https://doi.org/10.1016/j.asr.2019.09.018

0273-1177/Published by Elsevier Ltd on behalf of COSPAR.

⇑ Corresponding author.
E-mail addresses: gregg.jacobs@nrlssc.navy.mil (G.A. Jacobs), joseph.

daddezio@nrlssc.navy.mil (J.M. D’Addezio), brent.bartels.ctr@nrlssc.
navy.mil (B. Bartels), Peter.Spence.ctr@nrlssc.navy.mil (P.L. Spence).

Please cite this article as: G. A. Jacobs, J. M. D’Addezio, B. Bartels et al.,
https://doi.org/10.1016/j.asr.2019.09.018
cident with those in the real world (Thoppil et al., 2011).
Satellite altimeters are the primary source of observations
that regularly correct the initial conditions of model fore-
casts. In this examination, we are concerned with the regu-
lar ocean observations that are typically available rather
than targeted observations that are limited in space and
time for particular features.

There are many ocean forecast applications requiring
continual predictions of ocean temperature and salinity
structure as well as transports of material (Bell et al.,
2015). These include fisheries management, search and res-
cue operations, aquaculture farming, and many others. The
Macando oil platform incident is one such example in
which accurate surface oil transport forecasts were needed
to prepare cleanup efforts and understand the transport of
oil (Özgökmen et al., 2016). If accurate forecasts are
required for the public good, we must quantify the features
Constrained scales in ocean forecasting, Advances in Space Research,
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skillfully predicted by ocean models that rely on regular
observing networks.

Any observing system has limits in the resolved time and
space scales, and these lead to limitations in the scales of
ocean model features that are predictable. We can run
ocean models at high resolutions to represent the physics
of small features, but satellite observing systems may not
provide the necessary observations to resolve those fea-
tures. We use the term constrained to refer to the features
in an ocean model prediction for which there are sufficient
observations to produce a skillful forecast on average, and
unconstrained for features that do not have sufficient obser-
vations for a skillful forecast on average. As an example,
consider Fig. 1 that shows the surface currents of a numer-
ical ocean model continually corrected by satellite observa-
tions compared to a set of GPS-tracked surface drifters.
These drifters were deployed as part of the LAgrangian
Submesoscale ExpeRiment (LASER) campaign conducted
by the Consortium for Advanced Research on Transport of
Hydrocarbon in the Environment (CARTHE) (Özgökmen
et al., 2018). Many drifters returned position information
for over three months. The ocean model did not use the
drifter information in the daily assimilation and forecast.
The large-scale model features are generally aligned with
observed drifter trajectories, though small-scale features
in the model do not align with the drifter observations. A
smaller scale example is shown by the model field at two
times, seven days apart (Fig. 2). At the initial time, the
model cyclone and cyclone in the drifter observations are
not well aligned. At the final time, the model cyclone is
aligned more correctly with the drifters. The right two pan-
els in Fig. 2 show all the satellite altimeter data that
observed this feature during the seven days. As we will
demonstrate through our experimentation, features of this
size are at the limits of being constrained because the satel-
lite observations are not sufficient to ensure regular correc-
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Fig. 1. An example on March 15, 2016 00 GMT of the ocean model
surface currents (black vectors indicate 24 h trajectories given time-fixed
model currents), surface temperature (color), and LASER drifter trajec-
tories over 24 h (white lines). Larger scale features show general
agreement, while smaller scale features are not well aligned between the
model and observations.
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tions of the model to maintain accurate positioning at all
times.

We can more rigorously define the separation of con-
strained and unconstrained scales through the power spec-
tral density (PSD) of the ocean fields. Constrained
wavelengths are those in which the PSD of the errors
(model-estimated field minus the true field) is less than
the PSD of the true field. That is, at a given wavelength,
if the model forecast has skill then the variance of the
errors is less than the variance of the true field.
D’Addezio et al. (2019) used this definition to estimate
the constrained scales to be approximately 160 km when
considering the sea surface height (SSH). The study used
an Observing System Simulation Experiment (OSSE).
First, the Nature Run is a realistic numerical model with
no observations correcting it. Observing systems sample
the Nature Run as the observing systems sample the true
world, and the simulated observations correct a second
model. The full time-evolving 3D fields of the Nature
Run and OSSE model provide the error PSD and thus
the constrained scales.

However, there are cautions in OSSEs that may lead to
incorrect conclusions (Atlas et al., 2015). For example, the
study by D’Addezio et al. (2019) used fraternal twin models
in which the Nature Run and the assimilative runs used the
same dynamical system at the same resolution. The study
intended to examine the effect of observations under the
assumptions that the dynamical representation and assim-
ilation systems are accurate and not significant contribu-
tors to analysis and forecast errors. In the examination at
hand, we add to this prior study by retaining the effects
of the dynamical system and data assimilation errors, and
we use the dense drifter observations from LASER to esti-
mate the constrained scales. Our basic question is then,
what are the constrained scales enabled by the regular
observations of the true world in present forecast systems?

