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ABSTRACT

Most ocean data assimilation systems are tuned to process and assimilate observations to constrain features

on the order of the mesoscale and larger. Typically this involves removal of observations or computing av-

eraged observations. This procedure, while necessary, eliminates many observations from the analysis step

and can reduce the overall effectiveness of a particular observing platform. Simply including these obser-

vations is not an option as doing so can produce an overdetermined, ill-conditioned problem that is more

difficult to solve. An approach, presented here, aims to avoid such issues while at the same time increasing the

number of observations within the assimilation. A two-step assimilation procedure with the four-dimensional

variational data assimilation (4DVAR) system is adopted. The first step attempts to constrain the large-scale

features by assimilating a set of super observations with appropriate background error correlation scales and

error variances. The second step then attempts to correct smaller-scale features by assimilating the full ob-

servation set with shorter background error correlation scales and appropriate error variances; here the

background state is taken as the analysis from the first step. Results using a real high-density observation set

from underwater gliders in the region southeast of Iceland, collected during the 2017 Nordic Recognized

Environmental Picture (NREP) experiment, will be shown using the Navy Coastal Ocean Model 4DVAR

(NCOM-4DVAR).

1. Introduction

The horizontal resolution of modern ocean models

has increased significantly over the past decade. Model

resolution of 3 km for global- and basin-scale domains

and as high as 1km to 500m for coastal applications are

not uncommon. At the same time ocean observing

platforms have begun to provide high-resolution ob-

servations of near-surface currents (HF radar; Paduan

and Graber 1997), subsurface temperature and salinity

profiles (gliders; Rudnick et al. 2004), and, in the near

future, sea surface height (SSH) observations from

wide-swath altimeters (i.e., Surface Water and Ocean

Topography mission; Fu and Ubelmann 2014). How-

ever, despite the advancements in modeling capabilities

and observations, most operational data assimilation sys-

tems remain tuned specifically for constraining mesoscale
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features or larger (Cummings 2005). The inherent

problem going forward is, how can the data assimilation

and observation processing be altered so that it can

continue to constrain mesoscale features while also as-

similating high spatial density observations that may

contain information on a small-scale phenomenon?

There has been some work within the community

to address this so-called multiscale data assimilation

problem. One such method, focusing on the three-

dimensional variational data assimilation (3DVAR)

technique, is presented by Li et al. (2015a,b). Li et al.

(2015a,b) introduce a multistep assimilation approach

where the cost function is decomposed into specified

large and small scales. The decomposed cost functions

are minimized sequentially in order to constrain the

large scale using a coarse set of observations, while

dense observations are used to constrain small-scale

features. This system has been used with the Regional

Ocean Modeling System (ROMS; Shchepetkin and

McWilliams 2003, 2005; Marchesiello et al. 2001) to

support a coastal ocean observing system (Li et al.

2015a) with good success. This approach was adopted by

Miyazawa et al. (2017) for high-resolution satellite sea

surface temperature assimilation into an operational ocean

forecast system. AndMuscarella et al. (2014) extended the

method to the Navy Coastal Ocean Model (NCOM;

Martin 2000). A similar two-step analysis method was

adopted by Xie et al. (2011) for atmospheric forecasting

purposes and also by Xu et al. (2016), where idealized

comparisons to one-step analysis methods are performed.

It is generally believed, however, that a more ad-

vanced data assimilation method, such as the four-

dimensional variational data assimilation (4DVAR)

method, would be less affected by the multiscale issue.

This is because the 4DVAR is able to resolve fine

structures via the dynamic error covariance produced by

the action of the tangent linear and adjoint models.

However, even the 4DVAR method employs a static

error covariance at the initialization time (Li et al.

2015a); and in the case of the weak-constraint method,

throughout the integration of the tangent linear model

as well. There are two aspects at play here: the scales

represented by the covariance and the processing of

observations. It is true that the static covariance in

4DVAR is typically built with one prescribed length

scale, however, the action of the tangent linear and ad-

joint models recover all the scales present in the back-

ground model. This effectively makes the dynamic

covariance in 4DVAR multiscale by nature. The issue

arises with the processing of observations. Typically,

observations are reduced in number when one or more

observations are within a length scale distance of one

another; with the length scale defined by the static

covariance used in the 4DVAR. This is done because

dense observations can represent small-scale features

that typically have contradictory information (i.e., a

temperature innovation that is strongly positive within

close proximity to a temperature innovation that is

strongly negative). The adjoint handles this well; how-

ever, when the adjoint is convolved with the static co-

variance (with its large prescribed correlation length

scale) the result is noisy and unrealistic perturbations to

the tangent linear model. This can cause instabilities

within the tangent linearmodel and/or poor convergence.

To counteract this shortcoming in the 4DVAR

algorithm, a two-step assimilation process, similar to that

in Li et al. (2015a,b), is adopted for the NCOM-4DVAR

analysis system. For convenience this implementation

will be referred to as multiscale 4DVAR (MS-4DVAR),

whereas the standard 4DVAR will be denoted as STD-

4DVAR. This approach generates increments to the

large scale, while simultaneously preserving smaller-scale

features in the analysis increments, while also greatly

increasing the number of observations that are used in the

analysis. Thismethod is tested using theNCOM-4DVAR

and a set of high-spatial-density underwater glider ob-

servations collected during the Nordic Recognized

Environmental Picture (NREP) 2017 experiment.

