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Low-Frequency Mean Square Slopes and Dominant
Wave Spectral Properties: Toward Tropical

Cyclone Remote Sensing
Paul A. Hwang and Yalin Fan

Abstract— Spectral properties near the dominant wave region
influence significantly the surface roughness relevant to ocean
remote sensing employing low-frequency microwave sensors. The
critical parameters characterizing dominant waves are wind
speed and dimensionless spectral peak frequency, which is the
inverse wave age. The dimensionless spectral peak frequency can
be expressed as an equivalent dimensionless fetch or duration.
The connection between dominant waves and surface roughness
is the spectral slope. This paper presents a surface wave spectral
model designed for low-frequency microwave remote sensing,
with special emphasis on tropical cyclone (TC) applications. The
key elements of the spectral model are: 1) a general spectral
function with coefficients accommodating a variable spectral
slope and 2) a parametric function connecting the spectral slope
and wind speed, which is established with the mean square slope
(MSS) observations obtained inside hurricanes by the global
positioning system reflectometry technique. In order to make use
of the MSS observations inside hurricanes, parametric models of
the spatial distributions of wind speed and dimensionless spectral
peak frequency inside TCs are developed. The parametric models
are based on the wind and wave similarity relationships derived
from analyses of hurricane hunter measurements.

Index Terms— Hurricane, mean square slope (MSS), remote
sensing, wave spectrum.

I. INTRODUCTION

THE surface roughness properties relevant to microwave
ocean remote sensing are closely related to the sensor

frequency and the primary mechanisms responsible for the
microwave signal return. For example, Bragg resonance is crit-
ical to scatterometry operating at moderate incidence angles
and the important surface roughness elements are distributed in
a narrow surface wave spectral region satisfying the resonance
condition defined by the microwave wavelength and the local
incidence angle at the ocean surface. The length scales of
these resonance surface wave components (Bragg waves) are
typically much shorter than the dominant surface waves near
the wave energy spectral peak. The local wind dependence of
Bragg waves is strong, and dominant waves make only minor
modification of the resulting scattering return.

Manuscript received April 23, 2018; revised May 23, 2018; accepted
June 23, 2018. This work was supported by the Office of Naval Research
under Grant N0001416WX00044. (Corresponding author: Paul A. Hwang.)

P. A. Hwang is with the Remote Sensing Division, U.S. Naval Research
Laboratory, Washington, DC 20375 USA (e-mail: paul.hwang@nrl.navy.mil).

Y. Fan is with the Oceanography Division, U.S. Naval Research Lab-
oratory, Stennis Space Center, Bay St. Louis, MS 39529 USA (e-mail:
yalin.fan@nrlssc.navy.mil).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2018.2850969

In contrast, titling is critical to reflectometry and the
roughness elements are low-pass-filtered surface waves several
times longer than the microwave wavelength. Obviously,
the dominant wave influence grows stronger as the microwave
frequency decreases. The connection between the dominant
waves and the surface roughness is the spectral slope.

Several milestones marking the long effort of spec-
tral model development of wind-generated waves are
Pierson and Moskowitz [1], referred to as the P model;
Hasselmann et al. [2], [3], referred to as the J model [for Joint
North Sea Wave Project (JONSWAP)]; and Donelan et al. [4],
referred to as the D model. These spectral models prescribe
a constant spectral slope (−s) in the high-frequency region:
−4 for the D model and −5 for P and J models.

Field observations [5], [6], however, show that s varies over
a rather wide range. Young [5], referred to as the Y model,
incorporates a variable s in the spectral function. The Y model,
however, does not resolve the spectral slope dependence of the
associated spectral coefficients, and its application relies on the
spectral coefficients developed by the D or J spectral model,
so its legitimate use remains for −4 or −5 slope.

In a recent analysis of the directional wave spectra observed
inside hurricanes by an airborne scanning radar altimeter
system during several National Oceanic and Atmospheric
Administration (NOAA) hurricane reconnaissance and
research missions, it is concluded that s needs to be treated
as a stochastic random variable with a mean value near 4.5.
The hurricane wave spectral analyses lead to the development
of a general surface wave spectral model (the G model)
with the associated coefficients accommodating a variable
spectral slope [6]. Because the wave height determination is
relatively insensitive to the high-frequency components of the
wave spectrum, the mean s value and its dependence on the
wind and wave properties cannot be obtained from analyzing
the surface elevation spectrum. A detailed review of the
wind wave spectral models discussed above is given in [6].
A concise version summarizing the mathematical formulas is
given in the Appendix.

With the G model, we explore in Section II the impact of
spectral slope on the resulting low-pass-filtered mean square
slope (LPMSS) computation. The analysis leads to the con-
clusion that it is critical to develop a function describing
the dependence of the representative spectral slope, i.e., the
mean s, on wind and/or wave properties. From this point,
the term spectral slope or the variable s refers to the mean
value of the stochastic s variable.
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Fig. 1. Example of the wave spectra computed with different spectral slopes (−s) in the high-frequency region. (a) Wave elevation frequency spectrum S(ω).
(b) Wave slope spectrum given in terms of the dimensionless wavenumber spectrum B(k). (c) Cumulative surface elevation variance plotted against
dimensionless frequency (normalized by the spectral peak frequency). (d) Cumulative mean square surface slope variance. Black curves show the G spectra [6]
for four different s values, color curves show the P [1], J [2], [3], D [4], and H [11] spectra, and further detail is given in the legend. (e) pdf of s in field
observations under hurricane (magenta markers) and nonhurricane (blue markers) conditions; the superimposed curve is the Gaussian distribution with mean
and standard deviation shown at the upper left corner.

Interest in ocean remote sensing using the L-band
microwaves from global positioning system (GPS) has resulted
in an expansive collection of LPMSS measurements; many of
the data were obtained in hurricanes [7]–[10]. These LPMSS
measurements provide a great opportunity to quantify the
dependence of the spectral slope on various wind and wave
properties. In order to make use of these LPMSS data, we
need to derive an understanding of the general properties of
winds and waves inside hurricanes.

