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A B S T R A C T

Using a suite of Observing System Simulation Experiments (OSSEs), the utility of simulated Surface Water Ocean
Topography (SWOT) observations is estimated in a high-resolution (1 km) ocean analysis/forecasting system.
Sampling a Nature Run provides observations for the OSSEs and the realism of the Nature Run is established by
comparison to climatological data and an independent ocean analysis/forecast system. Each OSSE experiment
assimilated different sets of simulated observations including traditional nadir altimeters, satellite sea surface
temperature (SST), in situ profile data, and SWOT. OSSE evaluation metrics include area-averaged errors and
wavenumber spectra with the latter providing much finer differentiation between experiments. 100 m tem-
perature, sea surface height (SSH), and mixed layer depth (MLD) errors across the observed wavenumber spectra
were reduced by up to 20% for OSSEs assimilating the simulated SWOT observations. The minimum constrained
wavelength was found to be 130 km when both nadir altimetry and SWOT observations were used. The ex-
periment using only nadir altimetry produced a value of 161 km. This 31 km gain in skill of predictable scales
suggests that ocean forecasts can expect substantial gains in capability when utilizing the forthcoming SWOT
data. Experimentation with the analysis decorrelation length scale suggests that emerging multi-scale assim-
ilation methodologies will provide additional advancements in predictive skill.

1. Introduction

Numerous studies have documented the utility of altimetric ob-
servations of the ocean surface in generating mesoscale predictive skill
(e.g. Smedstad et al., 2003; Ananda et al., 2006; Jacobs et al., 2014a; Le
Traon et al., 2015). However, the current suite of nadir looking alti-
meters produces an ocean surface representation that is limited by
spatial and temporal sampling. Since Jason-2, at least two altimeter
sensors have been in orbit at any one time with their merged ob-
servations producing two dimensional grids of sea surface height (SSH)
that can resolve wavelengths of approximately 150 km and greater
(Ducet et al., 2000; Fu and Ubelmann, 2014). These estimates are sig-
nificantly coarser than the features present ocean prediction systems
can resolve. This observational deficit may soon be alleviated with the
launch of the Surface Water Ocean Topography (SWOT) satellite mis-
sion in 2021 (Fu and Ubelmann, 2014). The sensor is expected to collect
along- and across-track SSH observations at very high resolutions
(~1 km), allowing oceanographers to study previously under observed

phenomena on a global scale. This observational capability poses im-
portant questions to the ocean prediction community: what increases in
forecast skill can be expected by assimilating these data into a high-
resolution ocean analysis/forecasting system? Will the SWOT observa-
tions allow the assimilation system to constrain spatial scales below
that which is currently achievable using a constellation of nadir alti-
meters? The objective of this study is to determine how SWOT ob-
servations can change ocean predictability when compared to results
derived using only currently operating nadir altimetry.

A number of studies have tested the usefulness of simulated SWOT
observations for more narrowly focused hydrological and hydrographic
modeling (Andreadis et al., 2007; Durand et al., 2008; Biancamaria
et al., 2010; Yoon et al., 2012; Pedinotti et al., 2014; Munier et al.,
2015; Oubanas et al., 2018a, 2018b). Carrier et al. (2016) showed that
within a regional ocean 4DVAR data assimilation framework, simulated
SWOT observations significantly improved analysis/forecast skill with
respect to both the placement of mesoscale features and surface velo-
cities. The work presented here extends the resolution of the model
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system from 6 km to 1 km and quantifies the bulk error magnitudes and
resolved spatial scales. This is a critical expansion of experimentation as
a horizontal model resolution of 1 km allows the simulation to explicitly
resolve submesoscale processes with wavelengths O (10 km) (Capet
et al., 2008). These small-scale dynamics are important to accurately
represent and predict in numerical models because they have strong
impact on near surface dynamics (McWilliams, 2016), net ocean-at-
mosphere heat fluxes (Su et al., 2018), and biogeochemical processes
(Levy et al., 2012). The current set of satellite altimeters cannot observe
submesoscale features, and therefore regional models that explicitly
resolve submesoscales are unable to constrain the placement and evo-
lution of the phenomenon. SWOT will provide an important path for-
ward towards bridging this gap between model resolution and ob-
servational capabilities. This requires testing to quantify the range of
wavelengths the SWOT observations will allow the assimilation system
to constrain. Ocean forecasting systems have been designed for me-
soscale prediction (Cummings et al., 2009) and it is unclear if mesoscale
assumptions translate to submesoscale predictive skill even when uti-
lizing high-resolution data streams that explicitly resolve the phenom-
enon.

The material is organized by first describing the construction of an
Observing System Simulation Experiment (OSSE) (e.g. Halliwell et al.,
2014) in Section 2. A simulated truth, hereafter called NATURE, was
generated using a submesoscale resolving, non-assimilative model run.
NATURE was sampled at real observation locations and times for re-
motely sensed sea surface temperature (SST), in situ profiles, and sa-
tellite altimetry. SWOT sampling was derived using the SWOT simu-
lator. OSSEs deviate from NATURE through initial condition
perturbation. Different sets of simulated observations were assimilated
into each OSSE experiment. The errors in the OSSEs are evaluated in
Section 3 by comparison of area-averaged statistics and by wavenumber
spectra of errors. Section 4 considers the potential usefulness of emer-
ging data assimilation techniques based on results derived by adjusting
the analysis decorrelation length scale in an attempt to further utilize
the small-scale variability observed by SWOT in Section 3.

2. Methods

Ascertaining the utility of a remote sensing platform that is not
currently producing data requires the construction of a controlled la-
boratory environment in which simulated data, consistent with ex-
pected sampling, can be tested. This section documents the metho-
dology of the experiments: the numerical ocean model configuration
used by NATURE and each of the OSSE experiments (Section 2.1),
NATURE spin up and validation (Section 2.2), setup of the OSSEs
(Section 2.3), and the data assimilation methodology (Section 2.4).

2.1. Model system setup

The Navy Coastal Ocean Model (NCOM) (Barron et al., 2006) pro-
vided simulated three dimensional ocean fields, and we applied the
system within the western Pacific Ocean (Fig. 1a); a region that con-
tains a strong western boundary current, extensive continental shelves,
deep ocean basins, strong seasonal surface mixed layer variability,
strong mesoscale features in the deep ocean, submesoscale processes,
and interactions between all of these. NCOM integrates the primitive
equations forward in time using the hydrostatic and Boussinesq ap-
proximations. It features a hybrid σ/z vertical grid allowing for higher
vertical resolution in the near surface environment as well as terrain
following capabilities in the coastal ocean. A standard z vertical grid is
used at deeper layers and the transition from z to upper layer sigma
coordinates is a user input. For experiments here, 50 vertical layers
were used to a maximum depth of 4000 m with the σ/z transition oc-
curring at layer 25, corresponding to a depth of 120 m. At rest, the
surface sigma layer at its thickest is about 1 m, and layer thicknesses
progressively increase with increasing depth. In the horizontal, the

model resolution was set to 1 km, allowing NCOM to produce ocean
features with wavelengths down to O (10 km), which is a minimal re-
solution for representing submesoscale processes (Capet et al., 2008).
Using a model grid that can explicitly resolve submesoscale features
provides the ability to conduct an important hypothesis test: can as-
similating simulated SWOT observations into the high-resolution
system constrain features at submesoscale wavelengths? Using a model
grid any coarser than that chosen would preclude the rejection or ac-
ceptance of any such hypothesis.

