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ABSTRACT

In this study, the contribution of low-frequency (.100 days), Madden–Julian oscillation (MJO), and con-

vectively coupled equatorial wave (CCEW) variability to the skill in predicting convection and winds in the

tropics at weeks 1–3 is examined. We use subseasonal forecasts from the Navy Earth System Model (NESM);

NCEP Climate Forecast System, version 2 (CFSv2); and ECMWF initialized in boreal summer 1999–2015.

A technique for performingwavenumber–frequency filtering on subseasonal forecasts is introduced and applied

to these datasets. This approach is better able to isolate regional variations inMJO forecast skill than traditional

global MJO indices. Biases in the mean state and in the activity of the MJO and CCEWs are smallest in the

ECMWFmodel. The NESM overestimates cloud cover as well as MJO, equatorial Rossby, andmixed Rossby–

gravity/tropical depression activity over the west Pacific. The CFSv2 underestimates convectively coupled

Kelvin wave activity. The predictive skill of the models at weeks 1–3 is examined by decomposing the forecasts

into wavenumber–frequency signals to determine the modes of variability that contribute to forecast skill. All

three models have a similar ability to simulate low-frequency variability but large differences in MJO skill are

observed. The skill of the NESM and ECMWF model in simulating MJO-related OLR signals at week 2 is

greatest over two regions of high MJO activity, the equatorial Indian Ocean and Maritime Continent, and the

east Pacific. TheMJO in the CFSv2 is too slow and too weak, which results in lower MJO skill in these regions.

1. Introduction

Subseasonal-to-seasonal (S2S) prediction has the

potential to bridge the gap between medium-range

weather forecasting and seasonal climate outlooks (Vitart

et al. 2012; Vitart 2014; Robertson et al. 2015; White et al.

2017). Coupled atmosphere–ocean models have shown

skill in predicting precipitation in the tropics (Li and

Robertson 2015; Wheeler et al. 2017) and tropical cy-

clones (Belanger et al. 2010; Vitart et al. 2010; Camp et al.

2018) at S2S time scales. Sources of predictability in the

tropics on S2S time scales include the El Niño–Southern
Oscillation (ENSO) (Ropelewski and Halpert 1987)

and Madden–Julian oscillation (MJO) (Zhang 2005;
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Zhang et al. 2013) while convectively coupled equatorial

waves (CCEWs) (Kiladis et al. 2009) mainly contribute to

predictability on shorter time scales (Dias et al. 2018).

However, Guo et al. (2015) observed that numerical

models with more robust convectively coupled Kelvin

waves also better simulate the MJO. Goswami et al.

(2017a) also observed that improvements in both theMJO

and CCEWs tend to coincide with overall improvements

in tropical convection.

In this study, we examine boreal summer 1999–2015

forecasts from the Navy Earth SystemModel (NESM); the

NCEP Climate Forecast System, version 2 (CFSv2) (Saha

et al. 2014); and the ECMWF subseasonal prediction sys-

tem (Vitart 2014). Wavenumber–frequency filtering is used

to decompose OLR and winds from the model forecasts

into low-frequency (.100 days), MJO, and CCEW com-

ponents. This is then compared to wavenumber–frequency-

filtered fields from gridded satellite observations and the

ERA-Interim to determine the contribution of thesemodes

of variability to thepredictive skill of themodels atweeks 1–

3. In comparison to global MJO indices (Wheeler and

Hendon 2004), this method allows us to better estimate the

geographic variability of MJO skill.

The skill of coupled atmosphere–ocean models in

forecasting precipitation at seasonal and S2S time is

greatest in the tropics—in particular the central and

eastern equatorial Pacific (Li and Robertson 2015;

Wheeler et al. 2017). In this region, atmospheric vari-

ability is driven by sea surface temperature (SST) vari-

ability and precipitation and SST are strongly correlated

(Kumar et al. 2013). In addition, coupled atmosphere–

ocean models have much greater skill in the tropics at

both seasonal and S2S time scales during La Niña and El

Niño episodes than during neutral conditions (Li and

Robertson 2015).

The MJO is the leading mode of intraseasonal vari-

ability in the tropical atmosphere and a major source of

predictability on S2S time scales (e.g., Kim et al. 2014).

In the tropics, deep convection is regulated by mid-

tropospheric humidity (Holloway and Neelin 2009); this

is a key aspect of moisture mode theories of the MJO

(e.g., Sobel and Maloney 2013; Adames and Kim 2016).

Air–sea fluxes are one process that can amplify the

moisture anomalies associated with the MJO (DeMott

et al. 2014, 2015). Radiative–convective feedbacks are

also a source of instability for the MJO (Crueger and

Stevens 2015) and may play a role in scale selection

(Adames and Kim 2016). The eastward propagation of

the MJO is primarily due to horizontal moisture ad-

vection (Maloney 2009) but vertical moisture advection

also plays a role (Janiga and Zhang 2016). Improve-

ments in numerical MJO prediction have come about

throughmore realistic moisture–convection interactions

(Hirons et al. 2013a,b) and the use of atmosphere–ocean

coupling which extends useful skill by ;1 week (Green

et al. 2017). In addition, Gonzalez and Jiang (2017)

found that subseasonal prediction systems with reduced

mean state humidity biases better represent horizontal

moisture advection processes and have more realistic

MJOs. The ability of models to represent Kelvin waves

within the MJO envelope has also been linked to im-

proved MJO simulation (Guo et al. 2015).

CCEWs (Kiladis et al. 2009) are equatorially trapped

Rossby and inertio-gravity waves (Matsuno 1966) that

couple to moist convection and explain a large portion of

the variance in tropical convection (Wheeler and Kiladis

1999). Convectively coupled atmosphericKelvin (Ventrice

et al. 2012a,b; Reynolds et al. 2016; Schreck 2015, 2016),

equatorial Rossby (ER) (Molinari et al. 2007), and mixed

Rossby–gravity (MRG) waves (Dickinson and Molinari

2002) modulate tropical cyclone (TC) formation [see

Frank and Roundy (2006) and Schreck et al. (2012) for an

overview of the influence of tropical waves on TC genesis].

Tropical depressions (TDs) or easterly waves also serve

as precursors for TCs (e.g.,Wang et al. 2010a,b). However,

accurately simulating the climatological activity, structure,

and behavior of CCEWs in global models remains a

challenge (Lin et al. 2006; Straub et al. 2010; Hung et al.

2013; Wang and Li 2017). The empirical method of

Wheeler and Weickmann (2001) has ;10 days of pre-

dictive skill for ER waves and several days of predictive

skill for MRG and Kelvin waves. Although individual

MRG/TD and Kelvin waves are not a source of pre-

dictability at S2S time scales, accurately simulating their

climatological variability and structure and their modula-

tion byENSOand theMJOcould be important to extreme

precipitation and tropical cyclone prediction.