In the future we expect the satellite observing network to
expand with the deployment of the Surface Water/Ocean
Topography (SWOT) mission in 2021 (Gaultier et al.,
2016). Present altimeter satellites measure SSH only at
the satellite nadir point. SWOT will provide observations
across a 120 km swath at 1 km resolution. While the data
will be high-resolution spatially, a planned 21-day repeat
cycle will result in dense but patchy data on a daily basis.
The traditional nadir altimeters are low-resolution between
SWOT ground tracks and provide the larger scale observa-
tions. Therefore, the SWOT observations will be a dense
patch of data within a larger set of coarser observations.
Additionally, expendable bathythermographs, ocean
underwater gliders, profiling floats, and dense drifter
deployments often provide targeted observations. Similar
to the SWOT situation, targeted in situ sampling can pro-
vide dense patchy data within the context of the coarser
regular observations.

An approach for correcting a model initial condition for
this situation is through a multiscale analysis technique
(Li et al., 2015) in which scales resolved by the coarse
Constrained scales in ocean forecasting, Advances in Space Research,
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Fig. 2. On March 20, 2016, the model cyclone feature is not well aligned with the LASER drifter tracks (top left), while the model feature is better aligned
(bottom left) after the altimeter observations during a seven day period (right column) are assimilated into the model. The model plots (left) show surface
currents (black vectors indicate 24 h trajectories given time-fixed model currents), surface temperature in degrees C (color), and LASER drifter trajectories
over 24 h (thick black lines). The altimeter observations show sea surface height anomaly (SSHA) in meters that were observed during the indicated days.
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observations are first corrected, and then smaller scales
resolved by patchy dense data are corrected. In this two-
step methodology, a critical parameter is the analysis scales
that separate the first and second assimilation steps. Quan-
tifying the presently constrained scales in the forecast
model can provide an estimate of this parameter.

Within the correction of the model initial condition, an
observation influences a surrounding area through a spec-
ified scale. Formally, this represents the spatial correlation
of errors in the model initial condition. The size of this
decorrelation scale could influence the constrained scales.
Thus, at the same time we are estimating the constrained
scales, we examine the effects of the decorrelation scale
and determine if this changes the constrained scales.

To address these issues, our analysis involves running
five different ocean model experiments. Each experiment
assimilates all regular observations (and not the LASER
drifter data) using a different decorrelation length scale.
Prior work addressing the issue of constrained and uncon-
strained model features determined constrained scales
using wavenumber spectral analysis (D’Addezio et al.,
2019). However, this approach cannot be used here because
the drifter observations do not provide full 2-dimensional
fields, and the drifter observations are not sufficiently dense
to estimate the wavenumber spectra down to sufficiently
Please cite this article as: G. A. Jacobs, J. M. D’Addezio, B. Bartels et al.,
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small scales. Instead, the approach we use is to spatially fil-
ter the surface velocity field from each model experiment
using a range of filter scales. The filtering scale at which
the errors are minimum relative to the LASER observa-
tions provides the scale at which forecast errors equal the
ocean variability. The optimal decorrelation scale is shown
to be about 36 km (the length scale of a second order
autoregressive function), and the associated constrained
scales are 220 km (the ¼ power wavelength of a Gaussian
filter). For the experiment with the lowest errors, the trajec-
tory error reduction from no filtering to the lowest error
point is about 20%.

We describe in Section 2 the numerical ocean model
along with the assimilation method that corrects the model
with the observations. Section 3 describes the LASER data
and initial comparisons to the model results. Section 4 pro-
vides the details of the methodology to filter small scales
from the model experiments and provides the overall
results. Finally, the results are summarized and conclusions
provided.

2. Model and assimilation setups

The experiments use the ocean prediction system in
operational application (Rowley and Mask, 2014) com-
Constrained scales in ocean forecasting, Advances in Space Research,
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posed of the Navy Coastal Ocean Model (NCOM) (Martin
et al., 2009) with the 3DVar Navy Coupled Ocean Data
Assimilation (NCODA) (Smith et al., 2011). The Fleet
Numerical Meteorology and Oceanography Center
(FNMOC) uses this system operationally for predicting
high-resolution areas (down to 200 m resolution) nested
in the global ocean prediction system. The domain for
our experiments is the entire Gulf of Mexico modeled at
1 km horizontal resolution with 50 vertical levels. The
setup uses 34 terrain-following sigma coordinates above
550 m depth and 16 Z level coordinates below 550 m.
The vertical coordinate structure has higher resolution near
the surface with the surface layer having 0.5 m thickness.
Boundary conditions are from the global HYbrid Coordi-
nate Ocean Model (HYCOM) (Metzger et al., 2010).
Boundary conditions for barotropic tidal currents and ele-
vation were applied from the Optimal Tide Interpolation
System (OTIS) (Egbert and Erofeeva, 2002). The model
forcing also includes tidal potential. Atmospheric forcing
from the Coupled Ocean Atmosphere Mesoscale Predic-
tion System (COAMPS) (Hodur, 1997) along with the
ocean model surface temperatures provide estimates of sur-
face momentum flux, latent and sensible heat flux, and
solar radiation penetration into the water column.