Lateral ocean boundary conditions were provided by a double, one-
way nesting procedure. First, boundary conditions from the operational
global 1/12° HYbrid Coordinate Ocean Model (HYCOM) were provided
to the larger nest (113°E–136°E; 15°N–38°N) (Fig. 1a): a regional NCOM
simulation with a horizontal resolution of 3 km. Boundary conditions
were generated from the 3 km simulation and provided to the 1 km nest
(116°E–133°E; 18°N–34°N) (Fig. 1b). This approach was taken to miti-
gate numerical instabilities that can arise from interpolating boundary
conditions from a model at least 3 times coarser than the nested si-
mulation. Atmospheric forcing was provided by the NAVy Global En-
vironmental Model (NAVGEM) (Hogan et al., 2014). The forcing

Fig. 1. (a) Bathymetry (m) of the western Pacific Ocean domain used for the
larger 3 km nest (113°E–136°E; 15°N–38°N). The enclosed black box shows the
domain for the final 1 km nest (116°E–133°E; 18°N–34°N). (b) Surface relative
vorticity normalized by the Coriolis parameter from the 1 km NATURE run on
January 1, 2016. The black box denotes the square subregion over which wa-
venumber spectra analyses were performed.
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derived from this model has a horizontal resolution of 37 km and a
frequency of 3 h. Surface wind stress and precipitation were extracted
directly from the NAVGEM output. Latent and sensible heat flux were
computed by Coupled Ocean-Atmosphere Response Experiment
(COARE) version 3.0 (Fairall et al., 2003). Solar radiation provided by
NAVGEM was absorbed through the water column using a Jerlov water
type II (Jerlov, 1976). River in flow was introduced at fixed points
approximating the geographic location of large river mouths using the
NCOM river database (Barron and Smedstad, 2002). The final 1 km nest
included tidal forcing from the global Oregon Tidal Inverse Solution
(OTIS) (Egbert and Erofeeva, 2002). The tidal forcing was not included
in global HYCOM or the 3 km outer nest. Any analyses featuring either
SSH or velocity have had the barotropic tidal signal removed from each
variable through a post processing procedure. Nonetheless, this har-
monic analysis will inevitably miss incoherent baroclinic tides that have
non-tidal frequencies. This phenomenon is present in temperature and
salinity below the mixed layer, SSH, as well as surface and subsurface
velocities and will therefore be included in our error analyses. This
problem deserves attention as these waves are expected to “contain-
ment” balanced mesoscale and submesoscale SWOT observations
(Chavanne et al., 2010), but the subject is outside the scope of this
study. In all, we endeavored to produce a highly realistic system that
includes short time and small spatial scale variability representative of
the physical ocean and will therefore be present in the SWOT ob-
servations.

2.2. NATURE setup and validation

This section describes NATURE and a validation of NATURE sta-
tistics in comparison with climatological observations of the real ocean
and an independent assimilative ocean forecasting system. The 3 km
NCOM nest was initialized on November 1, 2015 and spun up until the
end of the month. The 3 km December 1, 2015 forecast was then in-
terpolated onto the final 1 km grid and used as the initial condition for
NATURE. NATURE was then spun up for the entirety of December 2015
to ensure that both mesoscale and submesoscale features had sufficient
time to properly develop. The simulation was then integrated forward
for an entire year with the complete time period being: January 1, 2016
to December 31, 2016. No data assimilation was applied to NATURE.

The completely unconstrained nature of this simulation could in-
troduce problems in the OSSE whereby the statistics of NATURE deviate
so far from the real ocean that conclusions gleaned from the experiment
may not be applicable to the physical world. For this reason, it is
common practice to validate the NATURE simulation to ensure that it is
sufficiently realistic (Atlas, 1997). The purpose of this procedure is not
to test the error of the solution in terms of how it exactly compares with
the real ocean at equivalent times. At any given time step, NATURE will
be quite different from the real ocean. Instead, we are testing to de-
termine if NATURE statistics are consistent with the statistics of the real
ocean.

To begin, surface temperature, mixed layer, and thermocline means
are analyzed. Qualitatively, the mean NATURE SST compares favorably
with both the observation-based Generalized Digital Environmental
Model version 4 (GDEM4) (Teague et al., 1990; Carnes et al., 2010) SST
climatology and the assimilative HYCOM 2016 annual SST mean
(Fig. 2). All three means have similar magnitude and comparable lo-
cations of large scale fronts, such as the Kuroshio western boundary
current that meets the coastal waters along the continental shelf. By
taking the area-averaged value at each time step of each dataset, the
seasonal cycle of NATURE can be validated (Fig. 2d). Both NATURE and
HYCOM deviate from the area-averaged GDEM4 climatology within
each month, with the model deviations from climatology being similar.
The seasonal cycle amplitude is consistent between the models and
climatology. The higher frequency events in the model time series are
similar and are responses to atmospheric events. Using a 0.2 °C tem-
perature criteria to derive mixed layer depth (MLD) produces a similar

mean spatial distribution from all three of the examined datasets
(Fig. 3). In the deep ocean, GDEM4 has slightly shallower MLD than
both NATURE and HYCOM. NATURE produces the shallow MLD along
the Kuroshio pathway evident in the GDEM4 data much better than
HYCOM. Across the annual cycle, NATURE and HYCOM track the
GDEM4 climatology closely, although mixed layers are generally
deeper in both simulations between January and the end of March
(Fig. 3d). Below the deepest regional mean MLD (~90 m; Fig. 3d),
100 m temperature provides a representation of the mean thermocline
structure (Fig. 4). The location of the Kuroshio front is in good agree-
ment between the three datasets and deep ocean magnitudes are highly
comparable. Through time, the NATURE spatial mean shows deviations
from both GDEM4 and HYCOM on the order of approximately 1 °C
between February and November (Fig. 4d). The seasonal cycle of three
datasets, however, are in good agreement. In all, these analyses suggest
that NATURE SST, MLD, and 100 m temperature means have similar
magnitudes, spatial distributions, and seasonal cycles to that of the
climatology of the real ocean.

