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ARTICLE INFO ABSTRACT

Sea surface salinity (SSS) subfootprint variability (SFV) is estimated using high-resolution, realistically forced
regional simulations of the Arabian Sea and western Pacific with an integration period of one year. A weighted
standard deviation was calculated for footprint sizes of 100 km, 40 km, 20 km, and 10 km for all model time steps
and then median (0s0) and 95th percentile (0gs) values were calculated along the time dimension. An additional
method, wavenumber spectral analysis (0y), was also employed to obtain a different but comparable estimate.
050 and 0gs maxima (> 1 psu) are found in shallow waters along the continental shelves where strong river
outflow is present. Open ocean values of both statistics are much lower (~0.1 psu). The wavenumber spectral
analysis allowed the estimation of total SSS spatial variance over 640 km, which was then compared to the
estimates obtained by integrating time-averaged SSS power spectral density (PSD) at wavelengths <100 km,
40 km, 20 km, and 10 km. For both geographic regions, the ratio of variance at and below each wavelength to the
total variance across all estimated wavelengths is approximately 50%, 30%, 15%, and 5%, respectively. 0sg, Ogs,
and oy, magnitudes as a function of footprint size follow a power-law relationship. The observed strong decline in
SSS SFV below 40 km suggests that the current effective resolution of the SMAP and SMOS satellites is ad-
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vantageous for limiting the impact of SFV on the satellites' error budget.

1. Introduction

Beginning this decade, three unique remote sensing platforms, Soil
Moisture Ocean Salinity (SMOS; Mecklenburg et al., 2012), Aquarius
SAC-D (Lagerloef, 2012), and Soil Moisture Active Passive (SMAP; Fore
et al., 2016), have greatly enhanced understanding of global sea surface
salinity (SSS) distribution and variability. An important and ongoing
element within each mission is to reduce retrieval errors below the
current standard: 0.2 psu STDE (standard deviation of the error) on
monthly time scales and spatial scales of 100 km x 100 km (Hasson
et al., 2013; Drucker and Riser, 2014; Hernandez et al., 2014). Vali-
dation, and therefore performance assessment, of the remotely sensed
SSS measurements remains challenging in part because of ocean salinity
characteristics that remain poorly understood. Firstly, the sensor makes
a passive measurement of the ocean surface that senses only the first
couple of centimeters or less of the water column (Lagerloef et al.,
2008). The majority of in situ measurements used for validation pur-
poses, such as those collected by Argo floats, are taken several meters
below the ocean surface. On a number of temporal and spatial scales,
vertical salinity stratification induced by surface forcing and oceanic

processes can cause discrepancies between the measurement retrieved
by the satellite and the in situ observation made below the surface
(Henocq et al., 2010; Drucker and Riser, 2014; Boutin et al., 2016).
Secondly, no observing system can perfectly sample all ocean phe-
nomena at all of their respective frequencies. Longer sampling periods
introduce greater opportunity for high-frequency events to become
aliased into the lower-frequency signals the instrument can confidently
observe. With respect to the SSS sensing satellites, this problem has
been quantified to some extent (Vinogradova and Ponte, 2012), but
remains an active area of research interest. The final significant source
of difference between in situ point measurements and the satellite ob-
servation is due to subfootprint variability (SFV) (Vinogradova and
Ponte, 2013; Boutin et al., 2016). The engineering characteristics of
each satellite (i.e. the size of the antenna and wavelength detected by
the radiometer) dictate that measurements are averages within a cir-
cular or elliptic area known as the “footprint”. The footprint is ap-
proximately 100 km for Aquarius and 40km for SMOS & SMAP
(Lagerloef, 2012; Kerr et al., 2010; Fore et al., 2016). An in situ mea-
surement taken within the footprint can differ substantially from that
estimated by the satellite depending on the magnitude of the spatial
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(psu) Fig. 1. Snapshot of Navy Coastal Ocean Model

(NCOM) sea surface salinity (SSS; psu) in the (a)
Arabian Sea (46°E-73°E; 12°N-31°N) and (b) western
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variance of SSS within the footprint. This phenomenon has not been
sufficiently quantified leaving uncertainty about how accurate the sa-
tellite SSS measurements really are. If the satellite SSS data are to be
properly validated, some estimate of this representation error must be
obtained and factored into the satellite error budgets. With this in-
formation, better satellite calibration can be performed leading to a
more accurate SSS product. Here, we aid this effort by providing novel
estimates of SSS SFV using a high-resolution (1 km) ocean general cir-
culation model (OGCM) in two regions of the global ocean that each
feature different spatiotemporal SSS variability.

A wide spectrum of physical phenomena on differing time and
spatial scales could be responsible for the presence of significant SFV.
Western boundary currents are characterized by strong fronts with
spatial scales on the order of the current generation of SSS remote
sensing platforms' footprints. Mesoscale eddies are responsible for the
majority of horizontal surface stirring that can cause large SSS variance
on length scales between approximately 200-50 km (Capet et al.,
2008). The mesoscale horizontal length scales are dictated by the
Rossby radius of deformation that is a function of latitude and vertical
stratification (Chelton et al., 1998). Below the local deformation radius,
submesoscale eddies, fronts, and filaments could be responsible for
strong SSS variability, although this phenomenon is much less well
understood than its mesoscale equivalent (McWilliams, 2016). High-
frequency rainfall events can substantially alter SSS on spatial scales
that range from global to atmospheric submesoscales (Boutin et al.,
2016). Strong river outflow in regions such as the Gulf of Mexico,
mouth of the Amazon river, and the Bay of Bengal cause strong gra-
dients in SSS that have been regularly observed by the SSS satellites
(Grodsky et al., 2012; Gierach et al., 2013; Reul et al., 2014; Fournier
et al., 2015; Korosov et al., 2015). Finally, in polar regions, ice melt/
formation can produce substantial SSS gradients (Brucker et al., 2014).