The system runs a daily cycle of assimilation and fore-
cast in which all observations go to NCODA, which then
provides a correction to the initial condition for NCOM.
The NCOM forecast becomes the background for the next
NCODA update cycle. Operationally, altimeter sea surface
height anomaly (SSHA) during this period from Jason-2,
CryoSat-2, and AltiKa arrive with 24- to 48-hour latency,
which is the difference between observation time and the
assimilation time. The experiments here are hindcast exper-
iments, so data latency is not an issue. Each experiment
begins with the same initial condition on October 1, 2015
provided by the same 1 km cycling assimilation system that
began running in 2012 (Jacobs et al., 2016). After initializa-
tion, each experiment ran independently using all the regu-
lar observations. Beginning the experiments more than
100 days prior to the LASER observations allows each sys-
tem to execute many assimilation cycles. The long assimila-
tion spin-up removes influence of the initial condition on
October 1, 2015 from affecting evaluations relative to drif-
ter trajectories starting January 16, 2016.

The satellite altimeter SSHA is the dominant informa-
tion source for updating and constraining the mesoscale
field. Within the NCODA assimilation, SSHA observa-
tions along with the Modular Ocean Data Assimilation
System (MODAS) vertical covariance information (Fox
et al., 2002) provide a synthetic temperature and salinity
profile, and the synthetic profile is used in the 3DVar
assimilation. Observations minus the background are the
innovations d. The 3DVar analysis produces the increment
dx defined by:
dx ¼ BHT HBHT þ R
� ��1

d ð1Þ
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where R is the covariance of observation errors (assumed to
be diagonal), H is the observation operator that maps from
the model state to the observation values, and B is the
background error covariance represented by a diagonal
standard deviation matrix S and a correlation matrix so
that B ¼ SCS. A decomposition of the correlation matrix
C into separable functions is made so that the correlation
between two model variables v and v0 is given by

Cvv0 x; y; z; t; x0; y0; z0; t0ð Þ ¼ CH
vv0 x; y; x

0; y0ð ÞCV
vv0 z; z

0ð ÞCFDB
vv0 x; y; x0; y0ð Þ ð2Þ

where the two variables are noted by v and v0 at the loca-
tions x; y; zð Þ and x0; y0; z0ð Þ respectively. The vertical corre-

lation CV
vv0 z; z

0ð Þ is a function of the vertical density
gradient so that portions of the water column with high
vertical gradients have shorter decorrelation scales. The
horizontal correlation function is a second order autore-
gressive (SOAR) function:

CH
vv0 x; y; x

0; y 0ð Þ ¼ ð1þ s=LcÞeð�s=LcÞ ð3Þ
where s is the horizontal distance between the two points
x� x0; y � y0ð Þj j, and Lc is the prescribed decorrelation

length scale. The decorrelation scale is related to the
Rossby radius of deformation multiplied by a scaling fac-
tor rscl. Fig. 3 provides an example of the horizontal
SOAR with a decorrelation scale of 1.0 for reference. In
comparison to a Gaussian function with an e-folding scale
of 1.0, the SOAR function has larger amplitudes. The point
at which the filter amplitude normalized by the wavenum-
ber 0 amplitude has a value of ½, or the squared amplitude
has a value of ¼, is a characterization of a filter. For the
SOAR, the ¼ power wavelength is about 11 times the
decorrelation scale.

The flow-dependent correlations are CFDB
vv0 x; y; x0; y 0ð Þ ¼

ð1 þ sf Þe�sf , where sf ¼ SSH x; yð Þ � SSH x0; y 0ð Þj j=dh,
and dh is the specified flow-dependent scale factor. The
value of dh was 0.12 m in the experiments. This decreases
correlation between areas where SSH differs and maintains
the correlation between areas of similar SSH. The SSH
field is used in the flow-dependent correlation under the
assumption that the flow is directed along pressure surfaces
(i.e. the flow is in geostrophic balance) due to mesoscale
features.

We vary the value of rscl across the experiments to con-
trol the influence distance of observations. The Rossby
radius of deformation varies spatially, and the spatially
averaged decorrelation values for the five experiments are
shown in Table 1. All other inputs and settings are the
same across the experiments. All experiments use the same
regular observing systems. The regular data consisted of
the altimeter satellites Jason-2, CryoSat-2, and AltiKa as
well as satellite sea surface temperature and available
in situ profiles. The in situ observations are very sparse.
The increments resulting from Eq. (1) on one day (Fig. 4)
indicate the spatial influence scale impact across the exper-
iments. Experiment A has the shortest decorrelation scale,
and the increments from the altimeter data are localized
Constrained scales in ocean forecasting, Advances in Space Research,
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Table 1
The five experiments, the rscl values, and the spatial mean decorrelation
lengths Lc are provided. All other parameters are the same across
experiments.