Next, NATURE energy is evaluated. The mean surface eddy kinetic
energy (EKE) from NATURE compares favorably with drifter observa-
tions and assimilative HYCOM (Fig. 5). All drifter data collected be-
tween 1983 and 2009 were binned into 1° × 1° grid boxes. Only grid
points with at least 100 drifter observations were considered in the
temporal mean (Thoppil et al., 2011). The spatial distribution of mean
EKE is similar in all three datasets, but NATURE magnitudes are more
similar to that of the observations than HYCOM. This is most likely due
to model differences in horizontal resolution. Prior experiments have
shown that a model horizontal resolution of at least 3 km is required to
completely represent mesoscale dynamics (e.g. Hogan and Hurlburt,
2000). Spatially, the three datasets are highly consistent with higher
EKE in the deep ocean and along the pathway of the Kuroshio western
boundary current as well as lower EKE north of the current along the
wide continental shelf. Strong EKE seasonality is not observed and
despite differences in magnitude the two time-series have strong cor-
relation through time (Fig. 5d). 2016 annual NATURE SSH root mean
square (RMS) is evaluated against nadir altimetry observations and
assimilative HYCOM over the same time period (Fig. 6). All three da-
tasets feature comparable magnitudes. The points of maximum RMS in
each dataset are located primarily along the pathway of the Kuroshio
and to the east of the boundary current. South of approximately 20°N,
RMS values are lower in each. Overall, HYCOM compares most favor-
ably with the observations in terms of feature location as it assimilated
the altimeter data throughout 2016. The non-assimilative NATURE
does not produce local maxima in exactly the same locations as ob-
served, but the overall magnitude and general spatial pattern is con-
sistent with the observations. Finally, annual subsurface temperature
standard deviation along 21°N is examined (Fig. 7). All three datasets
produce depth maximum temperature standard deviation within the
top 150 m. Lower amplitude thermocline variability is present below
this level and the 1 °C standard deviation contour extends down to
approximately 500 m in NATURE and GDEM4. The same contour in
HYCOM is shallower, with a maximum depth of approximately 250 m.
In all, the NATURE temperature depth variance structure is more
comparable with the climatological data than HYCOM.

Overall, NATURE statistics are in good agreement with observations
and an assimilative ocean model. With this confirmation, NATURE was
used as a reasonable approximation of the real ocean and sampled to
provide simulated observations to the OSSE experiments. The NATURE
sampling, OSSE configuration, and data assimilation methodology are
described in the remainder of Section 2.

2.3. OSSE experiments

If the same model, horizontal resolution, initial condition, boundary
conditions, and surface forcing were used to generate the OSSE ex-
periments, an exact replica of NATURE would be created. Formally,
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Fig. 2. Mean sea surface temperature (SST; °C) of (a) NATURE (2016), (b) GDEM4 climatology, and (c) global HYCOM (2016). (d) Area-averaged NATURE, GDEM4,
and HYCOM SST for each of their respective time steps.

Fig. 3. Mean mixed layer depth (MLD; m) of (a) NATURE (2016), (b) GDEM4 climatology, and (c) global HYCOM (2016). (d) Area-averaged NATURE, GDEM4, and
HYCOM MLD for each of their respective time steps.
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OSSEs should utilize a completely different model run at a coarser re-
solution to represent errors in model physics and resolution limitations
(Atlas, 1997). The approach taken in this study, however, is to use the

same dynamical model and resolution and a realistically different initial
condition for the OSSEs. The hypothesis is that the new initial condition
is sufficiently different and that the processes inside the 1 km numerical

Fig. 4. Mean 100 m temperature (°C) of (a) NATURE (2016), (b) GDEM4 climatology, and (c) global HYCOM (2016). (d) Area-averaged NATURE, GDEM4, and
HYCOM 100 m temperature for each of their respective time steps.

Fig. 5. Mean surface eddy kinetic energy (EKE; cm2 s−2) of (a) NATURE (2016), (b) surface drifter observations (1983–2009), and (c) global HYCOM (2016). (d)
Area-averaged NATURE and HYCOM EKE for each of their respective time steps.
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simulation are non-deterministic so the NATURE and OSSE simulations
are realistically different from one another over the experiment time
period. There are many examples of successful experiments using this
methodology (e.g. Jacobs et al., 2014a; Li et al., 2015a; Carrier et al.,
2016). Ultimately, the study makes the strong hypothesis of a perfect
model, whereby having a perfect set of observations at all model grid
points would provide the perfect forecast. This removes an independent
variable from the OSSE error analysis (i.e. model error), and allows us
to focus on the impact of the different observation types. For the ex-
periments presented here, the OSSE initial condition was perturbed by
offsetting the initial condition by one year. The NATURE state on De-
cember 1, 2016 was used as the initial condition of the OSSEs starting
December 1, 2015. The validity of the initial condition perturbation
approach was tested by generating a parallel, non-assimilative experi-
ment using this new initial condition called the Free Run. The Free Run
was spun up for the entirety of December 2015 beginning with the
altered initial condition and then run out for all of 2016, which is the

same time frame as NATURE. The Free Run was then compared with
NATURE during 2016 to demonstrate that the two solutions do indeed
differ due to non-deterministic processes.

Fig. 8 shows mean absolute error (MAE) between NATURE and the
Free Run every 3 h for SSH, surface speed, and MLD at all grid points
within the simulation domain with water depth of at least 1000 m. Shelf
dynamics are largely deterministic, so we focus on deep water varia-
bility where mesoscale and submesoscale nonlinearities should cause
the two simulations to differ substantially over time. SSH errors oscil-
late around a RMS of 9 cm with a minimum of 5.5 cm and maximum of
12 cm (Fig. 8a). For reference, the RMS of NATURE SSH anomalies for
all of 2016 was calculated and found to be 13 cm. This suggests that
Free Run SSH errors with respect to NATURE are on average more than
half of the signal. Surface speed MAE features less variability around a
RMS of 20 cm s−1 (Fig. 8b). The RMS of NATURE speed anomalies are
found to be 25 cm s−1, which is very close to the Free Run error am-
plitude. Initially, MLD MAE is large (~30 m), but then a sharp decline

Fig. 6. Root mean square (RMS) of sea surface height (SSH; m) anomalies from (a) NATURE (2016), (b) gridded nadir altimetry (2016), and (c) global HYCOM
(2016). NATURE and HYCOM SSH anomalies were derived by removing each model 2016 mean SSH from every 3 h snapshot.

Fig. 7. Longitude-depth transect at 21°N of annual temperature standard deviation (°C) from (a) NATURE (2016), (b) GDEM4 climatology, and (c) global HYCOM
(2016). The solid-black line denotes the 1 °C standard deviation contour.
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in error is observed starting in March (Fig. 8c). This is not due to the
Free Run dramatically converging towards NATURE, but instead due to
seasonal variations in the mixed layer. Boreal winter is characterized by
deep mixed layers and therefore larger errors across the domain. As the
region transitions towards boreal spring and summer, stratification
increases in the near surface due to increased solar radiation and MLD
becomes shallower. This causes a natural reduction of error until De-
cember when the transition towards boreal winter causes mixed layers
to deepen again. The RMS of NATURE MLD anomalies was found to be
17.8 m and Free Run error RMS was found to be 32.7 m. The analyses
performed demonstrate that the use of a perturbed initial condition for
the Free Run causes it to differ from NATURE throughout the 2016
forward integration period with expected magnitudes. Thus, error re-
duction in the assimilative runs is attributed to assimilation and not a
steady decline in error due to the identical numerical model used in all
runs.