Recent analyses of winds and waves measured in hurricane
reconnaissance and research missions have revealed several
interesting similarity relationships of surface waves generated
by hurricane wind fields. Of particular importance to the wave
spectral modeling is the similarity relations of surface wind
speed U10 and the dimensionless spectral peak frequency
ω# = ωpU10/g, where g is the gravitational acceleration,
ω is the surface wave angular frequency, subscript p indi-
cates the spectral peak component, and subscript # represents
dimensionless quantities. Parametric models are developed to
describe the spatial distributions of U10 and ω# inside hurri-
canes making use of the similarity relationships (Section III).
With the help of the parametric models, the LPMSS data from
GPS reflectometry are then used to formulate a functional
relationship between s and U10.

Section IV shows the results of modeling the LPMSS inside
hurricanes and the comparison with field measurements by
GPS reflectometry. Section V is a summary.

II. WAVE SPECTRAL SLOPE AND SURFACE ROUGHNESS

Fig. 1 shows an example of the computed wave frequency
spectra S(ω) based on the G model for U10 = 10 m/s
in fully developed sea (ω# = 0.83) and s = 4, 4.5,
4.75, and 5 (black curves). The mathematical equations of

the G spectral function and the associated spectral coefficients
are given in (A14)–(A20). Superimposed for comparison with
colored curves are the results of P [1], J [2], [3], and D [4]
models. (The mathematical formulas of the P, J, and D
models are also given in the Appendix.) The result from a
surface roughness model built on the similarity relationship of
short scale waves combining in situ ocean measurements and
inversion of global data of backscattering normalized radar
cross sections at L-, C-, and Ku-bands is also shown, reported
by Hwang and Fois [11] and represented as the H model
here. The significant impact of the spectral slope on the high-
frequency wave components is easily detectable.

The impact is especially striking in terms of the surface
slope. The dimensionless wavenumber spectra B(k) = k3S(k),
corresponding to the wave elevation spectra displayed
in Fig. 1(a), are shown in Fig. 1(b), where k is the
wavenumber (2π /λ, λ is the wavelength). The connection
between wavenumber and wave frequency spectra is

S(ω)dω = S(k)dk. (1)

The wave dispersion relationship connects ω and k. For waves
longer than a few centimeters, the gravity wave dispersion
relationship applies

ω2 = gk. (2)

In the semilogarithmic presentation displayed in Fig. 1(b),
the area under the B(k) curve for a given wavenumber range
is the integrated mean square slope (MSS) of the specified
wavenumber components. The cubic wavenumber weighting
in B(k) or the quadratic weighting on the slope spectrum
S∇η(k) = k2S(k) highlights the dominant contribution of short
wave components to the ocean surface roughness, which is
frequently represented by the MSS.
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The impacts of spectral slope on the spectral contents of
wave height and surface roughness are further investigated
with the cumulative spectral variance of surface displacement
(wave height) and surface slope. For the displacement vari-
ance η2

rms [Fig. 1(c)], the high-frequency short waves make
only negligible contribution. The cumulative displacement
variance essentially reaches its maximum at approximately
ω = 2–4 ωp . For the given example, 2–4 ωp is 4–16 k p,
or wavelengths 25.3–6.3 m [ωp = 0.78 rad/s and k p =
0.062 rad/m are printed in Fig. 1(c) and (d)].

In contrast, for the slope variance (∇η)2
rms, the energetic

wave components near the spectral peak region contribute very
little, and the magnitude of shortwave contribution depends
strongly on the wave spectral slope [Fig. 1(d)].

Because the scattering or emission of electromagnetic (EM)
waves from the ocean surface is critically modified by
the surface roughness condition, the correct specification
of the surface wave spectral slope is an important subject for
the geoscience remote sensing of the ocean using microwave
techniques. Fig. 1(e) shows the spectral slope probability
distribution function (pdf) derived from observations in
hurricane and nonhurricane conditions. The spectral slope is
determined by the spectral components between 2ωp and 4ωp.
The hurricane data were from an analysis of hurricane-
generated directional wave spectra recorded by ocean buoys
and collected over a 16-year period off the northwest coast
of Australia [12]. Many of the spectral slopes fall between
−3 and −6; the mean value is −4.56. The nonhurricane data
are from an air–sea interaction experiment conducted in the
Gulf of Tehuantepec, Mexico, under conditions of strong
mountain gap winds; the waves were recorded with fast-
response wire gauges [13]–[15]. The spectral slopes analyzed
in both hurricane and nonhurricane conditions show a similar
Gaussian distribution given as the blue solid curve in Fig. 1(e).

Attempts to correlate s with various wind and wave para-
meters did not yield a concrete result. The wind and wave
parameters explored include surface wind speed U10, signifi-
cant wave height Hs , dominant wave period Tp , their dimen-
sionless combinations η# = η2

rmsg2/U4
10, ω# = ωpU10/g,

and several swell–sea ratios, the root-mean-square (rms) wave
elevation ηrms is related to the significant wave height by
Hs = 4ηrms, and the angular frequency of the spectral peak
component ωp is 2π/Tp. It is deduced that s needs to be
treated as a stochastic random variable [6]. The mean value
of s is neither −4 nor −5 as specified in the widely used
wind wave spectral models (see [1]–[4]). This is the main
reason for developing the G spectral model that accommodates
a variable spectral slope. The G model offers an opportunity
for us to evaluate quantitatively the effect of s on the surface
roughness relevant to low-frequency microwave applications,
i.e., the LPMSS.

One of the earliest efforts to quantify the LPMSS in the
ocean is given by Cox and Munk [16]. They conducted
photographic measurements of sun glitters from aircraft in
clean and slicked water surfaces. The artificial slicks they
produced on the ocean surface suppressed waves shorter than
about 30 cm.

Fig. 2. LPMSS observed in the ocean from sun glitter analysis (black
markers) in artificial-slicked water [16] and GPS reflectometry technique:
K0913 (cyan markers) is from [7] and [8], and G1318 (green markers) is from
[9] and [10]. The cyan curve (K06) is from [17], and the green curve (G18)
is from [10]. The remaining curves are computations using the G-spectrum
model with [s, ω#] values given in the legend for each curve.