Observations collected from six gliders during a 21-day

time period are assimilated using both the STD-4DVAR

and the MS-4DVAR assimilation methods. The ana-

lyses and resulting 24-h forecasts are compared against

the available glider observations.

It should be noted that there is more to the multiscale

data assimilation problem than the observation pro-

cessing and the assimilation procedure itself; however,

this is the focus of the present study. How best to define

the error correlation length scales of the ‘‘large’’ and

‘‘small’’ scales is important as this will play a large role in

the effectiveness of the multistep algorithms presented

by Li et al. (2015a,b) and this present study. Also, the

dynamical balance relationships change when going

from large to small scales; for example, balanced sub-

mesoscale currents cannot be sufficiently constrained

by the simple geostrophic approximation (Capet et al.

2008). Defining these constraints is important for

3DVAR and can be useful for 4DVAR as well. While

this present work introduces a framework within which

the multiscale assimilation can be done, solving these

other important questions is left for future studies.

In the next section the ocean model, base assimilation

system, and observations are introduced. Section three

provides a detailed description of the MS-4DVAR as-

similation procedure. Section four introduces the ex-

periment setup and provides a detailed description of

the results. Section five provides a recap of the problem,
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the findings from the experiment, and a few remarks on

future work.

2. Ocean model, observations, and the standard
data assimilation system

a. Navy Coastal Ocean Model (NCOM)

NCOM is the operational regional and coastal ocean

model for the U.S. Navy. For basin-scale applications

NCOM typically runs at roughly 3.5-km resolution; for

coastal applications the resolution can be as fine as

500m. NCOM is a primitive equation model and uses

the hydrostatic and Boussinesq approximations. The

model has a free surface and is configurable to have

terrain-following sigma surfaces overlaid on constant

depth-level surfaces in the vertical. This particular

model setup utilized the Mellor–Yamada level-2.5 tur-

bulence closure [as described by Kantha and Clayson

(2004)] and the Smagorinsky horizontal diffusion schemes

(Smagorinsky 1963). Lateral boundary conditions are

provided by the Global Ocean Forecasting System

(GOFS), which uses HYCOM at 1/128 horizontal reso-
lution and the Navy Coupled Ocean Data Assimilation

(NCODA) 3DVAR for data analysis. Surface atmo-

spheric forcing is provided by the Navy’s operational

global atmospheric model, the Navy Global Envi-

ronmental Model (NAVGEM; Hogan et al. 2014) at

3-hourly intervals.

The model domain for the experiments presented

here covers the North Atlantic between Iceland and the

upper United Kingdom, from 558–67.968N to 208W–

3.938E (Fig. 1). The model uses a spherical projection

with a horizontal resolution of 3 km with 50 levels in the

vertical (of which half are sigma layers) extending to a

maximum depth just past 4000m. At 3-km resolution, the

ocean model is not quite able to resolve submesoscale

features. This resolution was selected, however, to ease

the computational burden during the testing and evalu-

ation of theMS-4DVARmethod. A thorough evaluation

of the ability of theMS-4DVAR to properly includemore

profile observations than the standard configuration is not

affected by the choice of resolution, however, since the

error correlation length scale is largely responsible for

reducing the number of available profile observations to

the assimilation.

b. Glider observations

This model domain covers the region where the

NREP experiment is run from 31 May to 24 June 2017.

NREP17 deployed, among other devices, a series of six

underwater gliders (namedMaria, Noa, Dora Jr., India,

Rose, and Laura). These gliders were deployed within

the region known as the Iceland–Faroe Front (IFF), a

strong dynamical ocean feature that is formed by the

outflow of cold Nordic waters to the north and relatively

warm Atlantic water to the south (white box in Fig. 1).

It is here that relatively small-scale ocean features

(10–20 km) are generated along the strong temperature

gradient defined by the front, as shown by the model

sea surface temperature (SST; valid on 21 June 2017)

in Fig. 1. This provides a suitable test case for the

multiscale 4DVAR methodology since these scales are

smaller than the error correlation scale used by the

STD-4DVAR. During the early portion of NREP17,

from 31 May to 6 June, the glider deployment is mainly

focused on the Faroe–Shetland Channel (FSC; black

box in Fig. 1); the focus later changed to the IFF region

from 8 to 21 June. During NREP17, two of the gliders

(Laura and India) collected a relatively small number of

profiles, while one glider (Dora Jr.) collected observa-

tions far from the IFF and FSC regions. Because of this

the main focus of this work will be on the results gath-

ered from 8–21 June within the IFF region using three

gliders (Maria, Noa, and Rose).

Figure 2 shows the measurement locations for each of

the temperature and salinity profiles collected by the

subset of three gliders in the vicinity of the IFF. Figure 2a

shows each profile color coded for each individual glider

FIG. 1. NCOM domain used for this experiment. Model SST,

valid on 21 Jun 2017 (in 8C, values indicated by color bar), is shown

in color contours. Iceland–Faroe Front (IFF) region indicated by

white box; Iceland–Shetland Channel (ISC) region indicated by

black box.
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(with the model SST, valid on 21 June 2017, shown in

color contours). Figures 2b–d show the path of each

individual glider (colored by the date of each measure-

ment). The gliders within this region areMaria (Fig. 2b),

Rose (Fig. 2c), and Noa (Fig. 2d); the date of each

measurement is indicated by the color bar to the right of

each figure. This can be used in conjunction with the

temperature and salinity profiles collected from the in-

dividual gliders to ascertain when the gliders are cross-

ing the IFF. Figures 3–5 show each temperature and

salinity profile from gliders Maria (Fig. 3), Noa (Fig. 4),

andRose (Fig. 5). GliderMaria crosses the IFF on about

12 June, as indicated by its position in Fig. 2 and the

transition from warm and salty water to cold and fresh-

water; it crosses the front again after 18 June. Glider Rose

also crosses the IFF, on 15 June, though the transition is

from the opposite direction (cold/fresh to warm/salty).