With confidence that the methodology outlined above does produce
a different solution, the next step was to sample NATURE to generate
simulated observations. For observational datasets currently in opera-
tion (SST, in situ, and altimetry), NATURE was sampled at real ob-
servation locations and times throughout 2016. Simulated SST and in
situ observations were assumed to be without error (i.e. no noise was
added to the sampled observations). Errors were not added to these
data because the impact of the altimetry data is desired. NATURE was
sampled at Jason-2, AltiKa, and CryoSat-2 mission observation loca-
tions and times, and error was added to the simulated observations
based on a random Gaussian distribution with a standard deviation of
3 cm. To generate simulated SWOT observations, we employed the Jet
Propulsion Laboratory's (JPL) SWOT simulator (Gaultier et al., 2016).
Version 2.0.0 of the simulator was used to sample NATURE on a 2 km
grid in both along- and across-track directions. NATURE was output in
netcdf format in 3 hourly time intervals. The SWOT simulator inter-
polated the model fields in space and time to obtain the simulated
observations on the SWOT grid along the 21-day repeat tracks. The
simulator includes functionality to add random realizations of

simulated error to the SWOT observations based on an estimated SWOT
error spectrum. These errors include KaRIN noise, roll error, phase
error, timing error, baseline error, and wet troposphere error (Gaultier
et al., 2016). These simulated errors are known to currently be con-
servative (i.e. expecting worst-case errors), especially for errors with
long wavelengths (i.e. roll, phase, and baseline errors) (Ubelmann et al.,
2018; https://spark.adobe.com/page/OKWKAikjWvm0E/). 5000
random realizations of simulated SWOT errors using version 2.0.0 of
the SWOT simulator were generated and found to have an error stan-
dard deviation of 6.5 cm (not shown). A proposed solution is to reduce
the magnitude of these strongly correlated errors by performing
crossover calibration (Ubelmann et al., 2018). With such large simu-
lated errors and with ongoing work being performed to optimize the
simulator, we chose to apply the same random Gaussian errors that
were applied to the simulated nadir altimetry data to the simulated
SWOT observations. Therefore, this experiment quantifies differences in
analysis/forecast skill due only to differences between altimetry and
SWOT sampling with a prescribed white noise level (i.e. resolution,
swath width, and sampling frequency).

2.4. Data assimilation

A 3DVAR data assimilation was used in the experiments in a manner
similar to that used in the operational global HYCOM system. While the
more advanced 4DVAR scheme is becoming more widely used in
oceanography, particularly in regional nests (e.g. Ngodock and Carrier,
2014), the 3DVAR provides a lower computational cost to enable us to
perform the multiple experiments run at such high resolutions. 4DVAR
systems are expected to provide greater skill and the magnitude of this
increased skill remains an important research problem for the future.
The Navy Coupled Ocean Data Assimilation (NCODA) system
(Cummings, 2005) was used for these experiments. Vertical correlations
of temperature, salinity, geopotential, and velocity were provided by
the Improved Synthetic Ocean Profile (ISOP; Helber et al., 2013). The
ISOP system is described more fully in the following paragraph. Data

Fig. 8. Mean absolute error (MAE) between NATURE and the Free Run at each 3 h time step in water depths > 1000 m for (a) sea surface height (SSH; m), (b) surface
speed (m s−1), and (c) mixed layer depth (MLD; m). NATURE anomaly root mean square (RMS) for all time steps in 2016 at all grid points with at least 1000 m water
depth is shown in the top left corner of each subplot. NATURE anomalies were derived by removing the NATURE 2016 mean from each 3-h snapshot. The RMS of the
NATURE minus Free Run time series is shown in the top right corner of each subplot.
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assimilation was performed daily at 00z, using the previous 24 h fore-
cast as the background to be updated. Available in situ, altimetric, and
SST observations 12-days, 5-days, and 12 h prior were collected for the
analysis, respectively. The temporal and spatial scarcity of the in situ
observations (e.g. Argo; http://www.argo.ucsd.edu/) dictate the longer
window when compared to the other observation types. Conversely, the
short 12-hour window used for SST is due to the relative ubiquity of
these observations. Using a 5-day observation window for the altimetric
observations might be too short to properly represent the mesoscale
field and too long to correctly fit transient submesoscale features. This
choice is a compromise based off prior results that tested different sets
of observation windows (Jacobs et al., 2014b). Section 4 elaborates on
how future work might search for an optimal window to accommodate
the different time scales of the mesoscale and submesoscale phe-
nomena. The 12-day and 5-day windows cause individual observations
to be assimilated on successive days, a practice that violates optimal
estimation theory. Using observations repeatedly, however, improves
assimilation performance and is a technique employed by a number of
different Global Ocean Data Assimilation Experiment (GODAE) systems
(Martin et al., 2007; Cummings et al., 2009; Jacobs et al., 2014a,
2014b). Innovations, or the difference between the background and
observations, were derived using the First Guess at Appropriate Time
(FGAT) method and used to minimize the cost function to achieve an
optimal increment (Cummings, 2005). A 6 h hindcast was performed to
incrementally insert the analysis correction. The increment was divided
by the total number of time steps in the 6-hour hindcast prior to the 00z
time of the analysis, and the divided increment was added to the model
tendency at each time step. Inserting the entire increment directly into
the full background at 00z can generate spurious gravity waves and
inertial oscillations that take time for the forward solution to damp out.
The incremental insertion method attempts to mitigate the develop-
ment of such motions and therefore provide an initial state with lower
energy in these extraneous features. Nonetheless, we did observe ana-
lysis steps that still featured these transient features (not shown), which
suggests some potential influence on our error analysis. Finally, back-
ground error variances are a function of the state variable, geographic
position, and depth and are based on the GDEM4 climatology. The
background error variances are not scaled by the decorrelation length
scale that is discussed in Section 2.4.1.

SST and in situ observations were used directly to generate in-
novations. Nadir altimetry and SWOT observations were treated in a
different manner. Using ISOP, altimetric observations were converted
into subsurface temperature and salinity anomalies using a one-di-
mensional variational analysis employing vertical correlations based on
a relatively coarse set of in situ observations of mesoscale processes.
Climatological temperature and salinity provide additional constraint
and allow for full temperature and salinity profiles. The ISOP climato-
logical temperature and salinity were derived from in situ observations
collected by the Navy's Master Oceanographic Observation Data Set
(MOODS), World Ocean Database (WOD) 2005, and delayed-mode
Argo (Helber et al., 2013). The synthetic temperature and salinity were
then used to generate innovations, and ultimately increments. The most
important ISOP variational constraint is to steric height anomaly, not
SSH anomaly. Generally, SSH and steric height are strongly correlated,
but many processes cause discrepancies (e.g. wind-driven, high-fre-
quency barotropic flows). Because our experiments were conducted in a
controlled environment, we optimized the process by sampling
NATURE steric height anomalies instead of SSH anomalies. NATURE
steric height referenced to 1000 m was calculated and the GDEM4 mean
steric height field was removed to generate anomalies.