One goal of this study is to determine the sources of the

regional variability in skill in subseasonal forecasting

systems found by Li and Robertson (2015) and Wheeler

et al. (2017). Wheeler et al. (2017) found that daily pre-

cipitation skill is greatest in the extratropics for the first

2–3 days and originates from the cyclones and anticy-

clones found at these latitudes. However, by week 2 the

precipitation skill was much higher in the tropics than in

the extratropics. Li and Robertson (2015) found that the

ECMWF coupled model had much greater skill in fore-

casting precipitation atweek 2–3 over theAsianmonsoon

region than the CFSv2. This is corroborated by Jie et al.

(2017) who examined the skill of the ECWMF coupled

model and other subseasonal prediction systems in fore-

casting the boreal summer intraseasonal oscillation

(BSISO) index of Lee et al. (2013).

Wavenumber–frequency filtering (Wheeler and Kiladis

1999) is commonly applied to OLR and dynamical fields

from both observations and dynamical model output to
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isolate the signals associated with different CCEWs and

the MJO. With some modifications, this filtering can be

applied to subseasonal forecasts. We apply wavenumber–

frequency filtering to deterministic subseasonal forecasts

from three coupled atmosphere–ocean models initialized

in June–August 1999–2015. We evaluate the skill of these

models in predicting OLR and dynamical fields associated

with different CCEWs, the MJO, and low-frequency

(.100 days) modes of variability in both daily and

weekly time-averaged fields. This is used to explain re-

gional differences in the total skill in forecasting these

fields at weeks 1–3.

The characteristics of the models and observa-

tional datasets used to evaluate them are discussed in

section 2. The MJO and CCEWs are identified using

wavenumber–frequency filtering; the modifications

required to apply this filtering to subseasonal fore-

casts are discussed in section 2. Biases in the standard

deviation of MJO- and CCEW-filtered OLR anoma-

lies in each model are presented in section 3. In sec-

tion 4 the fractional contribution of low-frequency

(.100 days), MJO, and different CCEW signals to the

total predictive skill in each model is discussed. A

summary of the results and some conclusions are

presented in section 5.

2. Data and methodology

a. Models

We examine output from three global coupled

atmosphere–ocean models: NESM, the ECMWF sub-

seasonal prediction system (Vitart 2014), and the CFSv2

(Saha et al. 2014). We use the entire 45-day duration of

the NESM and ECMWF control runs and the first

45 days of a subset of reforecast and operational CFSv2

runs initialized in JJA 1999–2015. The initialization

frequency, resolution, and cumulus parameterizations

used in each of the models is shown in Table 1.

NESM consists of the Navy Global Environmental

Model (NAVGEM) (Hogan et al. 2014) coupled to the

Global Ocean Forecast System (GOFS) (Metzger et al.

2014), which itself consists of the Hybrid Coordinate

Ocean Model (HYCOM) (Bleck 2002) and Los Alamos

Community Ice Code (CICE), version 4.1 (Hunke and

Lipscomb 2010). NAVGEM radiation is based on the

Rapid Radiative Transfer Model for general circulation

models (RRTMG) scheme for longwave and shortwave

(Iacono et al. 2008). Cloud fraction is based on Xu and

Randall (1996) with a modified version of Slingo (1987)

for convective clouds, including a relative humidity de-

pendence and convective mass flux scaling. Convection

is a bimodal (turbulence and dynamically forced) ex-

tension of Ridout et al. (2005), which is based on Kain–

Fritsch. The boundary layer is based on Louis et al.

(1982) and Su�selj et al. (2012) and surface fluxes are

based on Coupled Ocean–Atmosphere Response Ex-

periment (COARE), version 3.0 (Kara et al. 2005).

A series of 45-day integrations of NESM were initial-

ized at 1200UTC four times a week on Saturday, Sunday,

Monday, and Tuesday during June–August 1999–2015

for the NorthAmericanMultimodel Ensemble (NMME)

Subseasonal Experiment (SubX) (http://cola.gmu.edu/

kpegion/subx/) (Kirtman et al. 2017). Altogether this is

870 runs; 24NESMruns failed and are not included in this

total. NAVGEM is run at T359 (;55km at the equator)

with 50 vertical levels. HYCOM is run at 1/128 (;9km at

the equator)—which allows for the representation of

ocean eddies—with CICE on the same grid. The ocean

and sea ice are initialized from a GOFS, version 3.1, re-

analysis for 1999–2015. The atmosphere was initialized

with operational NOGAPS analyses for 1999–2008 and a

reanalysis using NAVGEM and the hybrid version of the

Naval Research Laboratory (NRL) Atmospheric Varia-

tional Data Assimilation System–Accelerated Repre-

senter (NAVDAS-AR;Kuhl et al. 2013) for 2009–15. The

improved initial conditions for 2009–15 result in better

short-term skill but do not have a significant effect on the

skill for week 2 and beyond or the wavenumber–

frequency spectra.

Reforecasts from the ECMWF subseasonal prediction

system (Vitart 2014), version CY41R1, are taken from the

TABLE 1. Summary of the initialization frequency, number of runs, resolution, and physics used in the three models. For each of the

models we examine the first 45 days of runs initialized during JJA 1999–2015.

Model

Initialization

frequency

No. of

runs

Atmosphere

resolution

Ocean

resolution

Cumulus

parameterization

NESM Saturday–Tuesday

at 1200 UTC

870 ;55 km with 50L 1/128 Modified Kain–Fritsch

(Ridout et al. 2005)

ECMWF

(Vitart 2014)

Monday/Thursday

at 0000 UTC

441 ;32 km F0–10 day

and;64 km F10–

45 day with 91L

18 Tiedtke (1989),

Bechtold et al. (2004)

CFSv2

(Saha et al. 2014)

Every fifth day

at 0000 UTC

306 ;147 km with 64L 1/48 108S–108N and

1/28 poleward of 308
SimplifiedArakawa–Schubert

(Han and Pan 2011)
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S2S database (apps.ecmwf.int/datasets/data/s2s/) (Vitart

et al. 2017). The atmosphere model is run at TL639

(;32km) up to day 10 and TL319 (;64km) after day 10;

the ocean model is run at 18 (;111km). The convective

parameterization (Tiedtke 1989; Bechtold et al. 2004) is

able to capture the sensitivity of convection to mid-

tropospheric humidity (Hirons et al. 2013a,b), which is

one of the reasons its skill in forecasting boreal intra-

seasonal variability is superior to many models (Jie et al.

2017). Control forecasts initialized at 0000 UTC twice a

week during June–August 1999–2015 are used in this study.

The atmospheremodel in the CFSv2 (Saha et al. 2014)

is the Global Forecast System (GFS) and the ocean

model is the Geophysical Fluid Dynamics Laboratory

(GFDL) Modular Ocean Model, version 4 (MOM4).

The atmospheric resolution is T126 (;147 km) with 64

vertical levels and the resolution of the ocean model

is 0.58 poleward of 308 and 0.258 between 108S and 108N.

The cumulus parameterization is the simplified

Arakawa–Schubert (SAS) scheme (Han and Pan 2011).