Observing this continuum of ocean physics using in situ observa-
tions can be challenging. Stationary buoy networks must trade high-
density measurements in space and time for large-scale geographic
coverage or vice versa. Ocean cruises can collect data over large areas
at high spatial and temporal resolutions, but specific locations are
sampled infrequently in time. Field campaigns that can achieve high
spatiotemporal coverage over regional scales (e.g. SPURS-1 and SPURS-
2; Lindstrom et al., 2015; SPURS-2 Planning Group, 2015), are highly
effective but rare and have only been implemented over a very small
percentage of the global ocean for relatively short stretches of time. In
contrast, OGCMs provide complete geographic coverage at high spatial
and temporal resolutions. This comes at the expense of instantaneous
accuracy, but a long ensemble of model forecasts can produce a phy-
sically realistic body of statistics (e.g. Kelly et al., 2007). Therefore,
OGCMs that explicitly resolve the continuum of ocean physics described
above can provide useful estimates of SSS SFV on regional and global

Pacific (116°E-133°E; 18°N-34°N). The black boxes in
the Arabian Sea (60°E-66°E; 18°N-24°N) and western
Pacific (126°E-132°E; 20°N-26°N) denote the sub-
regions over which wavenumber spectral analyses
were performed.

126E 130E
scales.

This approach has been previously taken by Vinogradova and Ponte
(2013) to derive Aquarius-like estimates of the SSS SFV phenomenon
using an iteration of the assimilative global HYbrid Coordinate Ocean
Model (HYCOM). They found large SSS SFV values exceeding 1 psu in
coastal outflow regions such as the Amazon and Mississippi rivers.
Western boundary currents and high latitude regions also featured
strong SSS SFV of the order of 0.2 psu and greater. Open ocean esti-
mates generally fell below 0.2 psu. The methods used in this experiment
are an extension of that previous work, whereby we use an OGCM that
explicitly resolves a wider range of ocean physics and we estimate SSS
SFV over a larger set of footprints.

The material is arranged by first detailing the numerical model and
the data analysis procedure used to create the SSS SFV estimates in
Section 2. Two methods are employed: a derivation of the weighted
standard deviation within several footprint sizes and wavenumber
spectral analysis. Section 3 details the results produced by both
methods and ultimately a comparison of the SSS SFV magnitudes pro-
duced by each. Section 4 summarizes the results, notes the potential
utility of the information gathered, and highlights possible directions
for producing more robust results in future experiments.

2. Methods
2.1. Modeling

Two regions within the global ocean are analyzed in this study: the
Arabian Sea (46°E-73°E; 12°N-31°N) and the western Pacific
(116°E-133°E; 18°N-34°N). Each region features unique ocean dy-
namics that make them interesting for analysis. The Arabian Sea
(Fig. 1a) has strong seasonal salinity, temperature, dynamic height, and
velocity transitions associated with the semi-annual monsoon (Schott
and McCreary Jr, 2001). Although predominantly an evaporative semi-
enclosed basin, strong precipitation associated with the southwest
monsoon, advection of freshwater from the Bay of Bengal during the
northeast monsoon, and strong regional river outflow can all generate
substantial salinity gradients along the continental shelf and within the
open ocean. Salt-water outflow also occurs at the mouth of the Persian
Gulf. In the western Pacific (Fig. 1b), the Kuroshio dominates the
variability of the region, meanders of which can create strong tem-
perature, dynamic height, and velocity gradients. The region features a
broad continental shelf with substantial river outflow along most of it.
Lacking strong seasonal forcing like that present in the Arabian Sea, the
western Pacific open ocean salinity variability is primarily controlled by
localized, high-frequency precipitation events (e.g. tropical storms) and
ocean mesoscale and submesoscale dynamics.

Simulated ocean fields of each region were generated using the
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Navy Coastal Ocean Model (NCOM) (Barron et al., 2006). NCOM is a
primitive equation model that uses the Boussinesq and hydrostatic
approximations to numerically solve for scalar and vector ocean fields
on a regular three-dimensional grid. The vertical coordinate is a hybrid
o/z grid, useful for greater terrain following capabilities in the coastal
ocean and enhanced representation of the near surface dynamics in the
open ocean. In this experiment, 50 vertical layers were used, with the
0/z transition occurring at approximately 120 m. The horizontal grid
was set to 1km, allowing the simulation to explicitly resolve ocean
phenomena with submesoscale spatial scales (~10km) (Capet et al.,
2008). Boundary conditions, ultimately derived from a 1/12° global
HYCOM simulation, were introduced into the final 1 km NCOM grid
using a two-nest framework. Boundary conditions were generated from
global HYCOM and passed into a 3km NCOM simulation at least 3°
larger than the final 1 km NCOM grid on all sides. Boundary conditions
from the 3 km NCOM simulation were then generated and passed into
the final 1 km NCOM grids for both the Arabian Sea and western Pa-
cific. This was done to avoid numerical instabilities that can occur when
interpolating boundary conditions from a global model at least three
times coarser than the final, higher resolution regional grid. Solar ra-
diation, surface wind stress, latent and sensible heat flux, and pre-
cipitation were generated using output from the NAvy Global En-
vironmental Model (NAVGEM; Hogan et al., 2014). Freshwater input
from large river mouths were introduced into the simulation using the
NCOM river database (Barron and Smedstad, 2002). Barotropic tides
were applied to the ocean interior and to velocities at the open
boundaries using the Oregon Tidal Inverse Solution (OTIS) (Egbert and
Erofeeva, 2002). This combination of oceanic, atmospheric, and tidal
modeling constitutes a highly realistic system.