2.4.1. Analysis decorrelation length scale and super-observations
An important element of the 3DVAR assimilation procedure is the

analysis decorrelation length scale (i.e. decorrelation length scale of the
background error). The parameter controls the length scale over which
analysis increments are spread. A few factors motivate the magnitude of

the decorrelation length scale. A numerical grid represents physical
features that are approximately 10 grid points in size. Hence, the system
should not attempt to correct features that the model cannot reasonably
represent, and this dictates a lower bound on the scale. Additionally,
the assimilation system should correct features that are believed to be
the primary error sources. Historically, these have been mesoscale ed-
dies (Cummings et al., 2009). The Rossby radius of deformation de-
scribes the length scale for which planetary vorticity is primarily ba-
lanced by pressure (i.e. geostrophy) and therefore provides a
convenient, physically relevant constraint for fitting mesoscale features.
Thus, the decorrelation length scale is often taken to be related to the
deformation radius (Cummings, 2005). These considerations have
worked in concert in the past.

The SWOT observations provide information on scales below the
deformation radius and therefore considerations must be made to deal
with the high density of these data with respect to the decorrelation
length scale. As more observations cluster within a decorrelation length
scale, the computational cost of the observation preparation and de-
riving the minimization increases and in an extreme case could cause
the solution to never converge due to practical limitations (e.g. round
off errors). Additionally, the nadir altimeter and SWOT surface ob-
servations are converted into synthetic temperature and salinity profiles
by the ISOP system. Vertical representation error becomes problematic
as more small-scale information is introduced into the assimilation by
the high-resolution observations that SWOT provides. ISOP is based off
a mesoscale climatology, which does not accurately represent smaller-
scale phenomena such as balanced submesoscales and internal gravity
waves that are explicitly represented in our modeling framework (and
thus also within the observations sampled from NATURE). These issues
provide motivation to thin the observations.

There are two approaches to reducing the number of observations.
One is thinning that simply selects a subset of the available observa-
tions. The second approach is through the creation of a ‘super-ob-
servation’, whereby a weighted average is derived over the local ana-
lysis decorrelation length scale and treated as the true observation to be
assimilated. The latter methodology is used in this experiment. The
weighting is Gaussian using distance from the centroid of the data going
into the super-observation with an e-folding scale of the local analysis
decorrelation length scale. A simple observation operator maps the
control variables from the nearest model grid point to the centroid over
which the super-observation was created to calculate innovations. The
super-observation reduces observation error and maintains features
larger than the decorrelation scale. Therefore, the super-observation
produces an observation that is consistent with the analysis scales and
the types of physics that ISOP is able to reproduce.

For SST, a set of super-observations was derived and passed directly
to NCODA for assimilation. For nadir altimetry and SWOT data, a set of
super-observations was derived and then passed to ISOP to generate
synthetic temperature and salinity profiles at the centroid of the data
over which the super-observation was taken. This drastically reduces
the number of observations that are assimilated into the system (Fig. 9).
The full observation set (Fig. 9a–b) includes SWOT observations on a
2 km along- and across-track grid. Fig. 9c–d shows how using a mean
15 km decorrelation length scale affects the volume of observations
after super-observations are constructed. Using a larger average ana-
lysis decorrelation length scale (30 km; Fig. 9e–f) results in a smaller
number of super-observations.

The errors incurred by inferring synthetic temperature and salinity
using the default 30 km decorrelation length scale super-observations
(Fig. 9e–f) of steric height anomalies between January and March 2016
are shown in Fig. 10. Error in the observed steric height anomalies were
taken into account when the ISOP synthetics were created. Thus, the
ISOP errors shown in Fig. 10 are a function of both measurment error
and fitting imperfect temperature and salinity profiles. For both tem-
perature (Fig. 10a) and salinity (Fig. 10b), the comparison between
NATURE and ISOP synthetic data fall primarily along the 1:1 line.
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Fig. 9. (a) Full set of simulated nadir altimeter and SWOT observations over an example 5-day observation window. (b) Zoom in of the simulated nadir altimeter and
SWOT observations over the subregion highlighted by red in (a). The full set of data was thinned using the super-observation technique over a mean analysis
decorrelation length scale of (c–d) 15 km and (e–f) 30 km. Synthetic temperature and salinity profiles were not created for water depths < 150 m causing those
surface observations to be absent in (c–d) and (e–f).

Fig. 10. Log-scale scatter diagram of (a) NATURE temperature vs. ISOP synthetic temperature and (b) NATURE salinity vs. ISOP synthetic salinity. Probability
density of (c) ISOP temperature errors and (d) ISOP salinity errors.
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Temperature statistics show that ISOP synthetic profiles have a MAE of
0.63 °C and an error standard deviation of approximately 1 °C
(Fig. 10c). ISOP synthetic salinity profiles have a MAE of 0.06 psu and
an error standard deviation of 0.08 psu (Fig. 10d). These errors are
consistent with prior validation comparing ISOP derived synthetic
temperature and salinity with in situ observations (Helber et al., 2013).
The non-Gaussian distribution of both temperature and salinity errors is
an undesirable result, but further investigation of this issue is outside
the scope of this work.

3. Results

Table 1 provides a brief summary of each of the different experi-
ments conducted, differentiated by the types of data incorporated into
the daily analysis cycle. Four OSSE experiments were performed and
evaluated: the Free Run, Altim, SWOT, and Altim + SWOT. All four
OSSEs started with the same initial condition on December 1, 2015 by
using the state from NATURE on December 1, 2016. All experiments
were integrated forward without assimilation to January 1, 2016.
Starting January 1, 2016, cycling assimilation was performed every
24 h, with the exception of the Free Run which did not assimilate any
information. The Altim run assimilated SST, in situ profiles, and tra-
ditional nadir altimetry. The SWOT experiment is similar to Altim ex-
cept that it assimilated SWOT data instead of nadir altimetry data. Fi-
nally, Altim + SWOT assimilated all possible observation types used in
this study. The assimilative OSSEs (Altim, SWOT, and Altim + SWOT)
used the default mean decorrelation length scale of 30 km for the initial
set of results shown in Sections 3.1 and 3.2. Each OSSE was integrated
forward until March 31, 2016 and then evaluated relative to NATURE.

Error statistics were computed for three variables: SSH, MLD, and
100 m temperature. SSH defines the surface pressure field and is a
depth-integrated quantity approximating the underlying baroclinic
structure that is primarily controlled by mesoscale processes, but is also
influenced by smaller-scale variability such as balanced submesoscales
and internal gravity waves. MLD is a complicated variable that is a
function of both large-scale forcing and local frontogenesis. Model skill
with respect to this variable is essential for accurately representing
oceanic variability and air-sea exchange. Finally, 100 m temperature
provides an estimate of internal ocean variability. The maximum mean
depth of the mixed layer in this region is < 100 m (Fig. 3), which allows
the use of 100 m temperature to quantify model skill with respect to
thermocline variability. Deeper variables (e.g. 1000 m temperature)
could also be considered. However, balanced submesoscales are pri-
marily confined within the mixed layer and upper thermocline
(Bachman et al., 2017), and therefore any deep-water analysis would
feature only mesoscale and internal gravity wave variability. Using
these surface and near surface variables allows us to focus on the widest
continuum of ocean physics present in this modeling framework. The
comparison of results begins with area-averaged errors to gain a broad
view of model skill, and then the evaluation focuses on wavenumber
spectra to determine constrained spatial scales.