GPS reflectometry provides the largest amount of LPMSS
measurements to date; many of the data were collected inside
hurricanes. Fig. 2 shows the results reported in [7]–[10],
together with the analysis result of airborne sun glitter
measurements in artificial slick ocean surfaces (black dia-
monds, labeled C54) reported in [16]. For convenience, in the
remainder of this paper, data from [7] and [8] are designated
the K0913 group, and those from [9] and [10] are G1318.
For K0913, the ocean surface wind speeds are from airborne
dropsondes, and for G1318, they are from stepped frequency
microwave radiometer (SFMR) and ocean buoys. When clar-
ification is necessary, these LPMSS derived from GPS reflec-
tometry is denoted by MSSGPS in this paper. The spaceborne
remote sensing expands the wind speed range considerably.

The K0913 data, shown with cyan circles, are digitized from
[7, Figs. 1 and 2] and [8, Figs. 8(b) and 9(b)]; those figures dis-
play the GPS-derived wind speeds versus the dropsonde winds.
The LPMSS is then calculated with their formula relating the
LPMSS and wind speed as described in [17, eqs. (3) and (4)],
or in [8, eqs. (5) and (6)], the latter set corrects a typographic
error in the former set. The computation using the formula is
shown with the cyan solid line in the figure (labeled K06).

The G1318 data, shown with green pluses, are obtained
from [9, Table 2], which lists the LPMSS and buoy U10, and
digitized from [10, Fig. 13], which gives LPMSS versus SFMR
wind speed. The best-fit formula described in [10] is shown
with green dashed-dotted line in the figure (labeled G18).

Using the G-spectrum model, we can compute the LPMSS
for any combination of U10, ω#, and s. Several examples
are illustrated in Fig. 2, showing the LPMSS (low-passed
at k = 10 rad/m) versus U10; the two numbers in square
brackets in the figure legend are s and ω# for each curve.
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Fig. 3. Azimuthal and radial variations of ω# combining data from four
hurricane reconnaissance and research missions. The normalization factors
used in this figure are U10m and rm for ω# and r , respectively.

When clarification is necessary, this LPMSS derived from the
G spectral model for matching the GPS reflectometry data is
denoted by MSSk10 in this paper.

The G spectral model results show the significant impacts
of s and ω# for quantifying the relationship between LPMSS
and U10, especially in high winds. In low and moderate
winds (U10 less than about 10 m/s), the envelopes formed by
[s, ω#] = [4.5, 1] and [5, 1] serve as the approximate upper
and lower bounds of the expected wind sea contribution.
Measurements outside the envelopes are likely from nonlocal-
wind effects such as high swells and sea slicks, in addition to
the measurement uncertainty. The results show the importance
of incorporating the s and ω# factors for interpreting the
MSSGPS measurements from the ocean.

Recent analyses of wind and wave measurements obtained
by hurricane hunters have shown some useful similar-
ity relationships of the spatial distributions (radial and
azimuthal variations) of winds and waves inside tropical
cyclones (TCs) [6], [18]–[20]. Making use of these similarity
properties, in Section III, we describe parametric models of
U10 and ω# inside hurricanes. These parametric models are
crucial for the computation of LPMSS under TC wind forcing
conditions. The MSSGPS data will be revisited for deriving a
U10 dependence of the s factor (Section IV) with the help of
the U10 and ω# parametric models.

III. PARAMETRIC MODELS OF HURRICANE WIND SPEED

AND DIMENSIONLESS SPECTRAL PEAK FREQUENCY

The systematic spatial variation of ω# inside hurricanes has
been described in detail in [20]. Combining measurements
from four hurricane scenes (categories 2–5) analyzed in [20],
Fig. 3 shows the azimuthal distribution of ω#; the plotting
marker is color-coded with the radial distance r from the
hurricane center. The azimuth angle φ is measured from

Fig. 4. Coefficients of the parametric model (3) describing the azimuthal and
radial variations of ω# shown in Fig. 2; the superimposed red dashed lines
are approximation functions given in (4)–(6). The results are shown in linear
scales in the left column and logarithmic scales in the right column. (a) and
(d) a0. (b) and (e) a1/a0. (c) and (f) δ.

the hurricane heading and positive counterclockwise. For the
present analysis, we use the hurricane maximum wind speed
U10m and radius of maximum wind speed rm as the normal-
ization factors for ω# and r , respectively; i.e., the normalized
variables are ω∗ = ω#/U10m and r∗ = r/rm . The prominent
feature of ω∗(φ) is the sinusoidal variation

ω∗ = a0(r∗) + a1(r∗) cos[φ + δ(r∗)]. (3)

The coefficients a0, a1, and δ vary with r∗ as shown in (3)
explicitly. Two examples are illustrated with smooth curves
in Fig. 3. They are generated by fitting through data within
0.85 ≤ r∗ ≤ 1.15 (top curve) and 3 ≤ r∗ ≤ 5 (bottom curve).
Least-squares fitting of the data within narrow r∗ bins
(�r∗ = 0.2) produces the coefficients a0, a1, and δ shown
in Fig. 4, in linear scales in the left column and logarithmic
scales in the right column. The general trends are outlined
with red dashed lines in Fig. 4

a0 =
⎧⎨
⎩

0.0056r∗, r∗ ≤ 1
0.0056r−0.5∗ , 1 < r∗ ≤ 3.3
0.03, 3 < r∗

(4)

a1

a0
=

⎧⎨
⎩

−0.1, r∗ ≤ 1
−0.1r−1/3∗ , 1 < r∗ ≤ 2
−0.27, 2 < r∗

(5)

δ =
�−60 + 240(1 − r∗), r∗ ≤ 1.1

−80r−1/3∗ , 1.1 < r∗.
(6)

Equation (3), with coefficients (4)–(6), is the parametric
model of ω∗ inside hurricanes.

The modified Rankine vortex model described in
[21] and [22] is used as the foundation of the wind speed
parametric model. To account for the wind field asymmetry,
we employ U10mφ , the maximum wind speed along a radial
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Fig. 5. Example of the HWIND analysis for developing the parametric model
of hurricane wind fields (7). (a) Contour map of U10. (b) Coordinates of the
maximum wind locations (xm , ym ) at various azimuth angles. (c) Azimuthal
variation of rmφ . (d) Radial variation of wind speed; the slopes of the super-
imposed power-law line segments are 1 and −0.5. (e) Azimuthal variation
of U10mφ . (f) Scatterplot of U10mφ and rmφ .

transect with a given φ, as the normalization factor

U10(r, φ)

U10mφ
=

�
r∗, r∗ ≤ 1
r−0.5∗ , 1 < r∗.