Experiment rscl Mean Lc (km)

A 0.4 9
B 1.2 23
C 2.0 36
D 4.4 78
E 6.5 114

Distance 

Wavelength 

Fig. 3. The SOAR decorrelation function and a Gaussian function each with a length scale of 1 (top), and the squared amplitude of the Fourier
transforms normalized by the value at 0 wavenumber (bottom). The ¼ power level is marked in the lower plot by the dashed line.
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along the satellite tracks. The spatial decorrelation scale
increases through experiment B and C, and the innovations
influence points further from the ground tracks. As scales
further increase in experiments D and E, the flow depen-
dent influence is apparent near the Loop Current. The cor-
relation between two locations is a product of the
horizontal and flow-dependent correlation according to
(2). When the horizontal length scale is very small, the
SSH does not vary significantly within the distance of the
flow-dependent scale. Therefore, the effects of the
flow-dependent correlation are not apparent in experiments
A-C. As the horizontal length scale increases, the SSH
changes significantly within the range of the flow-
dependent scale, and the flow-dependent effects become
more apparent in experiments D and E. Examination of
several other aspects of the assimilation are provided in
Jacobs et al. (2014) in which the flow-dependent correlation
did not have significant effect on the forecast skill.

Note that because the experiments are independent,
each has slightly differently placed features and different
error levels. While the observations for each experiment
are the same, the prior forecast, used as the background,
Please cite this article as: G. A. Jacobs, J. M. D’Addezio, B. Bartels et al.,
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is different, and the innovations computed from the back-
ground and observations for each experiment are different.
Therefore, there is more than just the length scale produc-
ing differences in the increments of the experiments of
Fig. 4.

The spatial scales within the increments motivate a ques-
tion: Does the data assimilation affect the small-scale
energy of the ocean prediction? The system divides the
3DVar analysis increment by the number of time steps in
the insertion interval (6 h for these experiments), and every
model time step adds a fraction of the increment to the
state. The process does not force the model state to match
the increment field plus the background as nonlinear evolu-
tion occurs during the insertion interval. The process
allows small-scale features in the ocean model to develop.
A qualitative examination of the surface currents and tem-
perature (Fig. 5) indicates all the experiments contain
small-scale features down to approximately 10 km.

To quantify the energy across scales, we compute the
PSD of the surface kinetic energy from the model. A sub
domain is chosen that contains no land values (22�–28�N,
86�–93�W), and the 2D FFT of the velocity field
components is taken over the domain at 6 h intervals
between January 1 and May 1, 2016. The 2D FFT is aver-
aged in time and then averaged azimuthally to provide the
one-dimensional spectrum for each velocity component.
The PSD of the kinetic energy is given by PSD(KE) =
[PSD(u) + PSD(v)]/2 (Richman et al., 2012). The Nyquist
wavelength is 2 km due to the 1 km model grid, which lim-
its the PSD range (Fig. 6 top). A least squares fit to the
PSD between 10 km and 200 km wavelengths of all exper-
iments results in a mean slope of �3.4. The PSD energy of
all experiments does not deviate substantially from the
Constrained scales in ocean forecasting, Advances in Space Research,
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Fig. 4. The 3DVar increment to temperature at 200 m onMarch 15, 2016 provides an example of the decorrelation scale effects across the five experiments.
The satellite tracks are apparent in experiment A with very localized increments. The flow dependent correlation influence is apparent in experiments D
and E around the edge of the Loop Current.
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�3.4 slope until scales smaller than about 10 km, which is
the smallest scale feature a 1 km numerical model should
resolve. Thus, we have some confidence that the model
numerics are representing the cascade of energy from larger
scales into those scales represented by the 1 km grid.

The assimilation process is adding a field to the numer-
ical model every assimilation cycle. This acts as a forcing to
the physics represented by the model. The spatial scale of
the forcing is the horizontal decorrelation scale of each
experiment, and Fig. 3 shows the Fourier transform of
the SOAR function with a scale of 1.0. The numerical
model physics will transfer the forcing energy to other
scales as small eddies coalesce into larger eddies and energy
moves to smaller scales through dissipation. Differences in
the energy spectra between the experiments can provide
some insight as to the effects of the assimilation process,
so small deviations from the mean �3.4 slope line are
important, and the ratio of each experiment PSD to this
line is examined (Fig. 6 bottom). In the mid-scale band
of 50 to 200 km wavelengths, experiment A contains higher
Please cite this article as: G. A. Jacobs, J. M. D’Addezio, B. Bartels et al.,
https://doi.org/10.1016/j.asr.2019.09.018
energy, and experiment B also contains above average
energy. In the small-scale band of 10–30 km, experiments
E and D contain higher energy.

The differences in each experiment PSD are indicative of
the data assimilation effects, though some caution is neces-
sary. The spectra are obtained by averaging over space and
time, and the 3 month period is relatively long to small fea-
tures (less than 100 km wavelength) though is not long rel-
ative to large features such as the Loop Current Eddy. The
spatial area may also bias the results. In addition, to fully
evaluate the assimilation impact on the PSD, a free running
model result is required, which was not conducted in this
study.