3.1. Area-averaged errors: 30 km decorrelation length scale

Fig. 11 shows MAE between NATURE and each OSSE for 100 m

temperature, SSH, and MLD. The MAE includes information at a loca-
tion only if the water depth is at least 1000 m. The Free Run errors are
consistently higher than any of the assimilative experiments for all
three variables tested. As the assimilation process begins on January 1,
a sharp decrease in errors is observed for both 100 m temperature and
SSH. The initial rate of error decrease correlates with the quantity of
observations used in the assimilation process. In the SSH MAE, the
Altim + SWOT errors decrease most rapidly followed by the SWOT
experiment. Because SSH is a direct observation, this provides ver-
ification that the quantity of data is constraining the system more ra-
pidly. By January 11, the Altim experiment error levels are roughly
equivalent to those of the SWOT and Altim + SWOT experiments. All
three assimilative experiment error levels then oscillate around a MAE
of 0.65 °C for 100 m temperature and 5 cm for SSH. With respect to
MLD, the assimilative experiment errors are generally lower compared
to the Free Run, but the difference between the Free Run and the as-
similative run MAE is smaller than the other variables.

3.2. Wavenumber spectra: 30 km decorrelation length scale

The bulk statistics do not finely differentiate the observation system
impacts. The spectra of ocean variables tend to be red and it is not
possible to determine if smaller scales are more accurately represented
by the area-averaged errors. Therefore, we quantify the wavelengths
that are constrained within the OSSEs through wavenumber spectral
analysis. Two dimensional power spectral density (PSD) was calculated
for each 3 hour time step in the square subdomain shown in Fig. 1b. The
time series of two dimensional PSD was then averaged into a single two
dimensional field in kx, ky wavenumber space. The time-averaged PSD
was then averaged radially to produce a one dimensional spectrum. The
time and space averaged 100 m temperature, SSH, and MLD NATURE
spectra for 2016 are shown in Fig. 12. All three variables have an un-
broken cascade of PSD from the largest observed scale (640 km) down
to the Nyquist wavelength (2 km). Each variable has a different spectral
slope between the 200 km and 10 km wavelength range. SSH produces
the steepest slope, followed by 100 m temperature, and then MLD.
These slopes are consistent with previous studies that examined the
same variables at comparable model resolutions (Capet et al., 2008;
Richman et al., 2012).

Spatial gradients accentuate small-scale variability. Temperature is
heavily influenced by horizontal stirring caused by mesoscale and
submesoscale velocities; the horizontal gradient of SSH being a rea-
sonable approximation of the velocity vector. Therefore, 100 m tem-
perature PSD has a flatter slope as much of its spatial variability is tied
to intermediate to small-scale horizontal motions. MLD is driven by
mesoscale and submesoscale processes controlling stratification, stir-
ring, and frontogenesis; the latter being responsible for convergence/
divergence along eddy fronts. The frontal processes are a derivative
quantify of the horizontal velocity and buoyancy fields. MLD is there-
fore characterized by even greater small-scale variability and subse-
quently has a flatter slope than both SSH and 100 m temperature. These
dynamics will be important considerations later when discussing the
ramifications of 3DVAR data assimilation in this high-resolution mod-
eling environment. The spectra of many other oceanic variables could
be analyzed as well. For example, kinetic energy, an important metric,
could be analyzed, but due to the nature of our assimilation method of
fitting temperature and salinity synthetics, velocity is indirectly altered
by corrections in surface and subsurface pressure (i.e. through geos-
trophic correlations). Therefore, any error trends in the pressure field
will simply be extrapolated onto the resulting velocity. In the subsur-
face, temperature and salinity primarily act as passive tracers and
therefore have similar spectral slopes (not shown). For these reasons,
redundancy in the results is reduced by focusing on 100 m temperature,
SSH, and MLD, which are each controlled by a unique set of physical
processes.

Conceptually, we separate the wavenumber space into two domains:

Table 1
Description of OSSE experiments differentiated by the types of data that were
assimilated.

SST In situ Altimeter SWOT

NATURE None None None None
Free Run None None None None
Altim On On On None
SWOT On On None On
Altim + SWOT On On On On
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larger scales (small wavenumbers) that are constrained by the available
observations and smaller scales (larger wavenumbers) which are un-
constrained. An appropriate assimilation should place constrained
OSSE features in locations and times that are similar to those in
NATURE. The spatial scales constrained by each OSSE may be de-
termined more clearly by differencing fields of each OSSE from
NATURE, which provides the error in the OSSE. The amplitude of the
errors in the constrained features should be reduced below the

amplitude of the features, and the spectral energy should also be re-
moved from the constrained scales in the PSD of the errors. At small
scales, unconstrained features in the OSSE experiments will not be at
the same locations and times as in NATURE. The result is that ampli-
tudes of errors at unconstrained scales become greater than the am-
plitude of the features and spectral energy is increased in the un-
constrained scales of the PSD of the errors. We can observe this effect
most clearly by normalizing the error spectrum:

Fig. 11. Mean absolute error (MAE) between NATURE and each experiment at all grid points with at least 1000 m water depth at each 00z time step for (a) 100 m
temperature (°C), (b) sea surface height (SSH; m), and (c) mixed layer depth (MLD; m). See Table 1 for descriptions of each experiment.

Fig. 12. NATURE wavenumber spectra averaged over all time steps in 2016 for mixed layer depth (MLD; m2/cpkm), 100 m temperature (°C2/cpkm), and sea surface
height (SSH; m2/cpkm). The indicated spectral slopes were derived over the 200 km–10 km wavelength range.
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,
OSSE

NATURE OSSE (1)

where εOSSE is the PSD of the error (NATURE minus OSSE), γNATURE is
the PSD of NATURE, γOSSE is the PSD of the OSSE, and brackets denote
the mean of the two spectra. This normalization creates a convenient
metric for measuring the error of each experiment as a function of
spatial scales. At a particular wavenumber, if the normalized value is
zero, NATURE and the respective experiment share exactly the same
features in that spatial scale. If features are completely unconstrained,
OSSE and NATURE features are uncorrelated random variables and the
PSD of the error is the sum of the PSD of the OSSE and NATURE. Thus, a
normalized PSD value of 2.0 implies that the assimilation has not im-
pacted features at that particular spatial scale. A normalized PSD value
of 1.0 indicates that the correlation between the OSSE and NATURE is
0.5, and we define this value as the separation point between con-
strained and unconstrained spatial scales.