(7)

This formulation assumes a circular eyewall. Noncircular eye-
walls can be accommodated by using an azimuthally varying
radial distance of maximum wind speed rmφ . (See further
discussion in the following.)

The following formula is used for U10mφ :
U10mφ

U10m
= 1 − a1U [1 − cos(φ − φm)] (8)

where U10m is the (overall) maximum wind speed and φm

is the azimuth angle of the U10m location. From examining
the archived NOAA HWIND 2-D wind fields in several
historical hurricanes, a1U is found to vary mostly between
about 0.1 and 0.2, and φm is mostly in the right-hand side
relative to the hurricane heading, with higher probability in the
right-front quadrant (φ between 270° and 360°) than the right-
back quadrant (φ between 180° and 270°). An example of the
analysis is given in Fig. 5. The 2-D wind field is displayed
in Fig. 5(a); the radial dependence of wind speed [Fig. 5(d)]
follows closely the modified Rankin vortex model (7) for
the r range between about 0 and 300 km; the slopes of the
superimposed line segments in Fig. 5(d) are 1 and −0.5.
The result of rmφ analysis is shown in Fig. 5(b) and (c); no
clear azimuthal dependence is found. In contrast, the promi-
nent sinusoidal azimuthal dependence of U10mφ is shown
in Fig. 5(e). Fig. 5(f) illustrates a relatively weak correlation
between U10mφ and rmφ . In the remainder of this paper,
rmφ = rm , φm between 250° and 290°, and a1U between
0.05 and 0.25 are used for presenting the computation results.
These parameter ranges are selected based on examining the
historical 2-D wind fields of the HWIND product.

Fig. 6. Examples of the [Left column (a) and (c)] U10 and [Right column
(b) and (d)] ω# fields calculated with the parametric models described
in Section III. The hurricane parameters [U10m , rm , φm ] are (Top row)
[40, 70, 280°] and (Bottom row) [60, 40, 250], a1U = 0.1 for both cases.
(a) and (c) U10. (b) and (d) ω#.

Fig. 6 shows two examples of the 2-D fields of U10
(left column) and ω# (right column) generated by the para-
metric models: (7) and (8) for the former and (3)–(6)
for the latter, with a1U = 0.1. The hurricane parameters
[U10m , rm , φm ] used for the computation are shown in the
square brackets at the lower left corner of each panel. The
hurricane heading is toward the top of the figure, and the loca-
tion of maximum wind speed is shown with a red plus marker.
The computed 2-D fields provide a reasonable representation
of the asymmetric U10 and ω# distributions inside hurricanes
as observed from the wind and wave measurements obtained in
hurricane reconnaissance and research missions [6], [18]–[22].

IV. LOW-PASS-FILTERED MEAN-SQUARE

SLOPES INSIDE HURRICANES

With U10 and ω# given by the parametric models, the spec-
tral slope −s becomes the only remaining free parameter in the
spectral function for LPMSS computation. Through numerical
experimentation matching MSSk10 with the MSSGPS data
shown in Fig. 2 using the parametric U10 and ω# fields,
we search for a simple formula relating s and U10.

Fig. 7 shows two examples computed with the empiri-
cal s(U10) relationship

s =
�

s1, U10 ≤ U1
s1(U10/U1)

q , U10 > U1.
(9)

The parameters [s1, U1, q] = [4.7, 18, 1/8] and [4.65,
15, 1/9] are used for Fig. 7(a) and (b), respectively. The
hurricane parameters [U10m , rm , a1U , φm ] = [40, 70, 0.1,
280°] are used for the computation. The U10 and ω# fields
are calculated with 5-km radial resolution for r = 0–200 km,
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Fig. 7. MSSGPS measurements are used to establish an empirical relation of
s(U10): (9). (a) [s1, U1, q] = [4.7, 18, 1/8]. (b) [s1, U1, q] = [4.65, 15, 1/9].
The hurricane parameters [U10m , rm , a1U , φm ] are [40, 70, 0.1, 280]. The
model computed MSSk10 is shown with circles color-coded with φ; the
MSSGPS is shown with dots: magenta for K0913 and black for G1318.

and 10° azimuthal resolution for φ = 0°–360°. The plotted
MSSk10 is color-coded with respect to the azimuth angle
as shown in the color bar. The MSSGPS data are plotted
with small dots: magenta for K0913 [7], [8] and black for
G1318 [9], [10]. The superimposed dotted and dashed lines
are the LPMSS(U10) equations: labeled K06 and G18 from
[7] and [10], respectively. The two sets of [s1, U1, q] pro-
duce almost identical outcome of the LPMSS computation.
The results in the remainder of this paper are based on
[s1, U1, q] = [4.7, 18, 1/8]. It is found that the azimuthal
or radial dependence of the resulting MSSk10 is rather weak
(Fig. 7), so the concluding results derived from this paper are
suitable for single transects such as those encountered in the
GPS reflectometry application.

Fig. 8 illustrates the U10m and rm sensitivity of the com-
puted MSSk10 (a1U = 0.1). On the top row, rm is varied
[20, 40, and 70 km for Fig. 8(a)–(c)], with U10m and φm fixed
(40 m/s and 280°). The model-generated MSSK 10 is shown
with cyan pluses, and the data and empirical formulas of
MSSGPS are superimposed with the same markers and line
types as those used in Fig. 7. The impact of varying rm appears
to be rather minor.

The lower row of Fig. 8, combined with Fig. 8(a) and (b),
shows the results of varying U10m; the hurricane parame-
ters [U10m , rm , φm] are [60, 20, 280], [60, 40, 280], and
[80, 20, 280] for Fig. 8(d)–(f), respectively. The MSSk10
wind speed dependence shows noticeable variation with
varying U10m , in contrast to the results from varying rm

[compare Fig. 8 top row versus Fig. 8(a), (d), and (f), or
Fig. 8(b) and (e)].