Glider Noa’s transition is actually due to a change in

deployment location from the FSC region to the IFF

location. For the comparisons between the STD-4DVAR

andMS-4DVARanalyses, the transition across a frontal

zone shown in gliders Maria and Rose are particularly

useful and will be highlighted in the results discussion in

section 4.

c. Standard data assimilation system

The standard data assimilation system used in this

work is the NCOM-4DVAR. NCOM-4DVAR is a

weak-constraint analysis system based on the indi-

rect representer method of Bennett (1992, 2002) and

FIG. 2. (a) Location of each glider observation (color coded by the individual glider), overlaid on model SST (8C)
from 21 Jun 2017. (b)–(d) Individual glider paths within the IFF region (white box in Fig. 1) color coded by the date

of the measurement. The gliders that are shown are (b) Maria, (c) Rose, and (d) Noa.
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Chua and Bennett (2001). The system is described in

detail by Ngodock and Carrier (2013, 2014), and

Carrier et al. (2014) and a brief description is given

here. It is derived from the incremental formulation

of the variational cost function (Courtier 1997), time

dimension omitted for simplicity:

J(dx)5
1

2
dxTB21dx1

1

2
(Hdx2d)TR21(Hdx2 d) , (1)

where dx is the increment to the state variable, B is the

background error covariance, H is the observation op-

erator, and R is the observation error covariance. Here

d is the set of innovations defined as

d5 y2Hxb , (2)

where y is the observation set and xb is the model

background. The analysis increment dxa is added to the

background xb to form the analysis solution xa. It can be

shown that the so-called dual form of the solution for dxa

takes the form of

dxa 5BHT(HBHT 1R)21d . (3)

For the indirect representer method, the background

error covariance in (3) is expanded to four dimensions

(where the vector d now contains observation-model

innovations within a time window where xb and dxa

contain the entire model trajectory). This expansion is

done by including the action of the adjoint and tangent

linear operators, which are derived from the nonlinear

model M such that

dxa 5MSCST
MTHT(HMSCST

MTHT 1R)21d , (4)

where M is the tangent linear model operator, MT is the

adjoint model, and SCST
is a static error correlation C

symmetrically multiplied by the error standard devia-

tion S that describes the initial condition error or the

model error, depending on the portion of the state

vector it is applied. This static covariance utilizes an

error correlation model based on the implicit solution

of a diffusion equation (Weaver and Courtier 2001;

Carrier and Ngodock 2010). The NCOM-4DVAR is

capable of assimilating temperature, salinity, ocean

currents, and sea surface height information from a

number of different observing platforms at any frequency

FIG. 3. (a) Temperature and (b) salinity from gliderMaria along its travel path during the length

of the NREP17 experiment. Values are shown in 8C (temperature) and psu (salinity).
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in time. The system is embedded within the relocatable

NCOM system and utilizes the observation preparation

software available with NCODA.

3. Multiscale treatment of observations with
NCOM-4DVAR

STD-4DVAR data processing of spatially dense tem-

perature and salinity profiles proceedswith the assumption

that those data that are sufficiently close in time/space are

redundant, hence, the application of observation removal

within the processing. This observation ‘‘thinning’’ is

performed by the NCODA observation preparation

software. Ocean temperature profiles, for example, are

compared to each other spatially and within a temporal

bin (usually 3-hourly bins) by selecting the first profile in

the array and determining which other profiles are close

to it, as defined by the background error correlation

length scale. Those observations that are within this

radius are flagged as redundant and only the profile with

the deepest and most complete sampling (vertically) is

selected; the others are discarded. The algorithm then

moves to the next profile in the array (if it had not

already been removed) and the procedure is repeated

(this time using all the remaining nonflagged profiles).

For high-resolution models and observations, however,

removal of observations using a single definition of the

background error correlation length scale is inappro-

priate. This is because this processing assumes that the

selected profiles are representative of the scales for

which the data assimilation is tuned (usually mesoscale

or larger). Many times an observation is more represen-

tative of some small-scale feature, such as submesoscale

eddies or frontal folding. When these type of data are

selected for STD-4DVAR, or 3DVAR for that matter,

the small-scale information is aliased to the large scale,

which degrades the resulting forecast. The opposite can

be true, where large-scale information is aliased to the

small scale. Both instances are to be avoided in the

MS-4DVARprocessing and it is largely on these criteria

that the algorithm is designed.