Although more forecasts are available, for computa-

tional expediency we use reforecasts and operational

forecasts initialized every fifth day at 0000 UTC dur-

ing June–August 1999–2015 (ncdc.noaa.gov/data-access/

model-data/model-datasets/climate-forecast-system-

version2-cfsv2). These reforecasts and operational fore-

casts are 9 months long but we only use the first 45 days

for comparison with the NESM and ECMWF runs.

b. Data

Model forecasts of daily averaged outgoing longwave

radiation (OLR) are validated against observations from

the Climate Data Record (CDR) of OLR (Lee et al.

2011). Dynamical fields from the model forecasts at

0000UTCare validated against theERA-Interim reanalysis

(Dee et al. 2011). All comparisons between forecasts and

observations are performed on a common 2.58 3 2.58 grid.

c. Wavenumber–frequency filtering

Figure 1 shows the symmetric wavenumber–

frequency spectra (e.g., Wheeler and Kiladis 1999) of

OLR from the 45-day integrations of the three models

and OLR observations for the 45 days following each

day of JJA 1999–2015. These spectra have been nor-

malized by a red noise background. Both the NESM and

ECMWF model have more eastward power than west-

ward power at 20–45 days consistent with a robust MJO.

In contrast, the CFSv2 has similar power in both

directions. All three models produce spectral peaks

consistent with ER waves and TDs. Kelvin waves in the

NESM are slower than those in the observations while

Kelvin wave activity in the CFSv2 is underestimated. In

the asymmetric wavenumber–frequency spectra (not

shown), an MRG wave peak is present in all three

models but it is weaker than observed.

Figure 2 provides an overview of the method used to

apply wavenumber–frequency filtering to the model

forecasts and observations. To filter for time scales

longer than 45 days, the model forecasts are padded

with observations prior to the initialization time and

zeroes afterward in the padded filtering method (FilPad).

Two years of either OLR observations or ERA-Interim

analyses in the case of zonal winds are used prior to the

initialization time. The duration of zero padding is 2 yr2
45 days. FilPad is also applied to 45 days of observational

anomalies coinciding with the model forecast period.

The model forecasts and coincident observations both

filtered using the padded method are compared to

evaluate the model forecasts. We also compare obser-

vations filtered using FilPad with a reference filtering

methodology (FilRef) in which the filtering is applied to

one continuous time series. This is done to determine

over which portion of the 45-day model forecast FilPad is

able to closely approximate FilRef. Wheeler and

Weickmann (2001) describe a procedure for producing

forecasts of different wavenumber–frequency modes

using only observations. In their method, the period

after initialization in Fig. 2 is entirely zeroes and

observed signals are extrapolated into the future.

In comparison to Wheeler and Kiladis (1999), the filter

bands are relatively unrestrictive to allow for diversity in

the propagation characteristics of the various disturbances

and differences between simulated and observed spectral

characteristics (Fig. 1). Thewavenumber k and period p for

each band are as follows: MJO (k5 0:9, p5 20:100 days),

Kelvin (k 5 1:14, p 5 2.5:20 days), ER (k 5 210:21,

p 5 10:100 days), and mixed Rossby–gravity/tropical de-

pression (MRG/TD) (k5220:0, p5 2.5:10 days).We also

apply a low-frequency/large-scale (LF) filter (k 5 210:10,

p 5 .100 days). LF is meant to capture variability in

tropical convection associated with ENSO and other

seasonal-to-interannual modes of variability.

The padded filtering method is applied one latitude

at a time with no symmetry constraints. The procedure is

as follows:

1) Remove the first four harmonics of the observed

annual cycle 1981–2010 from both the model fore-

casts and observations.

2) Removemodelmean biases so that the anomalies being

filtering have a mean of zero. Biases are with respect to

observations and calculated as a function of lead time

for forecasts initialized in each month for each model.

3) Taper the first year of the two years of observations

before initialization to zero with a split-cosine-bell

taper to reduce spectral leakage.
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4) Filter for LF signals.

5) To reduce the ringing that arises from the transition

from zero to nonzero values, apply a 100-day high-

pass filter to the nonzero portion of the data prior to

filtering forMJO andER signals. This is done instead

of subtracting the LF signals (step 4), which exclude

higher wavenumbers.

6) Filter for MJO and ER signals.

7) Prior to filtering for Kelvin and MRG/TD signals,

apply a 20-day high-pass filter to the nonzero portion

of the data.

8) Filter for Kelvin and MRG/TD signals.

For the reference filtering method we simply taper the

first and last years to zero prior to filtering for the LF,

MJO, ER, Kelvin, and MRG/TD signals.

Figure 3 shows the ability of the padded filtering

method to approximate the reference filtering method

for OLR observations. The ‘‘initialization’’ times are

each day of all months of 1999–2015 (6205 instances).

The filtered anomalies from different wavenumber–

frequency filters are compared to filtered anomalies at

matching times from the reference filtering method.

Figure 3a shows the standard deviation ratio between

FilPad and FilRef over 308S–308N. Values less than one

indicate an underestimation of the amplitude of the

filtered anomalies. Beyond week 3 the FilPad method

increasingly underestimates the amplitude of the fil-

tered signals. This underestimation is larger for the

low-frequency filters than the high-frequency filters.

Some ringing effects are also apparent near the end of

the forecast associated with the transition to the zero

FIG. 1. Wavenumber–frequency diagram of symmetric power normalized by a red noise background for OLR

over 158S–158N. Spectral analysis of (a) OLR observations is performed on the 45 days following each day in JJA

1999–2015. Spectral analysis of model forecasts from (b) NESM, (c) ECMWF, and (d) CFSv2 initialized in JJA

1999–2015 are also shown.
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padding for the Kelvin and MRG/TD filters. In the LF

filter, ringing effects lead to a slight overestimation of

the amplitude of the anomalies during week 1. The

pattern correlation or anomaly correlation coefficient

(ACC) between FilPad and FilRef is also calculated over

308S–308N. Here, ACC5�(P0R0)/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�P02R02

p
, where P0

and R0 are the anomalies from FilPad and FilRef

weighted by the cosine of the latitude. For the first three

weeks of a 45-day forecast, the wavenumber–frequency-

filtered anomalies generated using FilPad closely approx-

imate those from FilRef (Fig. 3b).

Figures 4a and 4b illustrate OLR anomalies filtered

for LF, MJO, ER, and Kelvin wave signals using FilPad
for OLR observations and an NESM forecast initial-

ized 1 June 2015. This MJO event was associated

with a period of elevated tropical cyclone activity

and a westerly wind burst that contributed to the de-

velopment of El Niño conditions. The MJO in the

NESM is too intense and propagates too fast. In

addition, while the NESM is able to capture the in-

creased Kelvin wave activity within the MJO con-

vective envelope, the distinction between the MJO

and Kelvin waves is not as clear as in observations.

Time–longitude diagrams produced in real-time using

CFSv2 forecasts and a similar methodology are

available at ncics.org/mjo.