The effect of varying various hurricane parameters is further
investigated with U10m varying from 30 to 80 m/s, and
a1U varying between 0.05 and 0.25. The rm and φm are fixed
at 40 km and 280°, respectively; the computed MSSk10 is fit
with the logarithmic function

MSSk10 = a0M + a1M ln(U10). (10)

Fig. 9(a) and (b) presents the resulting a0M and a1M

as functions of U10m . The computations with a1U = 0.05,

Fig. 8. Examples showing the MSSk10 sensitivity to U10m and rm . The
hurricane parameters [U10m , rm , a1U , φm ] are listed at the bottom of each
panel. The model results are shown with cyan markers; the MSSGPS is shown
with dots: magenta for K0913 and black for G1318. (a)–(c) Only rm is varied
from 20 to 70 km. The results indicate a relatively insignificant effect of rm
on the MSSk10 computation. (d)–(f) Stronger response to U10m variation.

Fig. 9. MSSk10 sensitivity to a1U for a range of U10m . The results are
presented with the coefficients of the fit logarithmic function of MSSk10 (U10)
given in (10). (a) a0M versus U10m . (b) a1M versus U10m . (c) LPMSS
dependence on U10: the MSSGPS is shown with dots: magenta for K0913 and
black for G1318, the fit curves for the modeled results are shown with smooth
curves; computations with a1U = 0.05, 0.1, 0.2, and 0.25 are illustrated,
respectively, with green, blue, red, and black curves.

0.1, 0.2, and 0.25 are shown with green, blue, red, and
black lines, respectively. The fit curves of MSSk10(U10) for
U10m = 30–80 m/s are shown in Fig. 9(c) with the same
set of line colors as those in Fig. 9(a) and (b). The MSSGPS
data sets are superimposed (magenta dots for K0913 and
black dots for G1318). For a given wind speed, the computed
results vary within a small range (about ±15% in low winds
and ±10% in high winds) for various degrees of wind field
asymmetry denoted by a1U , and the computed MSSk10 is in
reasonably good agreement with the MSSGPS observations
over the full range of wind speed.

In many microwave remote sensing computations, it is
necessary to define the crosswind and upwind components of
the MSS: s2

c and s2
u , respectively. The artificial slick data set

of Cox and Munk [16] remains the most comprehensive field
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Fig. 10. Ratio between crosswind and upwind components of the LPMSS
derived from airborne sun glitter measurements in slicked waters [16]; the
recommended wind speed dependence function (11) is shown in the solid
curve.

measurements of LPMSS with crosswind and upwind resolu-
tion. The ratio Rcu = s2

c /s2
u shows a logarithmic dependence

on U10 (Fig. 10) with the magnitude in the measurements
distributed over a narrow range between about 0.75 and 1.03.
Further discussions on the directional properties of ocean
surface roughness have been given in [24]. It is reasonable
to set unity as the upper bound of the expected Rcu. The unity
upper bound corresponds to an isotropic surface roughness
distribution in the chaotic sea generated by high winds. The
following function is recommended based on least-squares
fitting of the artificial slick data set of Cox and Munk [16]

Rcu =
⎧⎨
⎩

0.737, U10 ≤ 1 m/s
0.737 + 0.091 ln U10, 1 < U10 ≤ 18 m/s
1, U10 > 18 m/s.

(11)

V. SUMMARY

Ocean surface waves are the roughness elements for
microwave remote sensing of the ocean environments. With
lower microwave frequencies, the influence of the spectral
components in the energetic dominant wave region becomes
increasingly important. Extensive researches have devoted to
the wind wave spectral models focusing on the dominant wave
region [1]–[6]. It is well established that the wave spectrum
is not only dependent on the wind speed but also on the
wave age, which is the inverse dimensionless spectral peak
frequency ω#. For wind waves, ω# can be represented by an
equivalent dimensionless fetch or duration [2]–[6], [24], [25].
Many wind wave spectral models have been designed with the
above considerations with three key spectral coefficients α, σ ,
and γ expressed as functions of ω#, further detail is given
in [6], and a summary is provided in the Appendix.

The spectral slope for the high-frequency region prescribed
in earlier wind wave spectral models is either −4 or −5.
Whereas the effect of s on the surface height determination
is minor, its impact on the MSS estimation is significant
(Figs. 1 and 2). The recent development of a general (G)

spectral model that accommodates variable s in the spectral
function as well as the associated spectral coefficients α, σ ,
and γ permits us to explore quantitatively the impact of s on
the LPMSS computation.

The elevated interest for ocean remote sensing using the
reflectometry technique with microwave sources from existing
GPS or other communication satellites has generated many
data sets of LPMSS collected in a wide range of wind and
wave conditions. Taking advantage of the similarity relations
of the hurricane wind and wave fields, we have developed
parametric models for the spatial distributions of U10 and ω#
inside hurricanes (Section III, Figs. 3–6). With the 2-D fields
of U10 and ω# inside hurricanes provided by the parametric
models, the MSSGPS data collected inside hurricanes [7]–[10]
are used to establish a wind speed function for s [Fig. 7, (9)].

The parametric models of U10 and ω# coupled with the
s(U10) function are then used to study the sensitivity of
LPMSS(U10) relationship with respect to key hurricane para-
meters U10m , rm , a1U , and φm (Figs. 8 and 9). The modeled
MSSk10 shows good agreement with field measurements of
MSSGPS, and both display the same logarithmic wind speed
dependence [Figs. 7–9, (10)]. Finally, an empirical formula
[Fig. 10, (11)] for the ratio between the crosswind and upwind
components of the LPMSS is obtained using the airborne sun
glitter observations in artificial slick waters reported in [16].

In the future, it would be very interesting to compare the
predictions of the results from the parametric models with
those of numerical models such as WW3. Hurricane wind
and wave fields are complicated; for example, reference [26]
identifies no less than 11 similarly important mechanisms
shaping the wave field inside the hurricane. So, a legitimate
question arises: how all of these boils down to just a variable
fetch (or equivalently ω#) and the spectral slope s?

The answer may be found by recognizing several remark-
able similarity relationships.