The simulation was initialized on December 1, 2015 and then spun
up for a duration of one month to allow the proper development of
synoptic, mesoscale, and submesoscale dynamics. Forward integration
continued through December 31, 2016, generating a complete annual
dataset with 3 hourly output available for data analysis. Observations of
the real ocean were not assimilated. While data assimilation is useful
for generating short- to medium-term skill in ocean prediction
(Cummings et al., 2009), this is not the purpose of the modeling fra-
mework used in this study. Instead, we are collecting an ensemble of
estimates of SSS spatial variance from model fields that include a
comprehensive set of physics. However, if the long term statistics of the
model solution deviated too far from the climatological statistics of the
real ocean, results derived from such a system may not be applicable to
the real ocean. The statistics of the simulation are evaluated against a
climatology of the real ocean to ensure that the results detailed in
Section 3 are a reasonable approximation of real ocean SSS SFV.

The Generalized Digital Environmental Model version 4 (GDEM4)
(Teague et al., 1990; Carnes et al., 2010) is an observation based cli-
matology that is used here for comparison with the long-term statistics
produced by NCOM. The GDEM4 climatology was compiled using in
situ observations from delayed-mode Argo, the Navy's Master Oceano-
graphic Observation Data Set (MOODS), and the World Ocean Database
(WOD) 2005. The data were binned onto a !/ x /¢ grid and means and
standard deviations were derived. This coarse spatial resolution will
mask variance due to small-scale features that may be present in the
model simulations. To confirm, we performed weighted footprint
means of the model SSS and took the variance across time (not shown).
The variances of the smoothed models fields tend to compare more
favorably with the GDEM4 variances, suggesting that differences in
data set resolution are a potentially large source of mismatch. Ad-
ditionally, the vast majority of the surface salinity observations come
from Argo floats (Carnes et al., 2010; see their Fig. 2). The Argo floats
are designed to profile the top 1000 m of the water column every
10 days. This makes it difficult for the observing network to represent
coastal phenomena as well as transient features in the open ocean. Fi-
nally, independent of the limitations of the climatology, the NCOM si-
mulations are not perfect representations of the physics found in the
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real ocean. The simulations are still coarse enough to exclude important
physical processes (e.g. Langmuir circulation), use imperfect numerical
schemes, and make physical assumptions in the form of parameteriza-
tions. These will all lead to mismatch between the model variability and
the real ocean variance. Noting the potential issues associated with
each dataset, our goal is to confirm that the SSS variability in the NCOM
simulations at least qualitatively compares favorably with the varia-
bility observed in the GDEM4 climatology. The results of that com-
parison are presented below.

Fig. 2 shows annual SSS standard deviation from the 1 km NCOM
solution and climatological SSS standard deviation from GDEM4 for the
Arabian Sea. To the southwest and in the interior of the domain, rela-
tively low values of SSS standard deviation (~0.2 psu) are prevalent in
both data sets. To the southeast of the domain, larger values are ob-
served (~0.6 psu), and are associated with seasonal surface and sub-
surface salinity variability caused by the monsoon transition in the
Arabian Sea mini warm pool (Rao and Sivakumar, 2003; Nyadjro et al.,
2012). NCOM features much stronger SSS standard deviation along the
northeastern expanse of the region than the GDEM4 climatology. As
previously mentioned, the climatology is coarse and based on in situ
observations that do not properly sample the coastal dynamics that
NCOM can simulate due to the inclusion of river runoff from the NCOM
river database. Finally, strong SSS standard deviation (> 1psu) is
present in the Persian Gulf in both datasets. In all, the two datasets
compare favorably with respect to the magnitude and spatial distribu-
tion of annual SSS standard deviation in the Arabian Sea. The same
analysis was repeated for the western Pacific (Fig. 3). In this region, the
highest SSS standard deviation (> 2psu) is confined to the broad
continental shelf where river outflow is strong. The open ocean presents
the greatest difference between the two datasets. Both include lower
magnitude SSS standard deviation (~0.2psu), but NCOM has con-
sistently lower magnitudes than GDEM4. This suggests that open ocean
SSS SFV estimates described in Section 3 may underestimate those
found in the real ocean in the western Pacific.

To summarize, SSS annual standard deviations compare well be-
tween the two datasets in both of the regions under investigation here.
The primary difference was found in the coastal regions where the
GDEM4 climatology is not able to resolve strong river outflow. In the
western Pacific, open ocean SSS standard deviations were consistently
lower than that found in the GDEM4 climatology. The next section
describes the two methodologies used to derive regional estimates of
SSS SFV: weighted subfootprint standard deviations and wavenumber
spectral analysis.