The spectral analyses were derived for the four OSSE experiments
during the month of February (N = 232 time steps). The results contain
several trends (Fig. 13). The Free Run performs the worst with respect
to all three variables (100 m temperature, SSH, and MLD) with a nor-
malized PSD below one at only the largest of spatial scales. For 100 m
temperature, the Altim experiment produces the next highest errors
(Fig. 13a). Both SWOT assimilating experiments have lower errors and
cross the normalized PSD threshold of 1.0 at lower wavelengths than
the other OSSE experiments. We quantify the performance of each OSSE
by evaluating the ratios of integrated spectra:

dk

dk,
k

k
OSSE

k
k

NATURE OSSE

min
Nyquist

min
Nyquist

(2)

where k denotes wavenumbers, kmin is the minimum resolved wave-
number (1/640 km−1), and kNyquist is the Nyquist wavenumber (1/
2 km−1). As the assimilation more accurately accounts for more of the
features in NATURE, this value should trend towards zero. Table 2
provides a summary of the ratios, and is consistent with the prior
analysis. For 100 m temperature, experiments that assimilated

simulated SWOT observations contain less error than both the Free Run
and Altim experiments with the SWOT experiment producing the
smallest value, which is a 23% decrease in error over the Altim ex-
periment.

Analyses of SSH results in similar conclusions. Visual inspection
shows that both experiments using the simulated SWOT observations
outperform the Free Run and Altim experiments (Fig. 13b). SSH ratios
of integrated spectra, per Eq. (2), demonstrate that the SWOT experi-
ment again performs best with a 19% decrease in error over the Altim
experiment (Table 2). Finally, the same analyses are performed for
MLD. This variable is the least constrained of the three tested with the
Altim, SWOT, and Altim + SWOT producing similar normalized spectra
(Fig. 13c). The ratio of integrated spectra shows that the reduction in
error in the two SWOT experiments is only 2% when compared to the
result from the Altim experiment (Table 2).

Finally, the smallest wavelength at which the normalized spectra
cross the 1.0 threshold is determined for each OSSE and for each
variable (Fig. 14). For 100 m temperature (Fig. 14a), the Altim ex-
periment constrains wavelengths down to 161 km, a 28 km improve-
ment over the Free Run. The SWOT experiment constrains wavelengths
down to 145 km and the Altim + SWOT experiment down to 130 km.
This result shows that the experiment using both current nadir alti-
metry and simulated SWOT observations constrains an additional
31 km over the experiment utilizing only nadir altimetry. This is sig-
nificant, as it approaches the deformation radius for this geographical
region (~50 km) (Chelton et al., 1998). Again, the analysis of SSH
produces similar results (Fig. 14b). The Altim + SWOT experiment
produces the lowest minimum constrained wavelength of 139 km, a
value slightly higher than that produced when analyzing 100 m tem-
perature. MLD produces the largest minimum constrained wavelength
of 323 km (Fig. 14c). In each case, the OSSEs that include simulated
SWOT observations produce the smallest minimum constrained wave-
length. Therefore, the results indicate that including SWOT observa-
tions in a highly realistic cycling forecast/analysis system does produce
an advancement in forecast skill.

Fig. 13. Normalized wavenumber spectra of (a) 100 m temperature, (b) sea surface height (SSH), and (c) mixed layer depth (MLD) differences from NATURE. See Eq.
(1) for more information on the normalization scheme.
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3.3. Area-averaged errors and wavenumber spectra: 15 km decorrelation
length scale

Gaultier et al. (2016) and Ubelmann et al. (2015) found that two-
dimensional fields of SWOT SSH constructed using optimal and dy-
namic interpolation respectively can resolve scales of 100 km and less.
These interpolation schemes are difficult to compare to the combined
variational assimilation/primitive equation forecasting performed here.
The approach we use relies on dynamic extrapolation into the future
from an initial condition. The interpolation schemes, however, benefit
from a set of observations prior and posterior to the mapping time.
Regardless, SWOT observations clearly contain information on scales
smaller than those shown to be constrained by the analysis/forecast
system in our first set of experiments (Fig. 14). This prompts a second
set of experiments in which the assimilation settings were altered in an
attempt to further utilize the high-density SWOT observations.

In our experiments, the horizontal resolution of the forward model
is 1 km, and the model can therefore represent scales smaller than the
regional Rossby radius of deformation (~50 km; Chelton et al., 1998).
In addition, the SWOT observations resolve much smaller scales in two
dimensions than the nadir altimeters. This transition to both higher
resolution models and observations motivates that the long held me-
soscale assumptions built into the current analysis/forecast systems be
challenged (e.g. the decorrelation length scale as a function of the de-
formation radius). In this section, the SWOT and Altim + SWOT ex-
periments were repeated with a mean analysis decorrelation length
scale of 15 km. The effects of changing the decorrelation length scale on
thinning show more of the data are retained within the analysis

(Fig. 9c–d). The less severely thinned data were used to obtain different
ISOP temperature and salinity synthetics over a larger set of geographic
locations. This should ultimately bias the analysis towards the smaller
scale features present in the high-density SWOT data and potentially
allow the system to constrain a larger set of wavelengths.

Area-averaged errors and wavenumber spectra were recalculated
for the updated analysis/forecast fields to quantify improvement in
skill. The Altim experiment was not altered and therefore serves as a
useful reference between the previous results using a larger analysis
decorrelation length scale (30 km) and those shown in this section using
a shorter analysis decorrelation length scale (15 km). Compared with
the experiments run with the larger 30 km decorrelation length scale,
we observe a slight increase in area-averaged errors for 100 m tem-
perature and SSH and a decrease in errors for MLD (Fig. 15). Wave-
number spectral analysis again provides a finer differentiation between
the OSSEs (Fig. 16). In comparison to the experiments using the larger
decorrelation length scale, visual inspection suggests little difference or
a slight decrease in skill for 100 m temperature and SSH and an increase
in skill with respect to MLD. This observation is quantified by the ratio
of integrated spectra (Table 2). For 100 m temperature, the ratios are
similar between the experiments run with a larger or shorter decorr-
elation length scale. For SSH, a slight decrease in skill is noted for the
SWOT experiment run with the shorter decorrelation length scale, but a
substantial decrease in skill occurs for the Altim + SWOT experiment.
As observed in the area-averaged errors, the experiments utilizing the
shorter decorrelation length scale also produced greater skill in wave-
number space with respect to MLD. Finally, these observations are
mirrored in the estimations of the minimum constrained wavelengths

Table 2
Ratio of integrated spectra. See Eq. (2) for more detail.