1) For deep-water wind-generated waves, the wave
spectrum is uniquely determined by the U10 and ω#
(Appendix).

2) Despite the violent mode of creation, the waves inside
hurricanes adhere to the fetch- and duration-limited
nature of wind wave generation [18]–[20]. Furthermore,
the U10 and ω# fields can be described reasonably well
by simple parametric models (Section III) with just a
few key TC parameters (U10m , rm , φm , and a1U top the
list). The dominant wave properties inside TCs can thus
be defined reasonably well by a few key TC parameters.

3) Although not important to determining the dominant
wave properties, the spectral slope −s is critical to
quantifying the LPMSS.

4) The recent compilation of MSSGPS over a wide range
of wind and wave conditions provides the needed infor-
mation to establish a functional relationship between s
and wind speed.

5) And finally, numerical experiments through the
U10 and ω# parametric model computations indicate
the relative insensitivity of many key TC parameters,
and the logarithmic wind speed dependence of LPMSS
is very robust [Figs. 7–9, (10)]. This information is
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useful for tasks such as EM forward computation and
experiment design.

APPENDIX

MATHEMATICAL FORMULAS FOR THE

WIND WAVE SPECTRAL MODELS

The P model [1] is given as

S(ω) = αP g2ω−5 exp

�
−βP

�
ω

ω0

�−4
	

(A1)

where αP = 8.10 × 10−3, βP = 0.74, ω0 = g/U19.5, and
U19.5 is the wind speed measured on the weather ship with
the sensor elevation at 19.5 m above mean sea level. To use
U10 as the reference wind speed, the ratio U19.5/U10 = 1.08
can be applied; this approximation is based on the mean and
standard deviation of the U19.5/U10 ratios (1.08 and 0.02)
setting the dynamic roughness z0 between 10−4 and 10−1.5

in the logarithmic wind speed profile Uz/u∗ = (1/κ)ln(z/z0),
where z is the sensor height, u∗ is the wind friction velocity,
and κ = 0.4 is the von Kármán constant. Dropsonde data
have shown that the logarithmic wind speed profile remains a
good representation of the vertical distribution of wind speed
in the lower surface boundary layer of the hurricane wind
field [27], [28].

The J model [2], [3] is given as

S(ω) = αJ g2ω−5 exp

�
−5

4

�
ω

ωp

�−4
	

γ
�J
J

�J = exp

�
− (ω − ωp)2

2σ 2
J ω2

p

	
(A2)

where ωp is the spectral peak frequency, and αJ is no longer
a constant but varies with the wind fetch x f

αJ = 0.076x−0.22
# (A3)

where x# = x f gU−2
10 is the dimensionless fetch. The depen-

dence on fetch can be converted to the dependence on wave
age (cp/U10 = 1/ω#, where cp is the wave phase speed of the
spectral peak component). Using their wave frequency growth
function: ω# = 21.99x−0.33

# , (A3) can be rewritten as

αJ = 9.88 × 10−3ω0.66
# . (A4)

The two peak enhancement parameters γJ and σJ are also
expected to depend on dimensionless fetch or wave age,
but the JONSWAP data scatter is very large. In practice,
the mean values γJ = 3.3, σa = 0.07, and σb = 0.09 are
frequently employed. (The J model defines the peak width σJ

as σa and σb for ω < ωp and ω ≥ ωp , respectively.)
After reviewing more than a dozen data sets,

Hasselmann et al. [3] suggest the power function dependence
for the spectral coefficients. From the average values listed
in the last entry of [3, Table 1], the following formulas are
derived:

αJ 2 = 7.33 × 10−3ω0.87
# (A5)

γJ 2 = 2.29ω0.32
# (A6)

σa J 2 = 9.85 × 10−2ω−0.32
# (A7)

σbJ 2 = 1.05 × 10−1ω−0.16
# . (A8)

The D model [4] is given as

S(ω) = αDg2ω−1
p ω−4 exp

�
−

�
ω

ωp

�−4
	

γ
�D
D

�D = exp

�
− (ω − ωp)

2

2σ 2
Dω2

p

	
. (A9)

The spectral coefficients obtained from their data are

αD = 0.006ω0.55
# ; 0.83 < ω# < 5 (A10)

γD =
�

1.7, 0.83 < ω# < 1
1.7 + 6.0 log ω#, 1 ≤ ω# < 5

(A11)

σD = 0.08(1 + 4ω−3
# ); 0.83 < ω# < 5. (A12)

The Y model [5] is given as

S(ω) = αY g2ω−(5+s)
p ω−s exp

�
− s

4

�
ω

ωp

�−4
	

γ
�Y
Y

�Y = exp

�
− (ω − ωp)

2

2σ 2
Y ω2

p

	
. (A13)

Young [5] does not resolve the spectral slope dependence
of the associated spectral coefficients αY , γY , and σY , so its
legitimate application is still restricted to s = 4 or 5 using the
(α, γ , σ) by Donelan et al. [4] or Hasslemann et al. [2], [3],
thus resulting in identical outcome as that of the D or J model.

The G model [6] also accepts a variable spectral slope and
is given as

S(ω) = αG g2ω−5
p ς−s exp



−

� ς

K

�−βG



γ
�G
G

�G = exp



− (1 − ς)2

2σ 2
G



; ς = ω

ωp
(A14)

where K is a scaling factor such that the peak of S(ω) is
at ωp . Setting d S/dω = 0, one obtains K = (s/βG)1/βG .
In the G model, the associated spectral coefficients vary with
s as detailed in the following; the spectral slope at the high-
frequency portion is no longer restricted to −4 or −5. The
P, J, D, and Y models are subsets of the G model, i.e., for
the P model, [s, βG , γG ] = [5, 4, 1]; for the J model,
[s, βG ] = [5, 4]; for the D model, [s, βG ] = [4, 4]; and
for the Y model, [βG] = [4].

In practical application, it turns out that the impact of
varying βG in (A14) is relatively small in comparison to
varying αG , γG , and σG . Furthermore, the nonlinear curve
fitting procedure becomes more complicated as the number
of fitting variables increases, thus placing higher demand on
the quality and quantity of wave spectra used for analysis.
Limited by the spectral resolution and data quality in high-
frequency region, βG = 4 is adopted following the examples
of the P, J, D, and Y models. From this point, the subscript
letters associated with α, γ , and σ for different models are
dropped unless clarification is necessary.