2.2. Data analysis

The first method used to estimate SSS SFV from our model fields
most closely replicates the way that the SSS sensing satellites calculate
subfootprint means. Each model grid (Arabian Sea and western Pacific)
was partitioned into subgrids with spacing d, = [100 km; 40 km;
20 km; 10 km], where d, is the footprint radius. At each grid point of
the new subgrid, a weighted sample standard deviation was calculated
over a circle with diameter 2d,:

| Zwi(S—=58)
U_\/ > w; )

wi=e ln(z)(ozgiio) @

where S; is model SSS value at a grid point with location i within the
footprint, S is the sample mean of all values within the footprint, and d;
is the physical distance from the central grid point to grid point i within
the footprint. This formulation most closely mimics the antenna pattern
of the real aperture radiometers used by Aquarius and SMAP (T.
Meissner and F. Wentz, personal communication). Eq. (2) shows
weights that produce an exponential decay with value 1 at the central
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Fig. 2. Annual sea surface salinity (SSS) standard deviation (psu) in the Arabian Sea from the (a) Navy Coastal Ocean Model (NCOM) and (b) the GDEM4 climatology.

grid point, 0.5 at distance 0.5d, from the central grid point, and 0.063
at distance d, from the central grid point (Fig. 4). This specific con-
figuration of the weighted footprint may not be as applicable to the
types of measurements the SMOS synthetic aperture radar makes.

Each of the subgrids begins length d, from the boundaries of each of
the model domains. This was done to ensure that each iteration of Eq.
(1) had a complete set of data, instead of having to introduce new as-
sumptions at the boundaries to account for the lack of data outside the
model domains. Weighted SSS standard deviations were calculated for
each subgrid at each model time step (N = 2928). From the resulting
time-space matrix, median and 95th percentile values were calculated
along the time dimension (Boutin et al., 2016). Hereafter, these sta-
tistics are called o5 and ogs, respectively. o5y provides an estimate of
some typical value of SSS SFV, while 095 provides an estimate of an
outlier instance.

Wavenumber spectral analysis provides a convenient methodology
to decompose the model SSS variance as a function of spatial scale.
Model SSS power spectral density (PSD) was calculated over subregions
of both the Arabian Sea and western Pacific (Fig. 1) for all 2928 model
time steps. The ensemble of PSD in ky, k, wavenumber space was then
averaged to generate a time mean estimate. A common way of visua-
lizing how the PSD changes as a function of wavelength is to produce a
one-dimensional spectrum. This was achieved using the time mean PSD
and azimuthally averaging along constant wavenumbers to compute
PSD(k) (i.e. averaged along concentric circles from the smallest
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wavenumbers to the largest) (e.g. Richman et al., 2012; Wong and
Skamarock, 2016; Durran et al., 2017; and references therein) (Fig. 5).
Both the Arabian Sea and western Pacific spectra produce an unbroken
cascade of PSD(k) from the largest of observed scales down to our
Nyquist wavelength. The spectra of the two domains have similar
slopes; each calculated using a power-law relationship in log-log co-
ordinates:

y=b=xx" 3)

where b is the y-intercept and m is the slope. The slopes for both regions
compare favorably with the k™2 power-law frequently associated with
kinetic energy (KE) spectra in Earth's atmosphere and ocean (e.g. Khatri
et al.,, 2018; and references therein). Ocean salinity often acts as a
passive tracer, being advected and stirred in both the horizontal and
vertical by the synoptic, mesoscale, and submesoscale currents. For this
reason, it is unsurprising that the spectral slopes are comparable to
those derived for velocity. However, both regions feature slopes that are
slightly steeper than the velocity power-law. At the surface, salinity
variability is also strongly influenced by atmospheric forcing (eva-
poration minus precipitation; E-P). Spatial variability associated with
evaporation is very large-scale, while precipitation can have both large-
scale (e.g. intertropical convergence zone; ITCZ) and small-scale (e.g.
isolated convection) contributions (Yu, 2011). Both surface forcing ef-
fects could be making the spectral slopes both steeper and flatter. By
taking a long-term average of the PSD, it becomes difficult, if not
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Fig. 3. Same as Fig. 2, but for the western Pacific.
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Fig. 4. Schematic view of the weighting within the footprint for a footprint size
of 100 km. The estimate is made at the central point indicated in yellow. Grid
points within the light blue area have weights, 0.5 < w; < 1. Grid points in the
dark blue area have weights, 0.063 < w; < 0.5. Grid points outside the blue
areas are not used to estimate the value at the central point in the model,
though those areas would have some small influence on an actual satellite
measurement. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 5. Space-time averaged sea surface salinity (SSS) wavenumber spectra
(psuz/cpkm) for subregions of the Arabian Sea (black line) and western Pacific
(dashed black line). See Fig. 1 for geographic reference to the subregions used
to calculate the spectra. The indicated spectral slopes were derived over the
100 km-10 km wavelength range using the power-law relationship shown in
Eq. (3). Vertical solid black lines denote the wavelengths integrated over in Eq.
(4) to get estimates of SSS subfootprint variability (SFV).

impossible, to tease apart the specific contributions from the oceanic
turbulence and the atmospheric forcing. Thus, our analysis of the spa-
tial variance using wavenumber spectra includes the entanglement of
all of these effects, as would be the case for an instantaneous, satellite-
derived snapshot of SSS.