The PSD, however, do indicate some possible sources
for the results. The decorrelation scale for experiment A
is 9 km (Table 1), and therefore the ¼ power wavelength
of the SOAR (Fig. 3) is about 99 km. One interpretation
of Fig. 6 is that the assimilation cycle in experiment A is
forcing energy at these scales. Experiment B has slightly
elevated energy in the 50–100 km band as well. Experi-
Constrained scales in ocean forecasting, Advances in Space Research,
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Fig. 5. An example of the surface currents (black vectors indicate 24 h trajectories given time-fixed model currents) over surface temperature (color) on
March 15, 2016 from the five experiments indicates all experiments contain small-scale features. Experiment A appears to contain stronger variability at
100 km scales. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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ments C-E do not indicate the additional energy in this
band. The energy in the 10–50 km range increases succes-
sively from C through E. The features appearing in this
small-scale band are difficult to observe in the velocity field
because the PSD levels at the 100 km wavelength are 103.4

times larger than at the 10 km wavelength. The features are
more discernable if we examine gradients of the velocity
field. The Okubo-Weiss parameter is the shear strain
squared plus normal strain squared minus vorticity
squared. This removes shear along fronts and the vortices
are more clear (Fig. 7). Experiments D and E in Fig. 7 con-
tain more of the 10–20 km vortices compared to experi-
ments A and B.

Experiment E contains about 35% more energy than
experiment C at 20 km wavelengths. The largest decorrela-
tion scale of experiment E is potentially leaving the scales
around 20 km the least disturbed. Therefore, it appears
that the very short decorrelation scales of experiment A
are adding noise to the system that disrupts the small
scales, and longer decorrelation scales do not disturb the
small-scale features. The physical process resulting in the
Please cite this article as: G. A. Jacobs, J. M. D’Addezio, B. Bartels et al.,
https://doi.org/10.1016/j.asr.2019.09.018
higher energy at 10–50 km in experiments D and E is not
definitively demonstrated here, and the subject remains
an open question for future consideration.

3. LASER observations

The LASER drifter system consisted of over 1000 sur-
face drifters (Özgökmen et al., 2018). The drifter form
was a toroidal float with a GPS receiver and a drogue
attached to the center. The drifters were tested in labora-
tory facilities, and the portion of the water column
observed is the upper 0.6 m (Novelli et al., 2017). Ships
deployed the drifters starting on January 16, 2016. Initial
deployments in the northeastern Gulf of Mexico were in
pre-planned patterns constructed in fractal arrangements
to understand the relative dispersion across scales of
100 m to 100 km. Further ship deployments occurred in
subsequent weeks within submesoscale features identified
by aircraft-observed sea surface temperature. Extreme con-
vergence showed rapid clustering of drifters into small
areas (D’Asaro et al., 2018). Deployments around the fresh
Constrained scales in ocean forecasting, Advances in Space Research,
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Fig. 6. The wavenumber power spectral density (PSD) of surface kinetic energy from the five experiments (top) have an average slope of �3.4 from 10 to
200 km. The ratio of PSD of each experiment to the �3.4 line (bottom) shows the effects of the small decorrelation scale in experiments A and B injecting
energy at the 50–100 km range.
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water fronts of the Mississippi River outflow increased the
drifter density in the northeastern Gulf of Mexico. By
February 10, 2016, there were over 1000 drifters in the
observing system. The typical battery life of the drifters
was 90 days, though many events occurred to decrease
the useful drifter life. The drogue on some drifters detached
leaving the drifter more subject to wind effects and there-
fore less accurate in measuring surface ocean currents.
An extensive effort succeeded in identifying the times at
which drifters lost drogues, and these were shown to be
Please cite this article as: G. A. Jacobs, J. M. D’Addezio, B. Bartels et al.,
https://doi.org/10.1016/j.asr.2019.09.018
related to large wind and subsequent wave events (Haza
et al., 2018). The analysis here uses only the drifter data
from the periods identified as having a drogue. The drifters
reported GPS position every 5 min, and additional efforts
filtered erroneous GPS positions and noise from the
returned data. In addition to restricting consideration to
only drifters with a drogue, we also restrict data to be in
water depths greater than 500 m. The dynamics over the
continental shelf are very constrained by bathymetric
geometry. We are concerned with the instabilities generated
Constrained scales in ocean forecasting, Advances in Space Research,
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Fig. 7. Okubo-Weiss parameter normalized by the spatial standard deviation computed from surface currents of the five experiments indicates the larger
number of 10–20 km features in experiments D and E.
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within the ocean interior and reflected by the mesoscale
field. Regular correction of these instabilities is the objec-
tive of the data assimilation.

In comparing the LASER observations to the model
results, we integrate model-simulated trajectories over
time. The trajectory integration started at 00 GMT on
every day of the LASER experiment. At 00 GMT, we ini-
tialize particles in the model surface velocity field at the
observed locations. We integrate particle trajectories for-
ward in time through the model velocity field. At the local
time of one inertial period, we difference the observed drif-
ter and model particle position to determine the error, and
we convert this to an average speed error in km/day.
Please cite this article as: G. A. Jacobs, J. M. D’Addezio, B. Bartels et al.,
https://doi.org/10.1016/j.asr.2019.09.018
We use this approach for two reasons. One is to reduce
the influence of GPS noise by using positions separated by
a long time. The error due to GPS noise decreases as the
time interval between position differences increases. The
second reason is to reduce errors in wind forcing on
the model forecasts. Typically, an impulsive wind forcing
will generate an inertial oscillation in the ocean that is a
balance between the Coriolis force and horizontal velocity
acceleration. These inertial oscillations result in trajectories
that form circles over an inertial period, which are superim-
posed on the other flow features. Errors in wind forcing
can result in large errors between the instantaneous model
and observed velocities. Because we are comparing position
Constrained scales in ocean forecasting, Advances in Space Research,
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at the end of the inertial period, we reduce errors due to
wind forcing on the model. The inertial period ranges from
1.45 days at 20�N to 1.00 days at 30�N. Computations use
the local inertial period for each drifter when evaluating
trajectory errors.