Following Janiga and Thorncroft (2016), we also

calculate the phase and wave packet amplitude for

each wavenumber–frequency filter using the following

procedure:

1) Calculate the time derivative of the wavenumber–

frequency-filtered anomalies from FilPad for both

observations and model forecasts.

2) Normalize wavenumber–frequency-filtered anoma-

lies and their time derivative from both model fore-

casts and observations by the standard deviation

found in observations.

3) Amplitude is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 1B2

p
, where A is the standardized

filtered anomaly and B is the standardized time

derivative of the filtered anomaly. The phases calcu-

lated using A and B have values from 08 to 3608 such
as decaying (08), suppressed (908), developing (1808),
and enhanced (2708).

The phase of the MJO signals and the wave packet

amplitude in observations and the NESM forecast are

shown in Figs. 4c and 4d. Periods of high wave packet

amplitude can occur in both suppressed and enhanced

MJO phases. There appears to be some propagation of

wave packet amplitude from the eastern Pacific west-

ward, which would be consistent with a westward MJO

group velocity (Adames and Kim 2016).

FIG. 2. Illustration of the reference (FilRef) and padded (FilPad) wavenumber–frequency-filtering methods. Forecast

(F)5 45 days, observational padding (OP)5 2 yr, zero padding (ZP)5 2 yr2 F, and split cosine bell taper (T)5 1 yr.
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The most common method of evaluating the MJO in

forecasts is the Real-time Multivariate MJO (RMM)

index (Wheeler and Hendon 2004). While variations in

RMM skill as a function of phase can give some in-

formation on regional differences in MJO skill, the ap-

proach described above can be used to calculate the skill

of the model in representing MJO-related variations in

wind and convection at individual grid points. It should

be noted that the LF, MJO, ER, Kelvin, and MRG/TD

filtered anomalies can be linearly combined to re-

produce the unfiltered anomalies with relatively little

loss since they account for most of the variance in the

tropics.

d. Model forecast evaluation

In section 3 we analyze model biases in the activity of

the different tropical modes of variability calculated

from the standard deviation of filtered OLR anomalies

from model forecasts and observations. We focus on

biases during weeks 2 and 3 since the model biases grow

fairly quickly during week 1. Mean model biases in un-

filtered fields are shown to provide context for these

analyses.

In section 4 we examine the predictive skill of themodels

by comparing both filtered and unfiltered model forecasts

and observational analyses. We calculate the Pearson cor-

relation at each grid point and the pattern correlation or

ACC over different regional domains. Here, ACC5

�(F 0A0)/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�F 02�A02

p
, where F 0 andA0 are the anomalies

from the model forecasts and observational analyses

weighted by the cosine of the latitude. We also calculate

the mean absolute error difference (DMAE) relative to a

forecast of climatology, which in this case is zero since

we are comparing anomalies, over different regional do-

mains. Here, DMAE5 1/n�jF 0 2A0j2 1/n�jA0j. Nega-

tive values ofDMAE indicate that themodel forecast beats

climatology. To explain howACC andDMAE relate to the

behavior of differentmodes of variabilitywe computemean

errors and systematic biases in the phase and wave packet

amplitude. Themean phase error is 1/n�jF 0
P 2A0

Pj and the
mean amplitude error is 1/n�jF 0

A 2A0
Aj, where subscripts

P andA denote the phase and amplitude ofmodel forecasts

and observational analyses. Similarly, the phase bias is

1/n�(F 0
P 2A0

P) and the amplitude bias is 1/n�(F 0
A 2A0

A).

e. Significance testing

Because the forecasts from the three models have a

different initialization frequency and number of runs,

it is important to determine that differences in biases

and skill between the models are statistically signifi-

cant. For the maps of activity biases and Pearson cor-

relation, statistical significance was determined by

resampling with replacement forecasts initialized within

10-day nonoverlapping windows using a moving-block

FIG. 3. Comparison of wavenumber–frequency-filtered observed OLR anomalies using the

reference (FilRef) and padded (FilPad) methods (see Fig. 2). (a) Ratio of the standard deviation

between FilRef and FilPad and (b) ACC between FilRef and FilPad. The comparisons are per-

formed over 308S–308N. ‘‘Initialization’’ times are every day of all months during 1999–2015.
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bootstrap. In each bootstrap 1000 simulations were

performed. The moving block bootstrap is used to pre-

serve the temporal autocorrelation between adjacent

forecasts. Henderson et al. (2016) used a window of

4–6 days depending onMJO phase to represent the time

the MJO spends in each phase. Experimentation with a

range of window lengths indicates that the main con-

clusions of this study are not especially sensitive to

window length so a single window length was used for

simplicity. When plotting maps of statistical significance

it is also necessary to account for the fact that false re-

jections of the null hypothesis can occur based on the

large number of tests (Wilks 2016). For simplicity, local

statistical significance is determined by p values of 0.005

(99.5% rejection of the null hypothesis at that grid point

by the bootstrap distribution). This does not indicate

that all points are significant at this level but ensures

that a relatively small fraction of these points would be

FIG. 4. Time–longitude diagram (averaged between 108S and 108N) of (a),(b) unfiltered OLR anomalies (Wm22,

shaded) and wavenumber–frequency-filtered OLR anomalies for low-frequency (.100 days) (black),MJO (red), ER

(blue), and Kelvin (green) signals (contoured every 215Wm22) from (a) observations and (b) an NESM forecast

initialized 1 Jun 2015. (c),(d) Phase (8, shaded) and amplitude (standard deviations, black contours) of MJO-filtered

OLR anomalies from (c) observations and (d) an NESM forecast. The phases are decaying (08), suppressed (908),
developing (1808), and enhanced (2708). MJO-filteredOLR anomalies (red contours every215Wm22) are repeated

in (c),(d) for reference.
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false rejections of the null hypothesis at the 95% level.

The error bars of quantities integrated over regional

domains (ACC, DMAE, phase bias, and amplitude bias)

are based on the 95% range of the bootstrap distribution

from the same moving-block bootstrap.

3. Systematic biases

Figure 5 shows mean biases in OLR and 850- and

200-hPa winds averaged over the first 45 days of the

forecasts for each of the models. Although it is not

shown in this figure, theOLRbiases stabilize by;3–5 days

and the wind biases stabilize by ;10 days. The NESM is

characterized by excess convection over tropical North

Africa, Southeast Asia, and the western Pacific and too

little convection over South America and the western

Atlantic (Fig. 5a). A double ITCZ bias is also apparent

over the western Pacific in the NESM. The OLR biases

over South America and North Africa are consis-

tent with a nearly 10ms21 easterly bias extending from

Africa into South America at 200 hPa and a westerly

bias over the tropical Atlantic at 850 hPa. Both OLR

and wind biases are much smaller in the ECMWF

model (Fig. 5b). In the CFSv2 there is a lack of

convection over Southeast Asia and tropical South

America (Fig. 5c).