Averaging, however, does not recover variance from the two-di-
mensional PSD. According to Parseval's theorem, integration of the time
mean PSD provides the SSS variance:

o = \/ A " r " PSD (k) kd6dk @
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where k = [kZ + ky2 are the wavenumber bands azimuthally integrated
along and under (1/100km~!, 1/40km~!, 1/20km~!, and 1/
10km ™) and k, is the Nyquist wavenumber (1/2km ™). Eq. (4) pro-
vides the SSS spatial variance at and below a defined length scale and is
therefore a different but analogous estimate of SSS SFV to that pro-
duced using Egs. (1) and (2). Note that Eq. (4) has limitations. The
method will not account for the disparate zonal and meridional corre-
lation scales of SSS (Bingham and Lee, 2017; see their Fig. 7). Ad-
ditionally, the spectral method does not include coastlines and islands,
restricting our spectral analysis to open ocean regions. Despite these
potential issues, we will show the method to be a powerful tool, pre-
cisely because it provides more nuanced information about SSS spatial
variance than possible when using only the weighted subfootprint
standard deviations (Egs. (1) and (2)).

Magnitudes and spatial distributions of 059, 095, and oy in the
Arabian Sea and western Pacific are presented in Sections 3.1 and 3.2.
In Section 3.3, the three SSS SFV estimates are compared to understand
the differences in each methodology and how each statistic changes as a
function of footprint size.

3. Results
3.1. SSS subfootprint variance

050 within the Arabian Sea shows a wide range of geographically
dependent magnitudes (Fig. 6). For all four footprint sizes (100 km,
40 km, 20 km, and 10 km), the largest magnitudes are found within the
Persian Gulf and along the continental shelf at the mouth of large rivers.
Across the footprint sizes, magnitudes are much lower within the open
ocean. Examining differences in magnitudes between the footprint
sizes, the 100 km footprint generates the highest levels of SSS SFV for
all subregions of the Arabian Sea (Fig. 6a). In the Persian Gulf and along
the continental shelf, o5, estimates exceed 1 psu. In the open ocean, o5,
is highest for the 100 km footprint as well. This suggests significant
horizontal heterogeneity in SSS variability that is likely a function of
both large-scale atmospheric forcing and oceanic mesoscale stirring.
Using the 40 km footprint (Fig. 6b), we observe a very similar geo-
graphic distribution of 059 maxima and minima, but overall magnitudes
are lower across the domain. This is most significant in the open ocean,
as the 40 km o5y, magnitudes drop by up to 0.1 psu compared to the
100 km o5 estimates. 0so from the 20 km (Fig. 6¢) and 10 km (Fig. 6d)
footprints repeat this decrease in magnitude between the 100 km and
40 km footprints, but with a smaller reduction in 059 magnitude in the
open ocean. By the 10km footprint, almost all of the open ocean
variability has disappeared with o5 at or below 0.05 psu.

In the same region using the same footprint sizes, 0gs was also es-
timated (Fig. 7). For the 100 km footprint (Fig. 7a), the 095 values
follow almost exactly the same geographic pattern of maxima and
minima as the o5 estimate, but with much higher overall magnitudes.
This is to be expected as the 05 value is demonstrating the set of ex-
treme SSS SFV events across the time series. Very high oys values
(> 2psu) are found in the Persian Gulf and at the mouth of major
rivers, but open ocean magnitudes now also exceed 0.3 psu over much
of the domain. Within the 40 km footprint (Fig. 7b), 0¢s values in the
open ocean fall back below 0.3 psu with the exception to the Arabian
Sea mini warm pool region in the southeastern Arabian Sea. This trend
continues moving to the 20km footprint (Fig. 7c), but interesting
geographic patterns in 0gs emerge within the 10 km footprint (Fig. 7d).
In the open ocean, intersecting lines of ogs are observed with magni-
tudes around 0.15 psu. These features are physical and represent strong
SSS fronts that are present along the model time series. This suggests
the presence of strong mesoscale and submesoscale fronts that can in-
frequently produce relatively high instantaneous SSS SFV in the open
ocean, even when using a relatively small footprint.

Oso in the western Pacific (Fig. 8) has many of the same spatial
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patterns as that observed in the Arabian Sea. Along the continental
shelf, o5 is higher magnitude due to strong river outflow from the
western landmass. Off the shelf, open ocean o5, magnitudes are greatly
diminished, similar to the Arabian Sea. Overall, open-ocean magnitudes
are lower than those observed in the Arabian Sea. With respect to
specific footprints, the 100 km footprint (Fig. 8a) has the highest
magnitudes in the open ocean (0.1 psu) and the greatest eastward ex-
tension of high 059 maxima (> 1 psu) along the continental shelf. A
steady decline in open ocean 0so magnitudes are observed moving
down from the 100 km footprint to the 40 km footprint (Fig. 8b) to the
20 km footprint (Fig. 8c) and finally to the 10 km footprint (Fig. 8d). A
gradual decrease of the eastward extension in the 05y maxima along the
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Fig. 6. Arabian Sea 05, (psu) for footprint sizes (a) 100 km, (b) 40 km, (c) 20 km, and (d) 10 km.