Because of the relatively long drifter life, the drifters
covered a very wide area within the Gulf of Mexico
(Fig. 1). This is important for having many samples over
many different events to increase the number of indepen-
dent error estimates. Drifters within a group covering a
small spatial area of a large feature are not providing inde-
pendent estimates of error. Therefore, we process many
observations in one small area to produce a single super-
error, ultimately preventing situations where many error
estimates provide redundant data resulting in the over-
weighting of an error. To construct super-errors, for the
analysis conducted on each day, the root mean square
(RMS) of all error values within each cell of a 1/8� grid
over the Gulf of Mexico contribute to one super-error esti-
mate. Thus, the maximum number of super-errors in any
cell is the number of days in the deployment. The spatial
distribution of the number of super-errors (Fig. 8) indicates
coverage throughout much of the domain. Because a rela-
tively long time is required for drifters to move from the
original deployment location in the northeastern Gulf of
Mexico, there is a substantial concentration of data in
the deployment area. Still, the observation density covers
a broad region, sampling many different features and
events.

An evaluation of the model errors can be visualized in
the form of a vector error histogram (Fig. 9). The bin in
which a vector difference is included uses the direction dif-
ference between observation and model to determine the
angle (an angular difference of 0 is along the line from
the plot center toward the top of the page), and the magni-
tude of the speed difference determines the distance from
the center. The result from experiment C is shown in
Fig. 8. The total number of super-errors in 1/8� bins over the LASER
period shows the data distribution. Many of the drifters deployed in the
north moved to the south and were entrained in eddies to the east and
west. The analysis uses only data in water deeper than 500 m.

Please cite this article as: G. A. Jacobs, J. M. D’Addezio, B. Bartels et al.,
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Fig. 9. The next section discusses filtering the model results
to remove small-scale unconstrained features, and Fig. 9
(left) is the result with no filtering applied. An accurate
agreement would have a high density of occurrences just
above the center of the plot. An accurate direction and
poor speed would result in a distribution around the line
from the plot center toward the top of the page. An accu-
rate speed and poor direction would result with a distribu-
tion near center but to the sides or below the center. The
initial comparison indicates a concentration above the plot
center. Thus, there is some skill in direction with a broad
distribution of errors, and mean speed difference on the
order of 0.15 m/s with a relatively broad distribution as
well.
4. Constrained results

We determine the constrained scales by filtering features
out of the model results and evaluating errors relative to
LASER observations. The filtering progresses from smaller
scales to larger. First, considering the PSD (Fig. 6), assume
there is a wavelength kC that separates constrained scales at
longer wavelengths from unconstrained scales at shorter
wavelengths. Separate the true velocity field u into compo-
nents based on this wavelength so that u ¼ uC þ uU, where
uC is the velocity field at wavelengths greater than kC, and
uU is the velocity field at wavelengths less than kC. Simi-
larly, separate the model field into components
u0 ¼ u0C þ u0U , where primes indicate the model estimate of
the fields. Assume that the constrained and unconstrained
components are not cross-correlated in the true world or
within the model. Then the model error variance is

Var u� u0ð Þ ¼ uC � u0C
� �2 þ uU � u0U

� �2D E
ð4Þ
where h i indicates an expected value. Define the error of
the constrained portion of the model field to be

e2C ¼ Var uC � u0C
� �

. If the model is realistic, then the model

variance within the constrained band is equal to the true
variance in the constrained band, so that

Var uCð Þ ¼ Var u0C
� �

. By definition of the constrained wave-

length, the model has skill at wavelengths greater than
kC, and therefore the error variance e2C is less than either

Var uCð Þ or Var u0C
� �

. Again, if the model is realistic then in

the unconstrained band Var uUð Þ ¼ Var u0U
� �

. If the model

and true ocean are uncorrelated in the unconstrained band,
then the model error variance in (4) is

Var u� u0ð Þ ¼ e2C þ 2Var uUð Þ ð5Þ
Suppose we filter the unconstrained variability from the
model. Then the error variance is

Var u� u0 � u0U
� �� � ¼ e2C þ Var uUð Þ ð6Þ
Constrained scales in ocean forecasting, Advances in Space Research,
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Fig. 9. The polar histogram of vector errors using experiment C relative to drifters with no filtering (left) and with 220 km ¼ power filtering (right) indicate
filtering effects in improving the skill. Filtering moves the distribution toward 0 direction error (the line from the plot center toward the top of the page)
and toward smaller speed differences (closer to the center). The outer edge of the histogram is a difference of 0.45 m/s.
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Thus, filtering the unconstrained velocity from the
model field produces a lower error variance in (6) than
not filtering in (5). Suppose we over-filter the model to
the point where we remove all the model variance. In this
case, the error variance becomes

Var u� 0ð Þ ¼ Var uCð Þ þ Var uUð Þ ð7Þ

Filtering all variability produces an error variance
greater than removing only the unconstrained in (6)
because e2C < Var uCð Þ. Considering the error variance from
no filtering, to filtering just the unconstrained variability,
to filtering all variability, filtering just the unconstrained
variability produces a local minimum in the error variance
as a function of filtering scale. We exploit this to determine
the constrained scales by progressively filtering the model
experiment velocity fields to find the minimum error vari-
ance relative to the LASER observations.