MS-4DVAR follows the general two-step assimilation

methodology where a set of observations are assimilated

in the first step, then the resulting analysis is used as the

background for the second step [as in Xie et al. (2011)

and Xu et al. (2016)]. The primary goal here is that the

FIG. 4. As in Fig. 3, but for glider Noa.
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first step is used to assimilate observations in an attempt

to constrain the large-scale features, whereas the second

step is used to constrain small-scale features. The

MS-4DVAR algorithm is defined by examining the

analysis increment generated by a variational data as-

similation system,

dxa 5Kd , (5)

where d5 y2 Hxb as in (2) and K is commonly referred

to as the Kalman gain matrix, described by the following

equation:

K5BHT(HBHT 1R)21 . (6)

The covariance B is expanded as in (4) to define the

individual tangent linear, adjoint, and correlation op-

erators. The observations can be split into their mean

values y and the departures from those mean values ~y,

where the mean value is found by averaging each ob-

servation with the surrounding observations that fall

within a certain radius defined by the background error

correlation scale. If we do this, the innovations can be

written as

y1 ~y2Hxb 5 (y2Hxb)1 ~y . (7)

With (7), the ‘‘large scale’’ increment can be defined as

dxa 5Kd

5K(y2Hxb) . (8)

If (8) is allowed to converge completely, the ‘‘small

scale’’ increment can then be found as

fdxa 5K[y2H(xb 1 dxa)] (9)

since ~y5 y2H(xb 1 dxa) when (8) is fully converged.

This derivation makes three key assumptions or ap-

proximations. The first assumption is that (8) fully con-

verges; in practice this is not exactly the case. However,

if the observation error is sufficiently small and the first

assimilation step of the MS-4DVAR is well minimized,

this is approximately satisfied (i.e., the analysis residuals

are small). The second assumption is that the matrix K

is identical between (8) and (9); in practice they are

slightly different. While the operators M, MT, H, and HT

are identical, C is different from (8) to (9) as the error

FIG. 5. As in Fig. 3, but for glider Rose.
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correlation length scales are shorter in (9);S andSTmay

also be different (but this is not required). The change

made to C from (8) to (9) is done to ensure that the

tangent linear model is not initialized with noisy per-

turbations, which can arise from convolving an adjoint,

forced by spatially dense observations, with a static

covariance with a long correlation scale. The third and

final assumption is that the mean observations in (7)

occupy the same space as y; in practice, the mean ob-

servation set (y) is smaller than the full set y. The mean

observation set is found using an altered version of the

NCODA observation thinning algorithm. The alter-

ation made to the algorithm is that instead of removing

the redundant observations, they are averaged to-

gether to form a profile superobservation (whose lo-

cation is the average location of the profiles used). The

effect of this approximation on the solution is negli-

gible since the full mean observation set contains all of

the redundant information; it is this redundancy that

is removed in practice. The information that would

have been provided by these observations is still car-

ried to dxa via the assimilated profile super observa-

tions, maintaining the validity of (9). For the results of

the experiments to be clear, only the dense glider

observations are treated in the multiscale sense; the

satellite SST, along-track altimeter SSH, and other

profiles are only assimilated within the first step and

without averaging. This may result in the analysis

drawing too closely to the glider observations in the

second step. It can be argued, however, that the

background state used in the second assimilation step,

which is itself the analysis from the first step and in-

cludes the assimilation of satellite SST and SSH ob-

servations, acts as a constraint on this portion of the

assimilation in order to prevent this; this was not in-

vestigated in this study.

The overall cost of the MS-4DVAR algorithm is not

prohibitively more expensive than STD-4DVAR; in-

deed, it is roughly equivalent to the STD-4DVAR

when that algorithm employs two outer loops (which

is common). Because of the difference in the size of

the observation vector between the two assimilation

steps, the MS-4DVAR is roughly 1.5–2 times the

computational cost of one outer loop of STD-4DVAR.

On the Cray XC40 machines where these experiments

were run (using 96 processors) the MS-4DVAR aver-

aged 42min for each 24-h analysis–forecast cycle.

The static error covariance for the first assimila-

tion step is set with larger correlation scales (based

on the Rossby radius of deformation and scaled up to

25–30 km) and error standard deviation values are

based on innovations, calculated using the model

and mean observations, in an attempt to capture the

large-scale error. This is calculated as a RMS error

profile:

RMSE
k
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

n51

(y
n
2H

n
x)2

N

vuuut
, (10)

where k is the bin depth layer, N is the total number of

observations that fall within that bin depth layer, Hn is

the operator that maps the model solution to the ob-

servation location, and yn is the vector of mean profile

observations that fall with the kth bin. This error is

constant horizontally at each layer (with a maximum of

;1.58 for temperature and;0.5 psu for salinity). For the

second step in MS-4DVAR the error correlation scales

have been set to half that of the first assimilation step.

The error values have been computed using the same

formula as the first step, but using yn in place of yn. This

produces maximum error values of ;1.758C for tem-

perature and ;0.5 psu for salinity. Observation error is

included in both assimilation steps of MS-4DVAR.

Typically, NCODA adds a representation error to the

prescribed instrument error when processing profile

observations. This representation error is included in

this study and it attempts to account for the layer aver-

aging that is done to high vertical-resolution profile

observations within NCODA. The representation error

does not account for small-scale (large-scale) error in

the large-scale (small-scale) portion of the two-step

analysis (Li et al. 2015b) and this may result in obser-

vation overfitting. MS-4DVAR attempts to account for

this by how it treats the glider data in the two-step

analysis. Those individual gliders that are used to cal-

culate the superobservation in the first step, and are

similar to the superobservation itself, contribute mostly

to the large-scale analysis. In the second step, their in-

novations are small as the background state is the

analysis from the first step. Similarly, those gliders that

are unlike the superobservation have large innovations

in the small-scale analysis and contribute mainly to that

step. When both analysis steps are complete, the in-

crements from both the large-scale and small-scale

analysis are added to the full background to produce

the complete analysis solution.