The spectral coefficients for the G model are estimated in
two steps. The first step uses the combined data of spectral
coefficients processed from the wave spectra measured during
an air–sea interaction experiment (INTOA) in the Gulf of
Tehuantepec, Mexico, [13]–[15] with the published results of
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JONSWAP [2], [3] and Donelan et al. [4]. This combination
is necessary because the INTOA ω# range is rather limited:
from 1.4 to 3.3 for U10 > 7 m/s, but mostly between
1.5 and 2.7. The combined data yield

α1 = Aαω
aα
# (A15)

γ1 = Aγ + aγ log(ω#) (A16)

σ1 = Aσ + aσ log(ω#). (A17)

The coefficients Aα, aα, Aγ , aγ , Aσ , and aσ are the func-
tions of s

Aα = 1.30 × 10−3s + 1.64 × 10−3

aα = 4.83 × 10−1s − 1.49

Aγ = 4.42 × 10−1s + 3.93 × 10−1

aγ = −3.63s + 19.74

Aσ = −5.39 × 10−2s + 3.44 × 10−1

aσ = 2.05 × 10−9s + 5.5 × 10−2. (A18)

In the second step, the wind wave growth function η#(ω#) is
used to refine the parameters to expand the application range
in ω#. The analysis leads to

αG = α1[1 − 0.3 tanh(0.1ω#)] (A19)

γG = γ1[1 − 0.5 tanh(0.1ω#)]. (A20)

The spectral parameter σG was left in the same form as
defined in (A17) and (A18) due to its large data scatter in the
available data sources, i.e., σG = σ1 (A17).

ACKNOWLEDGMENT

The authors would like to thank E. Walsh for providing the
wind and wave data and the HRD wind archive maintained
in the HWIND legacy data site http://www.rms.com/
perils/hwind/legacy-archive/. Data sets used in this analysis
are given in the references cited. The processing codes
and data segments can also be obtained by contacting
the corresponding author. A MATLAB code package
is deposited at https://www.researchgate.net/publication/
325315052_HurrSimilaryRelationshipsCodePackage.

REFERENCES

[1] W. J. Pierson, Jr., and L. Moskowitz, “A proposed spectral form
for fully developed wind seas based on the similarity theory of
S. A. Kitaigorodskii,” J. Geophys. Res., vol. 69, no. 24, pp. 5181–5190,
1964.

[2] K. Hasselmann et al., “Measurements of wind-wave growth and swell
decay during the Joint North Sea Wave Project (JONSWAP),” Deutches
Hydrographisches Inst., vol. A8, no. 12, pp. 1–95, 1973.

[3] K. Hasselmann, D. B. Ross, P. Müller, and W. Sell, “A parametric
wave prediction model,” J. Phys. Oceanogr., vol. 6, no. 3, pp. 200–228,
Mar. 1976.

[4] M. A. Donelan, J. Hamilton, and W. H. Hui, “Directional spectra of
wind-generated ocean waves,” Philos. Trans. Roy. Soc. London A, Math.
Phys. Sci., vol. A315, no. 1534, pp. 509–562, Sep. 1985.

[5] I. R. Young, “Directional spectra of hurricane wind waves,” J. Geophys.
Res., vol. 111, no. C8, pp. C08020-1–C08020-14, Aug. 2006.

[6] P. A. Hwang, Y. Fan, F. J. Ocampo-Torres, and H. García-Nava, “Ocean
surface wave spectra inside tropical cyclones,” J. Phys. Oceanogr.,
vol. 47, no. 10, pp. 2293–2417, Oct. 2017.

[7] S. J. Katzberg and J. Dunion, “Comparison of reflected GPS
wind speed retrievals with dropsondes in tropical cyclones,” Geo-
phys. Res. Lett., vol. 36, pp. L17602-1–L17602-5, Sep. 2009,
doi: 10.1029/2009GL039512.

[8] S. J. Katzberg, J. Dunion, and G. G. Ganoe, “The use of reflected GPS
signals to retrieve ocean surface wind speeds in tropical cyclones,” Radio
Sci., vol. 48, pp. 371–387, Jul. 2013, doi: 10.1002/rds.20042.

[9] S. Gleason, “Space-based GNSS scatterometry: Ocean wind sensing
using an empirically calibrated model,” IEEE Trans. Geosci. Remote
Sens., vol. 51, no. 9, pp. 4853–4863, Sep. 2013.

[10] S. Gleason et al., “Study of surface wind and mean square slope
correlation in hurricane Ike with multiple sensors,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 11, no. 6, pp. 1975–1988,
Jun. 2018, doi: 10.1109/JSTARS.2018.2827045.

[11] P. A. Hwang and F. Fois, “Surface roughness and breaking wave
properties retrieved from polarimetric microwave radar backscattering,”
J. Geophys. Res., vol. 120, no. 5, pp. 3640–3657, May 2015.

[12] I. R. Young, “Observations of the spectra of hurricane generated waves,”
Ocean Eng., vol. 25, nos. 4–5, pp. 261–276, Dec. 1998.

[13] F. J. Ocampo-Torres, H. García-Nava, R. Duranzo, P. Osuna,
G. M. D. Méndez, and H. C. Graber, “The intOA experiment: A study of
ocean-atmosphere interactions under moderate to strong offshore winds
and opposing swell conditions in the gulf of Tehuantepec, Mexico,”
Boundary-Layer Meteorol., vol. 138, no. 3, pp. 433–451, 2011.

[14] H. García-Nava, F. J. Ocampo-Torres, P. Osuna, and M. A. Donelan,
“Wind stress in the presence of swell under moderate to strong wind
conditions,” J. Geophys. Res., vol. 114, pp. C12008-1–C12008-12,
Dec. 2009, doi: 10.1029/2009JC005389.

[15] P. A. Hwang, H. García-Nava, and F. J. Ocampo-Torres, “Observations
of wind wave development in mixed seas and unsteady wind forc-
ing,” J. Phys. Oceanogr., vol. 41, no. 12, pp. 2343–2362, Dec. 2011,
doi: 10.1175/JPO-D-11-044.1.