The domain of interest is irregularly shaped and finite. It
is not possible to construct a filter that precisely removes
variability smaller than a specified wavelength. Therefore,
we use a Gaussian filter and express the results in terms
of the ¼ power point of the filter (Fig. 3). The filter applied
at one location uses all model data within 3 e-folding scales
of the Gaussian. In areas influenced by land, the Gaussian
is a weighted average of all non-land values. The filter acts
on the velocity components (u and v) separately. The Gaus-
sian function with a specified e-folding scale of l is

exp �x2=l2
� �

, and the ¼ power point wavelength is

L1=4 ¼ pl=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ln 1=2ð Þp � 3:77l (Fig. 3).

For each of the five experiments, we apply a filter with ¼
power scale from 20 km to 300 km in 20 km increments.
One example of the filtering of experiment C (Fig. 10) indi-
cates the features that appear in the vorticity field com-
puted from the filtered velocities as the filter scale is
increased. The filtered surface currents determine the vor-
ticity normalized by the Coriolis parameter, which is a
Please cite this article as: G. A. Jacobs, J. M. D’Addezio, B. Bartels et al.,
https://doi.org/10.1016/j.asr.2019.09.018
Rossby number. In a geostrophic flow, the vorticity is pro-
portional to the Laplacian of the SSH. Therefore, vorticity
serves as an indicator for SSH. Using the filtered velocity
fields for each experiment, the process described in the
prior section provides RMS trajectory errors for each filter
scale. Thus, each experiment provides one curve as a func-
tion of the filter ¼ power scale.

The results of the progressive filtering of each experi-
ment are in Fig. 11. The experiment with the lowest
RMS error for any filtering scale is experiment C, and
the lowest RMS error is reached at the 220 km ¼ power
scale. This corresponds to a 53 km e-folding scale of the
Gaussian filter. There is consistency in the results with
RMS errors increasing the more the decorrelation scale
deviates from experiment C. That is, experiment A errors
are larger than experiment B, which are larger than exper-
iment C. In addition, experiment E errors are larger than
experiment D errors, which are larger than experiment C.

The local minima at 220 km ¼ power scale is relatively
broad for two reasons. The discussion at the beginning of
this section considered a wavelength kC that separated con-
strained from unconstrained. As shown in (D’Addezio
et al., 2019), errors across the wavenumber spectrum are
small at the largest scales and gradually increase to the con-
strained wavelength and gradually rise at smaller wave-
lengths. There is not a sharp increase in error at the
constrained wavelength. Considering a single event at one
time, scales slightly larger than kC can be in error and scales
slightly smaller can be correct. The definition of the con-
strained scales is based on a statistical average over time.
The feature in Fig. 2 is an example. The observed cyclone
is on the order of 200 km across, and on March 20, 2016
the feature is out of place from the observed. After the
satellite observations of the feature correct the model, the
feature is more correctly placed. Prior work has also shown
that the drifters themselves are very effective in improving
the solution at smaller scales (Carrier et al., 2016), and thus
Constrained scales in ocean forecasting, Advances in Space Research,
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Fig. 10. The velocity field of experiment C on March 15, 2016 is shown (black vectors indicate 24 h trajectories given time-fixed model currents) after a
range of no filtering to 300 km ¼ power scale filters are applied. The colored background is vorticity normalized by the Coriolis parameter (i.e. a Rossby
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Fig. 11. RMS trajectory errors for each of the five experiments as a
function of the Gaussian filter ¼ power scale. Experiment C provides the
lowest errors, and most experiments (A through D) consistently have error
minima at the 220 km ¼ power point of the Gaussian filter.
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the results are dependent on the observing system. The sec-
ond contributing factor for the broad minimum is the filter-
ing used. Because of the irregularly shaped domain, we
used a Gaussian filter that has a broad tail without a sharp
spectral cutoff. When specifying an e-folding scale, the fil-
tered fields of the model have residual effects from features
at smaller scales, ultimately limiting the precision of our
result.

The ¼ power scale of the minima RMS errors are con-
sistent across experiment A through D (220 km). Experi-
Please cite this article as: G. A. Jacobs, J. M. D’Addezio, B. Bartels et al.,
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ment E has much larger errors than the other
experiments, and the error minimum is at the largest scales
used in filtering (300 km). Thus, experiment E is constrain-
ing only the largest features. The removal of unconstrained
variability through filtering improves trajectory errors sig-
nificantly for experiment C with errors reducing by 20%
from just below 29 km/day with no filtering to 23 km/day
at the lowest error scale. The effects of the filtering are evi-
dent in the polar error histogram plots (Fig. 9). The error
histogram using filtered surface currents (right in Fig. 9)
shows a greater concentration with smaller directional
errors (closer to the line from the plot center toward the
top of the page) and smaller magnitude of speed errors
(closer to the plot center) when compared to the unfiltered
error histogram (left in Fig. 9). Note that the error levels
are large relative to prior publications that consider errors
relative to ARGO drifters because of the surface intensifi-
cation of currents and the effects of wind events during
the winter period of the deployment. The Gulf of Mexico
is also an area of higher mesoscale variability, due to the
Atlantic Sverdrup transport passing through, and this adds
to higher than average error levels as well.