Figure 6 shows the results of assimilating a subset of

profile observations from the NREP17 glider dataset

just to the east of Iceland. Using a 48-h assimilation

window the STD-4DVAR and MS-4DVAR produce

analyses that end at 0000 UTC 15 June 2017. Figure 6a

shows the temperature analysis increment from

STD-4DVAR (color contours) and the temperature

innovation (colored circle), from which the increment

is generated at 100-m depth at the end of the analysis.
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At this time, there are numerous glider profile obser-

vations available within the assimilation window; how-

ever, because of the NCODA observation thinning

algorithm, only one profile is used by STD-4DVAR.

Clearly the large-scale correlation operator plays a

substantial role here as the increment has relatively

wide spatial coverage. Figure 6b shows the tempera-

ture innovation and increment, this time from the

first assimilation step of the MS-4DVAR system.

Like STD-4DVAR, the first assimilation step of

MS-4DVAR has only one profile observation; how-

ever, unlike STD-4DVAR, this profile observation is a

superobservation formed from all the available profiles

in the immediate area. In Fig. 6b, the mean temperature

across a local front is close to the value of the model at

that location, creating a small innovation that contrib-

utes little to this portion of the MS-4DVAR analysis.

Figure 6c shows the increment from the second assimi-

lation step of the MS-4DVAR system using the in-

novations shown. In this case, the profile observations

are not averaged together and are assimilated as sepa-

rate profiles. It should be noted that the number of

profiles may still be reduced if two or more of these

profiles fall within a correlation scale length of each

other in the second assimilation step. In this case, the

profiles would be reduced in number as in STD-

4DVAR; however, the second step of the MS-4DVAR

uses much shorter correlation length scales and as such

fewer profiles are considered redundant (more profiles

are retained). These data have a substantial impact on

the analysis and indicate a small-scale feature with a

negative increment to temperature on the west side

and a positive increment to the east. Not coincidentally,

these observations are taken right along the IFF where

coldNordicwater from the northmeets warmGulf Stream

water from the south. This information is completely lost in

STD-4DVAR, as that system aliases localized information

to the large-scale increment. In MS-4DVAR, on the other

hand, the increment more accurately reflects the position

and magnitude of the front.

4. Experiment design and results

a. Experiment design

The MS-4DVAR and STD-4DVAR analysis imple-

mentations are compared to each other using the

aforementioned NREP17 glider dataset. The experi-

ments are run from 1 to 21 June 2017 using the glider

data in combination with other available satellite

SST and SSH observations. These SST and SSH data

are assimilated only in the first assimilation step of

MS-4DVAR. The assimilation window is 48 h and the

update cycle is repeated every 24h. The assimilation

window length of 48 h is selected due to tangent linear

model stability limitations for this domain. Observations

that fall within the first 24 h of the 48-h assimilation

window are reassimilated (i.e., same observations that

were assimilated in the last 24 h of the previous analysis

cycle). It is arguable that this may allow for observation

overfitting. However, this is mitigated by the fact that

the analysis of the previous cycle is used to calculate the

innovations within the overlap. Therefore, the innova-

tions that are calculated within the overlap are the re-

siduals of the previous analysis, are small in magnitude

(cf. the innovations from new observations), and

should contribute little to the overall cost function.

FIG. 6. (a) Temperature innovation (small colored circle) and increment (color-contoured region) from (a) STD-4DVAR, (b) first

assimilation step of MS-4DVAR, and (c) second assimilation step of MS-4DVAR at 100-m depth to the east of Iceland at 0000 UTC

15 Jun 2017. Values shown are in 8C.
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For STD-4DVAR the observations are processed through

the Navy’s operational NCODA data processing suite.

The static error correlation scales and error variance

values in STD-4DVAR are identical to those of the first

assimilation step ofMS-4DVAR. This results in a drastic

difference in the amount of glider observations that

make their way into the respective analyses. Figure 7

shows the number of glider profiles that are used during

each of the 21 analysis cycles for the STD-4DVAR

(dash–dot black line), the second step of MS-4DVAR

(black dashed line), and the total number of profiles

available (solid black). The number of profiles at each

analysis time is very small in STD-4DVAR when com-

pared to the second step of MS-4DVAR, sometimes by

an order of magnitude. For the second assimilation

step of MS-4DVAR, the number of profiles used in

each analysis is very close to the total number, but not

exact as some observations are still removed in the

second assimilation step if multiple profiles fall

within one correlation scale of each other. Overall,

the STD-4DVAR uses about 12% of the total avail-

able profiles; the MS-4DVAR uses nearly 91% of the

total available profiles.

b. Experiment results

The along-glider track temperature and salinity pro-

file figures shown earlier (Figs. 3–5) highlighted some of

the small-scale features that exist in the observations

(i.e., the temperature gradient across the IFF). It is

helpful to look at the analyses from the STD-4DVAR

and MS-4DVAR experiments in the same manner.