Figures 6–9 show the observed standard deviation of

OLR anomalies for different filters and the standard

deviation bias of the models averaged over weeks 2–3.

An advantage of the filtering procedure introduced in

section 2c is that biases in wave activity can be diagnosed

from subseasonal forecasts. While previous studies (e.g.,

Jiang et al. 2015) have examined biases in wave activity

within multiyear integrations, models may drift into a

different climatological state over such a long period of

time.

Observed MJO activity in the boreal summer extends

from the Indian Ocean across the Maritime Continent

and into the western Pacific with a secondary peak in

activity over the eastern Pacific (Fig. 6a). MJO activity is

too high in the NESM over the western and eastern

Pacific (Fig. 6b). The ECMWF model is characterized

by a slight positive activity bias over the Maritime

Continent (Fig. 6c) while the CFSv2 is characterized

by a lack of MJO activity in this region (Fig. 6d). Con-

vective activity over the Maritime Continent is charac-

terized by complex interactions between the MJO,

topography, and the diurnal cycle (Peatman et al. 2014),

FIG. 5. OLR (Wm22, shaded) and 850-hPa wind (m s21, red vectors) and 200-hPa wind (m s21,

black vectors) biases from (a) NESM, (b) ECMWF, and (c) CFSv2 averaged over F0–45 days.
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which tend to be poorly represented inmodels (Peatman

et al. 2015). This may be why MJO activity biases are

relatively large in this region.

ER wave activity during the boreal summer is stron-

gest along a belt that extends from the western Pacific

westward into Southeast Asia (Fig. 7a). This peak is

partly related to tropical cyclone activity in the region

that projects onto the ER filter (Aiyyer et al. 2012).

NESM ER activity biases are similar to those for the

MJO with excess activity over the Bay of Bengal and

China as well as the eastern Pacific (Fig. 7b). ECMWF

model biases are smaller but are also elevated in these

two areas of high observed ER activity (Fig. 7c). In the

CFSv2 there is excess ER activity in a belt between

08 and 158N that stretches from the Indian Ocean into

the Atlantic and a lack of activity within the belt of high

observed activity indicating a southward shift in ER

activity (Fig. 7d).

Convectively coupled Kelvin waves occur at similar

wavenumbers and periods as midlatitude cyclones, which

allows these them to couple and interact (Straub and

Kiladis 2003). As a result, Fig. 8a shows convectively

coupled Kelvin wave activity near the equator as well as

cyclone activity in the midlatitudes. In the CFSv2, Kelvin

FIG. 6. (a) Standard deviation of MJO-filtered OLR observations (Wm22, shaded) and

MJO-filtered OLR standard deviation biases from (b) NESM, (c) ECMWF, and (d) CFSv2.

Standard deviation is averaged over weeks 2 and 3 of the forecasts and coinciding times in

observations. Areas where the standard deviation biases are significantly different from zero at

the 99.5% level are stippled. Statistical significance is assessed using a 1000-simulation moving

block bootstrap. The green boxes denote the Indian Ocean–Maritime Continent (7.58S–158N,

608–1558E) domain used in subsequent analyses.
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wave activity is underestimated across the equatorial re-

gions, but especially near the date line where activity in

the model is;50% of observed (Fig. 8d). The absence of

Kelvin wave activity in the CFSv2 was also noted by

Goswami et al. (2017a) and was improved by intro-

ducing a stochasticmulticloud cumulus parameterization.

Goswami et al. (2017b) note that the stochastic multi-

cloud cumulus parameterization better simulates the

spectrum of rain rates in the tropics. Kelvin wave activity

biases are smaller in the NESM and ECMWF model

(Figs. 8b and 8c).

Regional biases in MRG/TD activity (Fig. 9) are

closely related to the mean state biases in OLR (Fig. 5).

Models with negative OLR biases in certain regions

tend to have overactive MRG/TD activity there as well.

Tropical cyclones can project onto the MRG/TD band,

too (Aiyyer et al. 2012), which may partly account for

the biases shown in Fig. 9. All threemodels overestimate

MRG/TD activity over tropical West Africa. In this re-

gion, theMRG/TD bandwould be dominated byAfrican

easterly waves (Kiladis et al. 2006).

4. Predictive skill

In this section we examine the skill of the model

forecasts of OLR and zonal winds both spatially and as a

function of forecast lead time. We begin by examining

the spatial variability of the skill in weekly averaged

unfiltered fields. The skill of the models in predicting

different modes of variability is then examined by

comparing filtered forecasts and analyses. Last, model

forecasts of OLR anomalies filtered with different

wavenumber–frequency bands are combined and com-

pared to unfiltered OLR observations to determine

FIG. 7. As in Fig. 6, but for ER-filtered OLR.
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the skill contribution from individual filter bands as a

function of forecast lead time.

Figure 10 shows the Pearson correlation between

model forecasts and observations of OLR. Both the

model forecasts and observations are unfiltered but

are averaged over weeks 1 and 2 prior to computing

the Pearson correlation. Areas of correlation .0.5,

which are locally significant at the 99.5% confidence

level are stippled. This higher confidence level is used to

indicate a relatively small fraction of false null hypoth-

esis rejections at the 95% level. The threshold of 0.5 is

commonly used to indicate useful skill for theMJO (e.g.,

Kim et al. 2014). In addition, as will be shown in sub-

sequent figures, correlation .0.5 roughly coincides

with a negative DMAE indicating that the forecast beats

climatology. In all three models, the correlation is

highest in themidlatitudes at week 1 and associated with

midlatitude cyclone activity. However, the correlation

in the midlatitudes decreases more quickly than in the

tropics so that the highest correlation is concentrated in

the tropics and subtropics at week 2. Wheeler et al.

(2017) examined precipitation skill in the ECMWF and

Predictive Ocean Atmosphere Model for Australia

(POAMA-1) subseasonal prediction systems and found

similar results. Li and Robertson (2015) found that at

monthly time scales the correlation between forecasted

and observed convection in coupled global models be-

comes increasingly concentrated in the equatorial Pa-

cific and is associated with ENSO. The ECMWF model

has the highest skill at both weeks 1 and 2 while the

CFSv2 has the lowest skill. Compared to the NESM and

ECMWF, the week 2 skill in the CFSv2 is relatively low

over Southeast Asia and the Maritime Continent where

MJO activity is high.

FIG. 8. As in Fig. 6, but for Kelvin-filtered OLR.
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Figure 11 shows the Pearson correlation between

unfiltered model forecasts and ERA-Interim analyses of

850- and 200-hPa zonal winds at week 2. The skill of the

models in forecasting 850-hPa zonal wind (Figs. 11a,c,e)

is much higher than for OLR. In the NESM and

ECMWF model, swaths of correlation .0.5 are collo-

cated or downstream of the regions of high MJO activ-

ity. One area of skill extends from the Indian Ocean into

the central Pacific while a smaller swath of high skill is

found in the eastern Pacific. In the CFSv2, the highest

correlation is also found straddling the Maritime Con-

tinent and in the eastern Pacific but is much lower.