shelf is also observed along the same decrease in footprint size.
Finally, ogs in the western Pacific (Fig. 9) is detailed. Across the
model domain, 0gs magnitudes are much greater than those produced
by 050 in both the open ocean and along the continental shelf, although
the geographic distribution of maxima and minima are consistent. For
the 100 km footprint (Fig. 9a), ggs values exceed 2 psu along the shelf
and are around 0.15psu in the open ocean. A coarse outline of the
Kuroshio western boundary current is evident inshore of the Ryukyu
island chain. The 40 km footprint (Fig. 9b) shows an overall reduction
in 095 magnitude, less eastward extent of the shelf maxima, and a
clearer representation of the western boundary current. At 20 km
(Fig. 9¢), the pattern of magnitude reduction continues. We observe

(psu)
0.3

0.25

0.2

0.15

[ 0.1

0.05

Fig. 7. Same as Fig. 6, but for ggs (psu).
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additional refinement of the visual representation of the Kuroshio, al-
though its 0gs maximum is reduced. The bright, intersecting lines ob-
served in the Arabian Sea (Fig. 7d) are also observable with magnitudes
of approximately 0.1 psu. Finally, the 10 km footprint (Fig. 9d) de-
monstrates a very defined western boundary current with reduced
magnitude as well as a much clearer expression of the frontal features
observed in the western Pacific 20 km footprint (Fig. 9c) and the Ara-
bian Sea 10 km footprint (Fig. 7d). The clear presence of the Kuroshio
front in the 20km and 10km ogs results further suggests that the
smaller lines observed in the open ocean of both model domains are
strong fronts that occurred infrequently during the full 2016 model
integration period.

Calculating weighted standard deviations within a series of foot-
print sizes allowed the observation of several consistent results. The
largest magnitude o5y and 095 values were found along the shelf where
strong river outflow is present, or in the case of the Persian Gulf, strong
salinity fronts exist in the shallow, evaporative semi-enclosed basin.
The open ocean featured much lower magnitude SSS SFV and limited
spatial variability in the 100 km and 40 km footprints. At 20 km and
10 km, however, the presence of strong fronts generated higher mag-
nitude spatial variability in ogs for both model domains. The next
section also provides model derived SSS SFV results, but instead
through the use of wavenumber spectral analysis.

3.2. SSS wavenumber spectrum

Integrating across the time mean, two-dimensional PSD, according
to Eq. (4), provides an estimate of SSS integrated variance at and below
a particular wavelength. This is comparable to the weighted sub-
footprint standard deviations shown in Section 3.1, because that
method also estimates the total variance at and below a particular

130E 118E
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Fig. 8. Western Pacific o5 (psu) for footprint sizes (a) 100 km, (b) 40 km, (c) 20 km, and (d) 10 km.

130E

length scale. For direct comparison with the weighted subfootprint
standard deviations, the 100 km, 40 km, 20 km, and 10 km wavelengths
were chosen to integrate at and below. These wavenumber spectra
derived SSS SFV estimates are shown in Fig. 10. For the Arabian Sea
(Fig. 10a), we obtain a quantitative estimate of the decline in SSS SFV
as a function of length scale that we observed qualitatively in Section
3.1. Comparison with the total integrated standard deviation shows that
the 100 km wavelength has 52% of the total standard deviation at and
below it, 29% for 40 km, 16% for 20 km, and 7% for 10 km. In the
western Pacific (Fig. 10b), we obtain different magnitudes, but similar
ratios: 48%, 25%, 14%, and 6%, respectively. It would be tempting to
hypothesize the potential universality of open ocean SSS SFV ratios, but
the true situation is likely more complicated. The spectral slopes of the
SSS PSD in both regions have very similar magnitudes (Fig. 5), leading
to similar ratios. Global sea surface height wavenumber spectra vary
substantially geographically (Xu and Fu, 2010), suggesting that the
geostrophically balanced mesoscale dynamics that strongly influence
horizontal SSS variability vary in similar ways. Analysis of a high-re-
solution global model would help to elucidate the possibility of geo-
graphically independent ratios of open-ocean SSS SFV.

The results presented above are region-specific. The results can be
generalized using the wavenumber spectral analysis, given a known
PSD power-law slope and y-intercept. Please see Appendix A for the
derivation of this generalized solution for oy. The results are presented
in Fig. 11, with region-specific SSS PSD slopes at our chosen footprint
sizes overlain for reference. As expected, oy decreases with decreasing
footprint size for any given spectral slope. Although we have only
analyzed two regions of the global ocean, the results demonstrated in
Fig. 11 (and derived in Appendix A) can be used to estimate oy for any
region given a known local PSD slope and y-intercept. It is also variable
independent, so while we present results using slopes and y-intercepts
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Fig. 9. Same as Fig. 8, but for oos (psu).
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Fig. 10. Estimates of sea surface salinity (SSS) subfootprint variability (SFV)
(psu) derived through integration of temporally averaged power spectral den-
sity (PSD) per Eq. (4) (oy) from subregions of the (a) Arabian Sea and (b)
western Pacific. The total value represents the integration of PSD over all ob-
served wavelengths (640 km-2km). The specified wavelengths represent the
magnitude of SSS SFV by integrating at and below that wavelength (e.g.
100 km-2 km). Percentages are the ratio of the SSS SFV magnitude derived for
each wavelength and the total value.

specific to Arabian Sea and western Pacific SSS, the method could be
applied to any geophysical parameter with PSD that follows a power-
law relationship (e.g. sea surface temperature).