5. Summary and conclusions

Our primary objective has been to determine the scales
at which present observing systems constrain ocean fore-
casts. Five ocean data assimilation experiments were con-
ducted with differing horizontal decorrelation scales, and
the results were evaluated against velocity observations
from 1000 surface drifters. All satellite and in situ observa-
Constrained scales in ocean forecasting, Advances in Space Research,
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Fig. 12. A comparison of (top) unconstrained mixed layer depth spatial variability in the 1 km experiment C used here to (bottom) the RMS variability
across a 3 km resolution ensemble set. The small-scale variability (top) has significant amplitude relative to the ensemble estimate of RMS (bottom)
indicating that the small-scale structure is a significant contributor to forecast errors.
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tions during October 2015–April 2016 were used in the
experiments, and the surface drifters during January–April
2016 were withheld for evaluation. The constrained scales
are determined by filtering unconstrained variability from
numerical model results. A SOAR decorrelation scale of
36 km used in the data assimilation along with a Gaussian
filter of ¼ power scale of 220 km, which is an e-folding
scale of 58 km, results in the lowest errors relative to
LASER drifter observations. While the determined scale
is a local minimum and is consistent across the experi-
ments, the minimum is relatively broad. The implication
is that errors do not change rapidly as a function of length
scale.

The scales our unique experimentation provides are sim-
ilar to those determined by fraternal twin OSSE experi-
Please cite this article as: G. A. Jacobs, J. M. D’Addezio, B. Bartels et al.,
https://doi.org/10.1016/j.asr.2019.09.018
ments (D’Addezio et al., 2019). This indicates that the
primary source of error in ocean forecast systems is the
data density and its ability to constrain features. The errors
induced by uncertainties in numerical model representation
certainly exist and are important. However, the dynamical
errors absent within the fraternal twin OSSEs did not pre-
vent similar results with the approach used here. Of course,
the only evaluation in this study is surface currents. Con-
sideration of other variables may lead to different
conclusions.

The simple filtering to remove unconstrained variability
demonstrates a 20% reduction in RMS trajectory error.
Operational applications could benefit from such an
approach. As we look to SWOT observations or other tar-
geted observing systems providing dense patchy data, a
Constrained scales in ocean forecasting, Advances in Space Research,
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multiscale analysis would appropriately use the decorrela-
tion scale determined here (36 km) in the first of a sequen-
tial analysis to correct the larger scale features. The SWOT
observations could then correct smaller scale structure in
the forecast system.

As is typically the case, these results are region specific.
The Gulf of Mexico resides in the subtropics. Scales are
slightly larger to the south and smaller to the north. Addi-
tionally, the spacing between satellite tracks decreases with
latitude. Therefore, there may be compensating effects that
users should heed.

Finally, we would be negligent if we did not address a
potential, and ultimately incorrect, interpretation of our
results with respect to model resolution. If the data pro-
vided to a cycling assimilation/forecast system can only
constrain a limited range of scales, why should operational
centers run models with any higher resolution? The small
features in a high-resolution forecast are important for
many operations, and the small-scale features are signifi-
cant contributors to forecast errors. For operational appli-
cation, we need to know the effects of the small-scale
errors. The predictability in the unconstrained variability
is statistical since the large-scale features modulate the
small-scale. The deeper mixed layer in anticyclonic versus
cyclonic mesoscale eddies modulate submesoscale eddies.
The predictable information for the small-scale is the spa-
tial density distribution given the modulation by the con-
strained large-scale.

An example at one time (Fig. 12) compares the square
root of spatial variance at scales smaller than the con-
strained (58 km e-folding scale) in the 1 km experiment C
to the standard deviation across a 32 member ensemble
at 3 km resolution (Wei et al., 2014). The general areas of
high forecast error estimated from the ensemble and areas
of high unconstrained variability roughly coincide, and the
unconstrained variability in the 1 km result has amplitudes
that are significant relative to the ensemble estimates.
Ensemble systems usually are restricted to much lower res-
olution due to computational requirements and therefore
cannot represent the full spectrum of energy. Forecast
errors in the constrained features are represented in ensem-
bles but not the high resolution run. High resolution mod-
els contain the unconstrained variability but do not provide
error estimates of the constrained scales. Ensembles and
unconstrained energy together give a more complete pic-
ture of forecast errors. In addition to contributing to the
forecast errors, the nonlinear interactions of large- and
small-scale dictate the forecast evolution of the constrained
flow. Therefore, important operational capabilities are pos-
sible only if the model resolution is sufficient to represent
both the large- and small-scale features.
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