The skill of the models in forecasting 200-hPa zonal

wind is greatest south of the equator in the eastern Pa-

cific and Atlantic and much higher in the ECMWF

model than the NESM and CFSv2 (Figs. 11b,d,f).

During the boreal summer, the subtropical jet in the

Southern Hemisphere is stronger than the one in the

Northern Hemisphere. The area of highest skill is lo-

cated slightly equatorward of the Southern Hemisphere

subtropical jet at roughly the same latitude where boreal

summerMJO zonal wind variability is greatest (Adames

et al. 2016). The skill difference between the ECMWF

and NESM models in both OLR (Fig. 10) and zonal

winds (Fig. 11) may be related to the comparatively

large mean state biases in the NESM (Fig. 5).

Figure 12a shows the daily pattern correlation orACC

between filtered OLR anomalies from the NESM and

filtered OLR observations over 208S–208N. In Fig. 12b

the ACC between filtered OLR anomalies from the

NESM model forecasts and unfiltered OLR observa-

tions is shown. The correlation between unfiltered

anomalies from the model and observations (UF) is

shown for reference in both Figs. 12a and 12b. In Fig. 12a

FIG. 9. As in Fig. 6, but for MRG/TD-filtered OLR.
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the correlation drops off most slowly for the LF-filtered

OLR and fastest for the MRG/TD-filtered OLR.

Figure 12b illustrates the importance of different modes

of variability to the total skill of the model forecast at

different lead times. ER variability appears to be an

important source of skill for the first few days. However,

the skill contribution of anomalies filtered for ER waves

as well as for Kelvin andMRG/TDwaves drops off fairly

FIG. 10. Correlation (shaded) between unfiltered OLR from (a),(b) NESM; (c),(d) ECMWF; and (e),(f) CFSv2

forecasts averaged over (a),(c),(e) week 1 and (b),(d),(f) week 2 and unfiltered observations. Areas where corre-

lation is.0.5 at the 99.5% confidence level are stippled. Statistical significance is assessed using a 1000-simulation

moving block bootstrap.

FIG. 11. Correlation (shaded) between week 2 forecasts of (a),(c),(e) 850-hPa and (b),(d),(f) 200-hPa zonal winds

from (a),(b) NESM; (c),(d) ECMWF; and (e),(f) CFSv2 and unfiltered ERA-Interim analyses. Areas where cor-

relation is.0.5 at the 99.5%confidence level are stippled. Statistical significance is assessed using a 1000-simulation

moving block bootstrap.
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quickly. Into weeks 2 and 3, LF and MJO variability

appear to be the most important sources of skill for

OLR. It is worth noting that the LF-filtered OLR from

the NESM forecasts is better correlated with the un-

filtered OLR observations than the unfiltered OLR

from theNESM forecasts at the end of week 3 (Fig. 12b).

This suggests that removing the less predictable high-

frequency modes at this time scale could lead to a better

forecast. Although not shown, qualitatively similar

results are seen in the ECMWF and CFSv2 model

forecasts.

To help explain the spatial variability in unfiltered

OLR skill among the different models (Figs. 10 and 11),

we now examine maps of the Pearson correlation be-

tween filtered model forecasts and filtered observations.

Figure 13 shows the correlation between model fore-

casts and observations of OLR, which have both been

filtered for LF (Figs. 13a,c,e) and MJO (Figs. 13b,d,f)

signals at week 2. Consistent with Fig. 12a, the skill of

the models in predicting LF OLR variability is much

greater than the skill for the MJO. This is simply due to

the higher persistence of LF OLR. In all three models,

LF OLR skill is greatest along the equator and in the

eastern Pacific (Figs. 13a,c,e), suggesting a connection to

ENSO. These areas of high LF OLR skill also corre-

spond to the areas of high unfiltered OLR skill at week 2

(Figs. 10b,d,f). The skill of the models in predicting

MJO-filtered OLR is much lower than for LF-filtered

OLR. The NESM and ECMWF model have areas of

correlation .0.5 over the Maritime Continent and

eastern Pacific in the MJO-filtered OLR (Figs. 13b and

13d), closely corresponding with the areas of high MJO

activity (Fig. 6a). However, the skill is not proportional

to MJO amplitude. The skill is higher in the eastern

Pacific than the MJO amplitude would suggest, which

may indicate that the skill is greatest in regions down-

stream of MJO initiation. In the CFSv2, the MJO-

filtered OLR correlation over the Maritime Continent

is comparatively low (Fig. 13f). Areas of elevated skill

for MJO-filtered OLR are also observed outside of the

deep tropics, such as over Australia, arising from tele-

connection patterns associated with the MJO.

Figure 14 shows the Pearson correlation between MJO-

filtered model forecasts and MJO-filtered ERA-Interim

analyses of 850- and 200-hPa zonal winds at week 2. Dif-

ferences in the MJO-filtered 850-hPa zonal wind correla-

tionbetween themodels areespecially striking (Figs. 14a,c,e).

In the NESM and ECMWF model, correlation .0.5

stretches unbroken from the Arabian Peninsula to Central

America. The standard deviation of observedMJO-filtered

850-hPa zonal wind is greatest in a swath stretching from

theBay ofBengal into thewesternPacific at 108N(Adames

et al. 2016). The swath of skill observed in the NESM and

ECMWFmodel stretchesmuch farther east than the swath

of MJO variability. Again the increased skill downstream

could be associated with established MJO events being

more predictable than those that are developing. This

would be consistent with studies that have examined MJO

skill using the RMM index (Kim et al. 2014).

The skill in MJO-filtered 200-hPa zonal wind

(Figs. 14b,d,f) is less concentrated at the equator than

the skill inMJO-filtered 850-hPa zonalwind (Figs. 14a,c,e).

Both the NESM and ECMWF model have relatively

high skill over the Maritime Continent for MJO-filtered

200-hPa zonal winds compared to the CFSv2. The rela-

tively high skill of the NESM and ECMWF model in

predicting MJO-filtered OLR and zonal winds over the

Maritime Continent suggests that the MJO is not in-

herently less predictable in this region.

Figure 15 presents a summary of MJO statistics for the

three models over the Indian Ocean and Maritime Conti-

nent (IOMC; 7.58S–158N, 608–1558E). Figure 15a shows

the ACC between MJO-filtered OLR from model forecasts

and observations.MJO skill is greatest in theECMWFmodel

and lowest in the CFSv2, consistent with Figs. 13b, 13d, and

13f. The DMAE is a measure of the difference in mean ab-

solute error between model forecasts and observations

relative to a forecast of climatology (section 2d). The

FIG. 12. ACC between filtered NESM OLR forecasts and

(a) filtered and (b) unfiltered OLR observations over 208S–208N.