From the perspective of current and future sampling techniques,
these results are encouraging. They suggest that even when using a
relatively coarse footprint (e.g. the 100 km footprint of Aquarius),

approximately 50% of the total synoptic variance is muted by the
footprint average. The finer 40 km footprint, typical of SMOS and
SMAP, limits approximately 70% of the variance. Moving towards
smaller footprints produces diminishing returns as a 20km (10 km)
footprint limits approximately 85% (95%) of the total variance. This
does not suggest that enhancing the resolution of the satellite is a
useless venture; a higher resolution product will allow the observation
of important physics (e.g. small mesoscales, submesoscales, storm-scale
freshwater puddles, etc.). The results suggest instead that increasing the
resolution beyond 40 km does not dramatically change the impact of
SSS SFV on the satellite error budget to the same extent that moving
from 100km to 40 km does. In Section 3.3, we compare the results
derived by the two different methodologies presented in Sections 3.1
and 3.2 to better understand the relationship between SSS SFV and
footprint size.

3.3. Comparison of SSS SFV estimates

050 and 095 were averaged over the same geographic domains over
which wavenumber spectral analyses were performed (Fig. 1) and
compared with the results derived in Section 3.2. These results are
presented in Table 1. In both domains and for all footprint sizes, ogs
produces the highest magnitudes followed by o5y and then oy. In
Table 1, although the decrease in magnitude with decreasing footprint
size is evident, it is not immediately obvious if the pattern is linear. To
the contrary, Fig. 11 suggests that o, has a nonlinear decline with de-
creasing footprint size. To better visualize the phenomenon, Fig. 12
provides a graphical representation of Table 1 in a log-log coordinate.
The optimal fit to each of the lines is a power-law relationship (Eq. (3)).
With respect to oy, this is not a necessarily surprising result. The SSS
PSD follows a power-law relationship between 100 km-10 km, and it
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(a) Arabian Sea

0 1 2 3 4 5 0 1 2
Spectral Slopes

Table 1

Arabian Sea and western Pacific sea surface salinity (SSS) subfootprint varia-
bility (SFV) (psu) estimates from the three different statistics examined. Ggs and
G5 are spatial means of 095 and 05 over the subregions of the Arabian Sea and
western Pacific shown in Fig. 1.

Arabian Sea Western Pacific

Gos G50 Ok Gos G50 Ok
100 km 0.22 0.11 0.07 0.12 0.05 0.04
40 km 0.17 0.07 0.04 0.1 0.03 0.02
20 km 0.14 0.05 0.02 0.07 0.02 0.01
10 km 0.1 0.03 0.01 0.05 0.01 0.004

1 (a) Arabian Sea

1 (b) western Pacific

100 40 20 10
(km)

Fig. 12. Sea surface salinity (SSS) subfootprint variability (SFV) (psu) derived
from each methodology (G55, G50, and oy for all the examined footprint sizes in
the (a) Arabian Sea and (b) western Pacific. Line colors and methods are
matched at the top of the bottom panel. 755 and 5, are spatial means of 05y and
095 over the same subdomains shown in Fig. 1 within which wavenumber
spectral analyses were performed. These data are also listed in Table 1. Dashed
lines of the corresponding color are power-law fits (Eq. (3)) to each set of data.

can be shown that this dictates that the slope of o must also follow a
power-law relationship with a derivable theoretical magnitude (see
Appendix A). Slopes of the least squares power-law fit to each line in
Fig. 12 are shown in Table 2. The Arabian Sea and western Pacific
observed and theoretical slopes of oy are comparable, though values are
appreciably different. This is likely due to the fact that the power-law
slope derived for PSD (Fig. 5) does not hold all the way to the Nyquist
wavelength. Coincidentally, the o5 slopes in both regions also compare

(b) western Pacific

Remote Sensing of Environment 233 (2019) 111365

Fig. 11. log(ox) (color) as a function of variable
spectral slopes and wavelengths in the (a) Arabian
2 Sea and (b) western Pacific. The black dots in each
subplot show oy at the 100 km, 40 km, 20 km, and
10km wavelengths and each region's sea surface
0 salinity (SSS) spectral slope per Fig. 5: 3.3 and 3.4 for
.1 the Arabian Sea and western Pacific, respectively.

Differences in magnitude between (a) and (b) are due

to the use of region specific y-intercepts in each cal-
-3 culation.

Spectral Slopes

Table 2

Slopes from least squares power-law fits to the data shown in Table 1 and
Fig. 12. Theoretical wavenumber derived slopes are listed in the bottom-most
column. Please see Appendix A for how the theoretical values were determined.

Arabian sea Western Pacific

595 G50 Ok 595 G50 Ok
Observed slope 0.34 0.63 0.87 0.36 0.63 0.93
Theoretical slope N/A N/A 0.65 N/A N/A 0.7

well with the theoretical slopes of o,. The Arabian Sea and western
Pacific oys slopes are flatter than both the o5 and oy values. Because all
three statistics, in both regions are well fit by a power-law relationship,
this suggests that the SSS SFV phenomenon as a function of footprint
size has a power-law scaling.