Figures 8 and 9 show the absolute difference between

the glider observations and the STD-4DVAR (top

panels) and MS-4DVAR (bottom panels) for tempera-

ture (left panels) and salinity (right panels) for gliders

Maria (Fig. 8) and Rose (Fig. 9). It should be noted that

most of these profiles are assimilated in the analysis for

MS-4DVAR and not for STD-4DVAR. With that in

mind, this comparison is still useful for two reasons.

First, it has been the assumption that STD-4DVAR re-

moves much of these data because they are considered

redundant, and it has been postulated in this work that

this is not always the case. Comparing these two analyses

in this manner will determine if this is true; that is, if the

FIG. 7. Glider profile count during each analysis cycle. All

available profiles are shown by thick black line, those selected for

assimilation in STD-4DVAR are shown in dash–dot black, and

those selected for assimilation by in MS-4DVAR (within the sec-

ond assimilation step) are shown in dashed black.

FIG. 8. Absolute difference between model analysis and glider observation (at the observation locations) using

glider Maria for (a) STD-4DVAR temperature, (b) MS-4DVAR temperature, (c) STD-4DVAR salinity, and

(d) MS-4DVAR salinity. Values are shown in 8C (temperature) and psu (salinity).
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analyses compare to the observations in the same

manner, then these data are, in fact, redundant and a

multiscale treatment is not needed. Further, examining

the analysis–observation differences along the glider

tracks highlight how well the MS-4DVAR is fitting the

observations using such a spatially dense dataset. This

comparison will clearly expose any erroneous or non-

physical increments generated by MS-4DVAR in the

vicinity of the IFF. Examining Figs. 8a and 8b, the two

analyses compare generally well for much of the glider

observations, and each analysis compares well to the

glider temperature data itself with most of the differ-

ences at or under 18C.However, in the vicinity of the IFF

(the temperature gradient seen in Fig. 3 around 12 June),

there is a marked difference between the two analyses.

The STD-4DVAR shows a substantial departure from

the glider temperature observations, with difference

values as high as 58C. This is due to the effect of the

large correlation scale used in the static covariance

(demonstrated in Fig. 6), which in turn prevents these

observations from being included in the assimilation.

The MS-4DVAR, on the other hand, does not indicate

such a departure with maximum difference with the

glider temperature peaking at about 28C. This indicates
that this information, providedby theglider, is not redundant

and can be captured accurately by the MS-4DVAR ap-

proach. Much the same is seen in the glider salinity differ-

ences (Figs. 8c and 8d) as well.

The same type of behavior is shown when examining

the along-glider track difference with Rose. Figure 5

indicates thatRose crosses the IFF around 15 June going

from Nordic to Atlantic waters. The STD-4DVAR

analysis does not capture this transition well, showing

temperature differences with Rose (Fig. 9a) above

48C, mostly in the deeper portion of the ocean

around 150–300-m depth. This would suggest that

the STD-4DVAR analysis is not capturing the slope

of the IFF at depth. The MS-4DVAR captures this

better with temperature differences (Fig. 9b) closer to

18–28C (and again, Figs. 9c and 9d, indicate similar be-

havior in salinity). The comparisons to Maria and Rose

show that the STD-4DVAR and MS-4DVAR do a very

good job of fitting the glider observations in regions

away from the IFF transition (as indicated by the very

low differences between the analyses and glider obser-

vations in these regions). This suggests that features in

these areas are well represented by large-scale error

covariance assumptions. However, along the IFF tran-

sition, only MS-4DVAR does well in capturing the

temperature and salinity structure and magnitudes.

To illustrate the scale of the frontal structures captured

by the MS-4DVAR, the analysis for both STD-4DVAR

and MS-4DVAR on 13 June 2017 for glider Maria is

highlighted. This is just after glider Maria moved across

the IFF fromAtlantic waters to colder Nordic waters (cf.

Fig. 8). Figure 10 shows the analysis temperature from

STD-4DVAR at 100-m depth at 0000 UTC 13 June

2017 (Fig. 10a), MS-4DVAR (Fig. 10c), the STD-

4DVAR temperature increment at the end of the anal-

ysis cycle that ended at 0000 UTC 13 June (Fig. 10b),

and the corresponding MS-4DVAR increment

(Fig. 10d). Figures 10a and 10c both show the glider

observations overlaid in colored circles (observations

from the time period of 11–13 June 2017); Fig. 10b has

FIG. 9. As in Fig. 8, but for glider Rose.
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the innovations (colored circles) used during the 13 June

analysis (innovations from the time period of 11–13 June

analysis window) for STD-4DVAR; and Fig. 10d shows

the same as Fig. 10b, but for MS-4DVAR. Figure 10a

shows (black arrow) that the IFF is too far south in the

vicinity of the glider observations in STD-4DVAR (cold

water indicated by the analysis, gliders show relatively

warmer water). This is not the case with MS-4DVAR, as

there is a warm tongue protruding northward in the

vicinity of the glider observations. This is explained by

examining the observations that were used in the anal-

ysis of both systems. Figure 10b shows that STD-

4DVAR only uses observations that are well north

and south of the Nordic–Atlantic water interface, with

the innovations indicating that the background state

already fits these observations well. MS-4DVAR

(Fig. 10d), on the other hand, is able to utilize all of

the glider observations that cross the IFF. In doing so,

FIG. 10. Model analysis fields at 100-m depth from 0000 UTC 13 Jun 2017 to the east of Iceland. (a) Temperature

from STD-4DVAR (with glider observations valid at this time shown in colored circles), (c) temperature from

MS-4DVAR, (b) corresponding temperature increment field from STD-4DVAR (with assimilated glider in-

novations shown in colored circles), and (d) temperature increment field fromMS-4DVAR (with assimilated glider

innovations shown in colored circles). Values are shown in 8C.
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the MS-4DVAR analysis is able to correct the model

background state and produce a temperature increment

that matches the data more closely.