[16] C. Cox and W. Munk, “Statistics of the sea surface derived from sun
glitter,” J. Marine Res., vol. 13, no. 2, pp. 198–227, 1954.

[17] S. J. Katzberg, O. Torres, and G. Ganoe, “Calibration of reflected GPS
for tropical storm wind speed retrievals,” Geophys. Res. Lett., vol. 33,
pp. L18602-1–L18602-5, Sep. 2006, doi: 10.1029/2006GL026825.

[18] P. A. Hwang, “Fetch- and duration-limited nature of surface wave growth
inside tropical cyclones: With applications to air–sea exchange and
remote sensing,” J. Phys. Oceanogr., vol. 46, no. 1, pp. 41–56, Jan. 2016.

[19] P. A. Hwang and E. J. Walsh, “Azimuthal and radial variation of wind-
generated surface waves inside tropical cyclones,” J. Phys. Oceanogr.,
vol. 46, no. 9, pp. 2605–2621, Sep. 2016, doi: 10.1175/JPO-D-16-
0051.1.

[20] P. A. Hwang and Y. Fan, “Effective fetch and duration of tropical cyclone
wind fields estimated from simultaneous wind and wave measurements:
Surface wave and air-sea exchange computation,” J. Phys. Oceanogr.,
vol. 47, no. 2, pp. 447–470, Feb. 2017, doi: 10.1175/JPO-D-16-0180.1.

[21] G. J. Holland, “An analytic model of the wind and pressure profiles
in hurricanes,” Monthly Weather Rev., vol. 108, no. 8, pp. 1212–1218,
Aug. 1980.

[22] G. J. Holland, J. I. Belanger, and A. Fritz, “A revised model for radial
profiles of hurricane winds,” Monthly Weather Rev., vol. 136, no. 9,
pp. 4393–4401, Sep. 2010.

[23] P. A. Hwang and D. W. Wang, “Directional distributions and mean
square slopes in the equilibrium and saturation ranges of the wave
spectrum,” J. Phys. Oceanogr., vol. 31, no. 5, pp. 1346–1360,
May 2001.

[24] P. A. Hwang and D. W. Wang, “Field measurements of duration-
limited growth of wind-generated ocean surface waves at young stage
of development,” J. Phys. Oceanogr., vol. 34, no. 10, pp. 2316–2326,
Oct. 2004.

[25] P. A. Hwang, “Duration- and fetch-limited growth functions
of wind-generated waves parameterized with three different
scaling wind velocities,” J. Geophys. Res., vol. 111, no. 2,
pp. C02005-1–C02005-10, Feb. 2006, doi: 10.1029/2005JC003180.

[26] M. A. Donelan, M. Curcic, S. S. Chen, and A. K. Magnusson,
“Modeling waves and wind stress,” J. Geophys. Res., vol. 117, no. 2,
pp. C00J23-1–C00J23-26, Jul. 2012, doi: 10.1029/2011JC007787.

[27] M. D. Powell, P. J. Vickery, and T. A. Reinhold, “Reduced drag
coefficient for high wind speeds in tropical cyclones,” Nature, vol. 422,
pp. 279–283, Mar. 2003.

[28] J. L. Franklin, M. L. Black, and K. Valde, “GPS dropwindsonde
wind profiles in hurricanes and their operational implications,” Weather
Forecasting, vol. 18, no. 2, pp. 32–44, Mar. 2003.

http://dx.doi.org/10.1029/2009GL039512
http://dx.doi.org/10.1002/rds.20042
http://dx.doi.org/10.1109/JSTARS.2018.2827045
http://dx.doi.org/10.1029/2009JC005389
http://dx.doi.org/10.1175/JPO-D-11-044.1
http://dx.doi.org/10.1029/2006GL026825
http://dx.doi.org/10.1175/JPO-D-16-0051.1
http://dx.doi.org/10.1175/JPO-D-16-0051.1
http://dx.doi.org/10.1175/JPO-D-16-0180.1
http://dx.doi.org/10.1029/2005JC003180
http://dx.doi.org/10.1029/2011JC007787


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Paul A. Hwang received the B.S. degree in oceanog-
raphy from National Taiwan Ocean University,
Keelung, Taiwan, in 1973, the M.S. degree in ocean
engineering from The University of Rhode Island,
Kingston, RI, USA, in 1978, and the Ph.D. degree
in civil engineering from the University of Delaware,
Newark, DE, USA, in 1982.

He had two and half years post-doctoral training
at the Air-Sea Interaction Laboratory, University of
Delaware. He was a Staff Scientist for four years
at Ocean Research and Engineering, Pasadena, CA,

USA, one year at Science and Technology, Hampton, VA, USA, and five years
at Quest Integrated, Inc., Kent, WA, USA. He was with the Oceanography
Division, U.S. Naval Research Laboratory, from 1995 to 2006, where he has
been with the Remote Sensing Division since 2006. His research interests
include spatial and temporal evolution of ocean surface waves, characteristics
of ocean surface roughness, and hydrodynamic aspects of microwave and
acoustic remote sensing of the ocean.

Yalin Fan received the B.S. degree in oceanography
from Ocean University of China, Qingdao, China,
in 1995, the M.S. degree in oceanography from the
University of New Hampshire, Durham, NH, USA,
in 2000, and the Ph.D. degree in oceanography, The
University of Rhode Island (URI), Narragansett, RI,
USA, in 2007.

She was an Oceanography Technician with the
University of Massachusetts Dartmouth, Dartmouth,
MA, USA, from 2001 to 2003. She was a Marine
Research Associate with URI from 2007 to 2009

and an Associate Research Scholar with Princeton University, Princeton, NJ,
USA, from 2010 to 2013. She was a Post-Doctoral Researcher with the
U.S. Naval Research Laboratory from 2013 to 2015, where she has been an
Oceanographer since 2015. Her research interests include air-sea interaction,
momentum and heat exchange across the air-sea interface, surface gravity
waves, Langmuir turbulence, wave modeling, numerical model coupling, large
eddy circulation modeling, and ocean turbulence.