This finding is consistent with the observations made in Sections 3.1
and 3.2, wherein we noted diminished returns in reducing SSS SFV
beyond the 40 km footprint. The nonlinear relationship between SSS
SFV and footprint size observed here is also of note. It would be useful
to check the validity of this result using both observations and other
regional & global high-resolution simulations to see if it can be re-
produced in multiple open ocean scenarios. Fig. 11 suggests that the
phenomenon may be universal. With more robust validation, this
power-law relationship could be used to reduce the influence of SFV on
in situ — satellite mismatch in validation efforts.

4. Summary and conclusions

Model-derived estimates of SSS SFV have been generated in the
Arabian Sea and western Pacific using two different methodologies:
weighted subfootprint SSS standard deviation and wavenumber spec-
tral analysis. From the first method, two terms were derived: o5y and
09s. Both featured regional maxima (> 1 psu) along the continental
shelf near river mouths and shallow, evaporative semi-enclosed basins.
Open ocean values of both were much lower than in the coastal regions,
with magnitudes around 0.1 psu. ogs featured interesting line forma-
tions within footprint sizes of 20 km and 10 km. This phenomenon was
associated with strong SSS fronts that occurred infrequently during the
2016 model integration period.

Wavenumber spectral analysis produced similar results, but pro-
vided additional information. Using a 100 km footprint, approximately
50% of the synoptic SSS spatial variance is contained at scales larger
than the footprint. This ratio was approximately 70%, 85%, and 95%
for the 40 km, 20 km, and 10 km footprints, respectively. This suggests
a substantial decrease in SSS SFV between 100 km and 40 km, but di-
minishing returns below this value. This is encouraging, as both the
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SMOS and SMAP satellite use footprint sizes of approximately 40 km. also be that the median and 95th percentile SSS SFV show large gaps in

This is not to suggest that nothing can be gained by increasing the ef- magnitude (i.e. high SSS SFV variance), as the phenomenon was not
fective resolution of remotely sensed salinity products. New physical explored thoroughly here. Finally, these model-based solutions should
processes will be observed by a higher-resolution system. Our results be sanity checked against the best available observation-based esti-
merely suggest that SSS SFV becomes a much smaller source of in situ - mates to reach consensus on this important subject. With all of this
satellite mismatch below the 40 km footprint. This conclusion is ulti- additional information, the satellite community should then have the
mately driven by the observation of a nonlinear decrease in SSS SFV requisite knowledge to include a more sophisticated estimation of re-
with decreasing footprint size. Our results were best fit by a power-law presentation error produced by SFV in the salinity satellites' error
relationship no matter which methodology or statistic was used budget. However, in the intermediary, the results demonstrated in
(Fig. 12). Fig. 11 could be used as a method for estimating SSS SFV for any given

This preliminary work shows strong promise for correcting remotely footprint size, assuming the universality of a power-law distribution of

sensed SSS observations with respect to SSS SFV induced mismatch. A SSS PSD and by having some estimate of SSS PSD spectral slopes and y-
geographically dependent estimate of SSS SFV with a power-law decay intercepts on a global grid.
in magnitude could be built to approximate instantaneous SSS SFV

within a particular footprint. This important step cannot be taken Acknowledgements
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Appendix A

We desire a theoretical framework to determine the slope of the sea surface salinity (SSS) spatial variance as a function of wavenumbers
integrated along and under (k — knyquis). We observe a power-law scaling of the azimuthally averaged power spectral density (PSD) (Fig. 5)

y(k) =Db= k™ (A1)
where b is the y-intercept, k = [k + kyz, and m is the PSD slope when viewed as a log-log plot. We now insert Eq. (A.1) into Eq. (4):

O =4 jk' . S : bl—"kd6dlk a2

where k, is the Nyquist wavenumber. Integrated first with respect to 8, Eq. (A.2) yields:

o = | J 27bk!~mdk (A3)

Evaluating the indefinite integral with respect to k yields:

O = \/( 2mb )kz’m +C
2—-m (A4

Or = VBk* "M+ C (A.5)

where B now contains both the y-intercept and the multiplicative byproducts of the indefinite integration. We further assume that C = 0, a rea-
sonable assumption as gy — 0 when k — k,, which yields:

o = VBk™2 (A.6)

Converting from wavenumber to wavelength (/1 = %), we can now solve for a theoretical slope of 0y assuming some constant, power-law slope of
the PSD (m = 3.3 for the Arabian Sea in Fig. 5):

o = VBA5 ' = JBA5 ! = JBA°S (A7)

Table 2 shows how the theoretical values derived using Eq. (A.7) compare with the slopes derived from the least squares power-law fit to the data
shown in Table 1 and Fig. 12.
Additionally, if we evaluate Eq. (A.3) as a definite integral we obtain:

2mh
= k2m e Am
O \/ o P ) (A.8)

Converting from wavenumber to wavelength yields:

— “ 27Tb m—2 _ 3m=2
%= \/m—z(’1 A (A.9)

Results obtained using the region specific y-intercepts are shown in Fig. 11. Note that Egs. (A.8) and (A.9) provide a generalized method for
obtaining SFV estimates for any footprint size and any geophysical variable (e.g. sea surface temperature), assuming that the PSD of the variable
follows a power-law distribution.
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