The relative performance of each analysis can be ex-

amined statistically by comparing the analyses from

STD-4DVAR and MS-4DVAR to each glider obser-

vation throughout the experiment using the following

JFIT metric (Ngodock and Carrier 2014):

J
FIT
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m
xaj
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, (11)

where ym is the mth glider observation, Hm is the ob-

servation operator, xa is the analysis, sm is the obser-

vation standard deviation error, and M is the total

number of observations. The JFIT metric is based on the

notion that a data assimilation system should fit the as-

similated observations within the assumed observation

standard deviation. If JFIT is at or below 1.0 then the

resulting analysis has satisfied this criterion. Figure 11

shows the JFIT metric for the STD-4DVAR (black line)

and MS-4DVAR (red line) for temperature (top panel)

and salinity (bottom panel) as compared to all glider

observations that were included in the MS-4DVAR

analysis from 1 to 21 June 2017. The JFIT metric is

computed every 3 h (all observations that fall 61.5 h

around each bin time are used and defineM). Again, it is

noted that STD-4DVAR has not assimilated all of these

glider observations, therefore, it is not expected that

STD-4DVAR will have a JFIT value at or below 1.0;

however, as stated previously, this is a good indication of

how redundant the glider observations are: if the profile

observations that are removed in STD-4DVAR are

truly redundant with those that are retained, the JFIT
values of STD-4DVAR should be similar to that of

MS-4DVAR. For salinity, both STD-4DVAR and

MS-4DVAR do a good job overall with JFIT values

below 1.0 for both analyses throughout the experiment

time frame. For temperature, however, STD-4DVAR

exhibits high JFIT values past 10 June (when the gliders

are concentrated within the IFF region). Generally

speaking, the MS-4DVAR analysis fits all the observa-

tions within the observation error, indicating again that

this method does better in capturing the small-scale

features represented in the data. A more fair compari-

son would be to examine the analysis fit to observations

that are independent from both analyses. Figure 12

shows this, as nearly 10% of the total number of glider

profiles is not included in either analysis. Here the mean

absolute error (MAE) is computed, again every 3 h us-

ing observations at 61.5 h around each bin time. The

error values are very similar between MS-4DVAR and

STD-4DVAR for the time period prior to 10 June, be-

fore the gliders enter the IFF region. Once the gliders

begin sampling the IFF region, however, the MS-4DVAR

analysis exhibits generally lower error than STD-4DVAR

for both temperature and salinity, with temperature error

never exceeding 18C, whereas STD-4DVAR has errors as

high as 1.58C.
It is important to see if the gains in the assimilation for

MS-4DVAR have any appreciable difference on the

resulting forecast. It should be noted, however, that a

FIG. 11. JFIT metric [see Eq. (6)] for STD-4DVAR (black lines) andMS-4DVAR (red lines)

for (top) temperature and (bottom) salinity throughout the experiment time frame (1–21 Jun

2017). Values are computed by interpolating model analysis fields to glider observation loca-

tions. Gliders used in MS-4DVAR assimilation are shown here.
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superior forecast is desirable when updating a data as-

similation scheme, but not always possible. This is es-

pecially true for regional models, such as NCOM, where

lateral and surface boundary conditions also play an

important role along with the initial condition. In this

present study, forecasts from MS-4DVAR should rea-

sonably outperform those from STD-4DVAR in regions

where the feature scales are relatively small (i.e., in the

vicinity of the IFF) and where there are observations to

sample these features. Away from these locations, the

forecast fromMS-4DVAR should be very similar to that

from STD-4DVAR. To examine this the 24-h forecast

error is computed for forecasts generated from both the

STD-4DVAR and MS-4DVAR analyses. The MAE is

used again and this time the metric is computed every

24h (using those observations that fall at 612h around

each bin time). Figure 13 shows this for STD-4DVAR

(black line) and MS-4DVAR (red line) for temperature

FIG. 12. Mean absolute error (MAE) for STD-4DVAR (black lines) and MS-4DVAR (red

lines) for (top) temperature and (bottom) salinity throughout the experiment time frame (1–21

Jun 2017). Values are computed by interpolating model analysis fields to glider observation lo-

cations. Gliders not used in either experiment (i.e., independent observations) are shown here.