The thick black line (UF) denotes the ACC between daily un-

filtered OLR from NESM and observations.
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ECMWF model beats a forecast of climatology by the

largest margin for MJO-filtered OLR. Interestingly, al-

though the NESM has a significantly better ACC than

the CFSv2, its DMAE is only slightly better.

To explain the discrepancy between the ACC and

DMAE of model forecasts of MJO-filtered OLR, we

now examine errors and biases in both the phase

and amplitude of MJO-filtered OLR. The NESM

FIG. 13. Correlation (shaded) between (a),(c),(e) LF-filtered (LF is.100 days) and (b),(d),(f)MJO-filteredOLR

fromweek 2 (a),(b)NESM; (c),(d) ECMWF; and (e),(f) CFSv2 forecasts and observations. Areas where correlation

is .0.5 and at the 99.5% confidence level are stippled. Statistical significance is assessed using a 1000-simulation

moving block bootstrap.

FIG. 14. Correlation (shaded) between week 2 MJO-filtered zonal winds at (a),(c),(e) 850 and (b),(d),(f)

200 hPa from (a),(b) NESM; (c),(d) ECMWF; and (e),(f) CFSv2 forecasts and ERA-Interim analyses. Areas

where correlation is .0.5 at the 99.5% confidence level are stippled. Statistical significance is assessed using

a 1000-simulation moving block bootstrap.
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and ECMWF model have comparable phase errors

(Fig. 15c) but the NESM has much larger amplitude

errors than the other models at weeks 2 and 3 (Fig. 15d).

Figure 15e shows the phase biases for MJO-filtered

OLR; positive and negative biases indicate fast and

slow biases, respectively. The phase bias in the CFSv2 is

larger than in the other two models and indicates a slow

bias. The ECMWF model also has a slow bias but the

magnitude of this bias is smaller than what is seen in the

CFSv2. In contrast, the MJO in the NESM is too fast;

this is also apparent in Fig. 4. The comparatively poor

performance of the NESM in DMAE appears to be

linked to its large-amplitude errors (Fig. 15d). Over the

IOMC, the NESM has a positive MJO amplitude bias

that grows from weeks 1 to 3 (Fig. 15f). The ECMWF

model and CFSv2 have positive and negative MJO

amplitude biases, respectively, which are smaller in

magnitude than theNESMbiases. This is consistent with

the standard deviation biases in MJO-filtered OLR

shown in Figs. 6b–d.

Figure 16 shows the pattern correlation or ACC at

weeks 1–3 between model forecasts of OLR that have

been filtered for different modes (including combina-

tions of modes) and unfiltered OLR observations. A

comparison between unfiltered model forecasts and

unfiltered observations (UF) is shown for reference.

These figures indicate whether adding a certain mode

of variability results in a more skillful forecast in dif-

ferent regions at different lead times. Two regions are

considered: the tropics (208S–208N) and the IOMC. In

both regions, adding MJO-filtered OLR to the LF-

filtered OLR has a positive or neutral impact on the

ACC at week 1. Additional improvements to the ACC

are gained by adding ER-filtered OLR on top of this at

FIG. 15. Comparison of MJO-filtered model forecasts of OLR and MJO-filtered observations over the Indian

Ocean–Maritime Continent (7.58S–158N, 608–1558E) (see box in Fig. 6). (a) ACC, (b) DMAE (Wm22), (c) mean

absolute phase error (8), (d) mean absolute amplitude error (s), (e) phase bias (8), and (f) amplitude bias (s). In

(e) positive and negative phase biases indicate that the model-forecasted MJO is faster and slower than in observa-

tions, respectively. Error bars indicate the 95% uncertainty range from a 1000 simulation bootstrap analysis.
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week 1. Further addition of the Kelvin- and MRG/TD-

filtered OLR (All) does not make significant improve-

ments to the ACC for week 1 forecasts, but may add

value for the first few days or add value in certain re-

gions. When the entire tropics are considered, the con-

tribution of MJO-filtered OLR to the ACC at week 2 is

small in the NESM and ECMWF model; in the CFSv2

there is no significant contribution. This indicates that

LF signals are the dominant contributor to model skill

over the entire tropics. Over the IOMC region, the ad-

dition ofMJO-filteredOLRmakes larger improvements

to the ACC at week 2 in the NESM and ECMWFmodel

while still adding no skill in the CFSv2 (Figs. 16b,d,f).

Figure 17 illustrates the geographic distribution of

contributions from the ER and MJO modes of vari-

ability to the predictive skill shown in Fig. 16. To cal-

culate the MJO contribution we first calculate the

Pearson correlation between model forecasts of LF 1
MJO signals and unfiltered observations. Then we sub-

tract the Pearson correlation between model forecasts

of LF signals and unfiltered observations. Plotting this

difference shows where LF 1 MJO exceeds LF in

FIG. 16. ACC between weekly averaged sums of model OLR filtered for different bands and unfiltered OLR

observations for different regions. UF denotes the ACC between unfiltered model fields and unfiltered observa-

tions. The models are (a),(b) NESM; (c),(d) ECMWF; and (e),(f) CFSv2 and the regions are (a),(c),(e) the tropics

(208S–208N) and (b),(d),(f) the Indian Ocean–Maritime Continent (IOMC) (7.58S–158N, 608–1558E). Error bars
indicate the 95% uncertainty range from a 1000 simulation bootstrap analysis.
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Fig. 16. Similarly, we can compute the correlation of

model forecasts of LF 1 MJO 1 ER signals and

unfiltered observations and subtract the correlation

of LF 1 MJO signals to yield the ER contribution. At

week 1, the ER contribution is greatest over 158–308N
(Figs. 17a,c,e). One area where the contribution is es-

pecially large is the northwest Pacific near the maxi-

mum in observed ER activity (Fig. 7a). However, there

are differences between the distribution of ER skill

contribution and observed ER activity. It could be that

in the deep tropics the skill contributions from the LF

and MJO signals are so large that it is difficult for the ER

signals to improve upon them. The MJO skill contribu-

tion in the NESM and ECMWF models at week 2

are remarkably similar (Figs. 17b and 17d). The skill

contribution is centered over the eastern Indian Ocean

and Maritime Continent where MJO activity is greatest

(Fig. 6a). TheMJO signals in the CFSv2 do not contribute

significantly to the skill at week 2 over the Indian Ocean

andMaritimeContinent (Fig. 17f), consistentwith Fig. 16f.

For the ACC, the penalty for adding high-frequency

modes with little predictive skill to the low-frequency

modes is small (Fig. 16). This is not the case for DMAE

(Fig. 18). Similar to what was seen in the ACC, adding

MJO-filtered OLR to the LF-filtered OLR either im-

proves or does not significantly reduce the DMAE in

each region at week 1. However, only in the ECMWF

over the IOMCdoes addingMJO-filteredOLR improve

the DMAE at week 2, and this is not by a statistically

significant amount (Fig. 18d). At weeks 2 and 3, adding

Kelvin, ER, or MRG/TD signals to the LF and MJO

signals increases the DMAE (Fig. 18) and does not im-

prove the ACC (Fig. 16). At week 3, using only the

LF-filtered signals from the model forecasts results in

the lowest DMAE for all models and domains. These

results suggest that the wavenumber–frequency-filtering

method introduced in this study could be useful in

postprocessing S2S forecasts to improve skill. However,

the ideal combination ofmodes at different forecast lead

times is likely sensitive to the variable being examined.