30 km decorrelation length scale 15 km decorrelation length scale

100 m temperature 0.81 0.48 0.37 0.43 0.4 0.42
Sea surface height 0.96 0.59 0.48 0.51 0.53 0.7
Mixed layer depth 1 0.84 0.82 0.82 0.76 0.79

Free Run Altim SWOT Altim + SWOT SWOT Altim + SWOT

Fig. 14. Minimum constrained wavelength (correlation 0.5) for each experiment when analyzing (a) 100 m temperature, (b) sea surface height (SSH), and (c) mixed
layer depth (MLD).
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(Fig. 14). The minimum constrained wavelength for 100 m temperature
is slightly lower for the SWOT experiment and slightly higher for the
Altim + SWOT experiment when rerun with the shorter decorrelation
length scale. For SSH, both experiments using the shorter decorrelation
length scale produce a larger minimum constrained wavelength when
compared to the same experiments run with the larger decorrelation
length scale. For MLD, the experiments using the shorter decorrelation
length scale produces a minimum constrained wavelength up to 87 km
smaller than the same experiments run with a larger decorrelation
length scale. Overall, we observe that decreasing the decorrelation
length scale reduces skill with respect to 100 m temperature and SSH,

while increasing skill for MLD substantially. The apparent dichotomy of
these results is explored in Section 4.

4. Discussion

Reducing the analysis decorrelation length scale in an attempt to
further utilize the small-scale information within the high density
SWOT observations resulted in conflicting results. A reduction of skill
occurs for 100 m temperature and SSH, while an increase in skill occurs
for MLD. Fig. 12 demonstrates that 100 m temperature and SSH have
steeper spectral slopes and therefore a relatively higher concentration

Fig. 15. Same as Fig. 11, except experiments SWOT and Altim + SWOT used a decorrelation length scale reduced by half.

Fig. 16. Same as Fig. 13, except experiments SWOT and Altim + SWOT used a decorrelation length scale reduced by half.
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of energy at larger wavelengths. MLD, however, has a flatter slope and
therefore a relatively higher concentration of energy at smaller wave-
lengths. The results demonstrated in Section 3.3 therefore suggest that
reducing the decorrelation length scale preferentially sets small-scale
features at the expense of the large-scale phenomena. The reverse is
true when using a relatively large analysis decorrelation length scale.

This situation has been addressed by implementing a multi-scale
assimilation process for 3DVAR (Muscarella et al., 2014; Li et al.,
2015a, 2015b; Miyazawa et al., 2017). These multi-scale systems use a
two-step assimilation method whereby large-scale information from
observations are fit to the background using a larger decorrelation
length scale in the first pass. This analysis is then used as the back-
ground in the second step in which small scale information is assimi-
lated using a smaller decorrelation length scale. This allows the analysis
to compute a correction to both the large-scale and small-scale without
compromising skill in one or the other. The initial results reported here
indicate an advancement in skill when using SWOT observations and
are consistent with the expected effects of a single-scale analysis. Ex-
amination of results derived using SWOT observations in a 3DVAR
multi-scale analysis system would be an appropriate next step. This
work should include investigations into the optimal decorrelation
length scales used in each of the analysis steps. Our results suggest that
larger, intermediary, and smaller decorrelation length scales affect
ocean variables differently and some balance may be required de-
pending on the needs of the user. Additionally, more than two assim-
ilation steps might be considered so that no compromise is necessary.
The drawback would be the additional computation cost of running the
extra analyses. The selection of the observation window may also be
critical. Here, a 5-day window for the nadir altimetry and SWOT ob-
servations was used, but both longer and shorter windows have merit. A
longer window may allow a much more accurate representation of the
mesoscale field especially when considering the relatively long 21-day
repeat period SWOT will have. This long window, however, will se-
verely misfit small-scale features that generally have shorter time scales
and will no longer be at their previously observed location at the
analysis time. A shorter time window would mitigate this issue, but
would then generate an inferior representation of the mesoscale field.
Finally, mesoscale and submesoscale physics are fundamentally dif-
ferent (McWilliams, 2016). The two-step assimilation should also alter
the dynamical balances applied to the analysis increments to account
for the physics of the features that each analysis step is trying to opti-
mally fit.

A more sophisticated assimilation system could also be used, such as
the 4DVAR. By inserting observations along a time-evolving trajectory,
the action of the adjoint and tangent linear model dynamically spreads
high-resolution information along all available wavelengths. In this
framework, a longer observation window is always advantageous, but
comes with a much greater computational cost. The 4DVAR, however,
still uses an error covariance that is based on a preset decorrelation
length scale that will generate an analysis increment that is too smooth
to effectively constrain small-scale features. For this reason, there is
ongoing work to generate multi-scale 4DVAR solutions as well, which
also set each scale independently by partitioning observations and
decorrelation length scales (Carrier et al., 2018). Finally, the topic of
scale separation has also been approached using ensemble-variational
data assimilation schemes (Buehner and Shlyaeva, 2015). These con-
siderations should be a continued area of focus to extend the influence
of high density observations such as those from SWOT.

5. Summary and conclusions

A set of OSSEs tested the utility of forthcoming SWOT data in a
realistic, submesoscale resolving ocean assimilation and forecasting
system. The usefulness of this new data type was first evaluated by
calculating regional errors with respect to NATURE from January 1 to
March 31, 2016. Experiments including simulated SWOT data

converged towards NATURE at a faster rate. Area-averaged errors in-
dicated experiments with and without SWOT observations reached a
similar error level after approximately 11 days. A finer differentiation of
the OSSEs was obtained using wavenumber spectral analysis of differ-
ences between each experiment and NATURE. The OSSEs utilizing the
simulated SWOT observations consistently produced lower error in
wavenumber space when compared to the experiment that assimilated
only nadir altimetry data. With respect to 100 m temperature, the
minimum constrained wavelength was found to be 161 km for the ex-
periment using only nadir altimetry as opposed to 130 km for the ex-
periment utilizing both nadir altimetry and SWOT observations. This
31 km improvement in skill is substantial, and suggests that operational
ocean analysis/forecast systems can expect notable increases in pre-
dictive skill when SWOT data become available.

The smallest constrained wavelength found for all tested variables
and all OSSE experiments, 130 km, is greater than the regional Rossby
radius of deformation (~50 km), which serves as an estimate of scale
separation between mesoscales and submesoscales. It was hypothesized
that it may be necessary to reduce the analysis decorrelation length
scale in order to fully utilize the high density SWOT observations. A
degradation of skill was noted for 100 m temperature and SSH for the
SWOT experiments using this reduced decorrelation length scale. An
increase in skill for MLD was observed for the same experiments. Based
off derived spectral slopes, SSH and 100 m temperature feature a rela-
tively higher concentrations of PSD at longer wavelengths than MLD.
This lead us to conclude that reducing the decorrelation length scale
improved analysis/forecast skill for variables that feature more small-
scale variability at the expense of variables that feature more large-
scale variability. The reverse was shown to be true when using a rela-
tively large decorrelation length scale. These findings further highlight
the need for multi-scale assimilation solutions when utilizing a suite of
observations which include both large-scale and small-scale informa-
tion.

We have shown that SWOT observations will improve ocean ana-
lysis/forecast skill to a substantial degree when they become available.
To fully constrain all the wavelengths that SWOT can observe, multi-
scale assimilation solutions will need to be implemented. Work is cur-
rently underway to build this functionality into the analysis/forecast
system used in this study with the intent of fully constraining the me-
soscale field while also beginning to generate predictive skill into the
submesoscale regime.
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