FIG. 13. The 24-h forecast MAE for STD-4DVAR (black lines) and MS-4DVAR (red lines)

for (top) temperature and (bottom) salinity throughout the experiment time frame (1–21 Jun

2017). Values are computed by interpolating model 24-h forecast fields to glider observation

locations. Gliders from 612-h window around each forecast time are used in comparison.
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(top panel) and salinity (bottom panel). As indicated by

the analysis error results, the forecast prior to 10 June

does not show much difference between the two experi-

ments; likely because of the nature of the observations

and the regions that are sampled. After 10 June, however,

the 24-h forecast generated from the MS-4DVAR ana-

lyses begins to show lower error than that generated from

STD-4DVAR in both temperature and salinity. This

difference becomes enhanced by the end of the experi-

ment, when the temperature forecast error from the

STD-4DVAR analysis approaches 1.08C, while the fore-

cast error from MS-4DVAR stays below 0.58C.
The lack of substantial differences in the forecast er-

ror can be partially explained by the nature of the ob-

servations used in themetric. Most of these observations

are provided by the NREP-17 gliders, which are largely

found either north or south of the IFF. Only briefly do

the gliders cross the IFF (see Figs. 2–5). In most of these

cases the forecast from theMS-4DVAR is similar to that

of STD-4DVAR mainly because the IFF had not yet

been sampled and assimilated byMS-4DVARuntil after

the gliders cross. There is one instance, however,

where a glider from the NREP-17 dataset crosses the

IFF twice: glider Maria. In this case, Maria transits the

front around 12 June 2017 and again after 18 June 2017.

It is after 18 June 2017 that the forecast MAE values

shown from the MS-4DVAR experiment in Fig. 13 be-

come discernably lower than that from STD-4DVAR.

The forecast from each analysis method can be com-

pared to the glider observations taken byMaria on these

dates in the same manner as shown in Figs. 8 and 9.

A final analysis (Fig. 14), shows the absolute difference

between the glider observed and closest-time model fore-

cast temperature (left panels) and salinity (right panels)

from the STD-4DVAR (top panels) and MS-4DVAR

(bottom panels) experiments. The forecast fields from

the STD-4DVAR analysis exhibit much higher differ-

ence with the Maria temperature and salinity observa-

tions than those from the forecast generated from the

MS-4DVAR analysis. This suggests that the previous

observations assimilated from glidersMaria,Noa, andRose

by the MS-4DVAR system helped to constrain the IFF in

the vicinity of these gliders better than STD-4DVAR. A

more definitive determination cannot be made, how-

ever, because of the lack of available independent ob-

servations. Overall, the forecast error time series

indicates that theMS-4DVAR analyses do not degrade

the forecasts relative to the forecast generated from

STD-4DVAR. In fact, the forecasts from MS-4DVAR

perform as well as those from STD-4DVAR and

slightly better in regions that exhibit smaller-scale

features and where there are observations to sample

these features.

5. Discussion and future work

As oceanmodels are run at finer resolution it becomes

necessary to constrain features at smaller scales. Ocean

observing platforms, such as underwater gliders and the

soon-to-be launched Surface Water and Ocean Topog-

raphy (SWOT) wide-swath altimeter, are now (or will

be) capable of collecting measurements that resolve

FIG. 14. Absolute difference between glider Maria observed and model forecast (a),(b) temperature and

(c),(d) salinity from (top) the STD-4DVAR experiment and (bottom) the MS-4DVAR experiment from

19 to 21 Jun 2017. A total of 35 glider Maria profiles are shown.
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these fine scales. Operational data assimilation algo-

rithms, on the other hand, are still tuned for mesoscale

features or larger. Li et al. (2015a,b) have done extensive

work on deriving a 3DVAR system that can constrain

small-scale features while still preserving the large-scale

increment. The work shown here has extended this

ability to the 4DVAR. Though the 4DVAR is able to

resolve fine structures via the dynamic error covariance

produced by the action of the tangent linear and adjoint

model, it is still hindered by the use of a static covariance

with a fixed correlation length scale. The multiscale

4DVAR approach, presented in this work, uses a multi-

step assimilation methodology to constrain small-scale

features while also maintaining the proper analysis in-

crement to the large scale. This is done by assimilating

an averaged observation dataset with large static cor-

relation length scales in the first assimilation step;

then, using this analysis as the background for the sec-

ond assimilation step, the MS-4DVAR assimilates the

nonaveraged observation dataset with shorter static

correlation length scales. The resulting analysis has

been demonstrated here to not only fit the observa-

tions as well as the STD-4DVAR, but can also rep-

resent small-scale features in the observations that the

STD-4DVAR method cannot. Further, there is a

substantial increase in usable profile observations

over STD-4DVAR when employing the MS-4DVAR

algorithm (91% of total profile observations for

MS-4DVAR vs 12% for STD-4DVAR in this exper-

iment). This increase in usable observations is signif-

icant when considering the cost in developing,

maintaining, and deploying profile-collecting assets

(such as gliders). Finally, the resulting 24-h forecast

from theMS-4DVAR is as good or, at times, better than

the forecast using an analysis from the STD-4DVAR.

This is especially true for the region near the IFF as seen

by the observations taken from glider Maria shown in

Fig. 14.

The issue of observation overfitting has been men-

tioned at various points in this study, as well as the po-

tential sources of overfitting (i.e., assimilation window

overlap, lack of synoptic observations in the second as-

similation step, and the lack of scale-based representa-

tion error in the two assimilation steps). It has been

discussed how MS-4DVAR attempts to account for

these potential problems, but a more thorough investi-

gation (using a twin-assimilation experiment setup) will

be conducted in future work.

A future paper is in preparation to use theMS-4DVAR

system to assimilate glider observations from a unique

network design. To more readily capture small-scale

effects (e.g., internalwaves) it has beenproposed tooperate

gliders in small coordinated teams. This deployment

strategy is well suited for the MS-4DVAR because of

the proximity of glider observations in both time and

space. NRL conducted such a field experiment off the

North Carolina coast in May of 2017. This future study

aims to evaluate the performance of MS-4DVAR using

this new deployment strategy.
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