5. Summary and conclusions

In this study we examined the ability of three global

coupled atmosphere–ocean models to predict tropical

OLR and zonal wind variability at lead times of 1–3 weeks

during the boreal summer. A new method of filtering

limited-duration forecasts for different wavenumber–

frequency bands was introduced and applied to the fore-

casts from these models. The models were evaluated by

examining their ability to reproduce the observed standard

deviation ofMJO,Kelvin, ER, andMRG/TDactivity. The

predictive skill of the models at weeks 1–3 was explained

by decomposing the anomalies into distinct wavenumber–

frequency signals to determine the modes of variability

that contribute to forecast skill in different regions and at

different lead times. Compared to global MJO indices

such as the RMM (Wheeler and Hendon 2004), this ap-

proach is better able to isolate regional variations in the

skill of the models at forecasting the MJO.

FIG. 17. (a),(c),(e) ER OLR correlation contribution at week 1 and (b),(d),(f) MJO OLR correlation contribution

at week 2 for (a),(b) NESM; (c),(d) ECMWF, and (e),(f) CFSv2.
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Mean biases in OLR and winds as well as the biases in

the standard deviation of OLR filtered for the MJO,

Kelvin, ER, and MRG/TD bands were smallest in the

ECMWF model. The NESM produced excess convec-

tion in the west Pacific as well as excess MJO, ER, and

MRG/TD activity in this region. In contrast, the CFSv2

had a lack of convection over the western Pacific and

MJO and MRG/TD activity, which was too weak in this

region. The CFSv2 also had a lack of Kelvin wave ac-

tivity across the tropics consistent with Goswami

et al. (2017a).

At week 1 the areas of highest skill in forecast-

ing unfiltered OLR were the midlatitudes. At week 2

the area of highest skill was located in the tropics and

especially concentrated in the equatorial Pacific. Similar

results have been found by earlier studies examining the

anomaly correlation of precipitation in coupled global

models (Li and Robertson 2015; Wheeler et al. 2017).

Overall, the skill was highest in the ECMWFmodel and

lowest in the CFSv2. Decomposing the OLR anomalies

into low-frequency (LF) (.100 days) and MJO signals

revealed similar skill in the low-frequency band between

the three models but large differences in MJO skill. At

week 2 the correlation betweenMJO-filteredOLR from

observations and NESM and ECMWF forecasts ex-

ceeded 0.5 over two areas of high MJO activity: the

Maritime Continent and eastern Pacific. In sharp con-

trast, the skill of the CFSv2 in forecasting MJO-filtered

FIG. 18. As in Fig. 16, but for DMAE.
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OLRwas worse over theMaritimeContinent than in the

NESM and ECMWF model. The NESM performed

worse than the ECMWF in mean absolute error (MAE)

scores over the Indian Ocean and Maritime Continent

because of the large MJO amplitude biases in the

NESM. Comparisons of the ECMWF model to other

operational coupled models typically show that the

ECMWF model far exceeds the skill of other models in

subseasonal tropical prediction (e.g., Jie et al. 2017).

The correlation between MJO-filtered 850-hPa zonal

winds from NESM and ECMWF forecasts and ERA-

Interim analyses exceed 0.5 over a large swath extending

from the Arabian Peninsula to Central America. Similar

to what was seen in the OLR, the highest skill was ob-

served over and downstream of areas of high MJO ac-

tivity. This suggests that forecasts of MJO events that

are already established are more skillful, consistent with

previous results (Kim et al. 2014). In general, the skill of

the models in forecasting low-frequency and MJO time-

scale 200-hPa zonal wind signals was greatest equator-

ward of the subtropical jets. More detailed analyses of

the structure and behavior of composite MJO events in

each of these models will help to better explain these

regional variations in skill.

To evaluate the contribution of different modes of

variability to the OLR forecast skill we examined the

ACC and MAE between forecasts of individual filtered

modes (as well as sums of filtered modes) and unfiltered

OLR observations. MJO-filtered forecasts of OLR

added to LF-filtered forecasts of OLR were better able

to reproduce the unfiltered OLR observations than low-

frequency OLR forecasts alone at week 1. Adding ER-

filteredOLR from the forecasts was beneficial at week 1.

Over the equatorial Indian Ocean and Maritime Con-

tinent—where intraseasonal variability during the bo-

real summer is strongest—the MJO made meaningful

contributions to OLR ACC scores at weeks 1–3 in the

NESM and ECMWF. In the CFSv2, MJO signals only

made a positive contribution to theACC in this region at

week 1. Skill at weeks 2–3 in the CFSv2 over the Asian

monsoon region came entirely from the LF signals.

While adding high-frequency signals with little skill had

little effect on the ACC scores, it seriously degraded the

MAE scores. In general, MAE scores for LF OLR were

better than or as good as climatology out to week 3. In

contrast, the unfiltered OLR forecasts were significantly

worse than climatology at week 3 in each of the models

according to theMAE. These results suggest that the best

OLR forecast at week 1 would be a combination of the

LF, MJO, and ER-filtered signals. At week 2 only the LF

and MJO signals are required and at week 3 only LF

signals are required. It is important to note that zonal

winds—which are themain contributors tomost real-time

MJO indices (Straub 2013)—are more predictable than

OLR so the combination of filter modes yielding the best

ACC andMAEatweeks 1–3 would be different than that

for OLR.

The skill of the NESM in predicting winds as well as

OLR at S2S time scales suggests the potential for

extended-range tropical cyclone prediction (e.g., Belanger

et al. 2010; Vitart et al. 2010). The genesis of tropical cy-

clones is modulated by the intraseasonal variability of

shear, low-level vorticity, andmidlevel humidity (Camargo

et al. 2009). S2S predictions of tropical cyclone formation

require an understanding of the regional variability of the

importance of these different parameters as well as their

predictability. The modulation of synoptic tropical vari-

ability such as Kelvin and MRG/TD waves by the MJO

and interannual modes could also play an important role

in tropical cyclone prediction.

Model performance in process-based diagnostics such

as the moisture tendency as a function of precipitation

rate in the tropics has been shown to be strongly corre-

lated withMJO skill (Klingaman et al. 2015). The ability

of the NESM to simulate the vertical structure of con-

vection and its relationship with moisture has been a

major focus during the development of the model. In

Klingaman et al. (2015) an uncoupled version of

NAVGEM with simplified Arakawa–Schubert (SAS)

cumulus parameterization, which is also used in the

CFSv2, had much poorer MJO skill than the coupled

version of NAVGEM with a modified version of the

Kain–Fritch parameterization shown in this study. That

earlier version of NAVGEM also did a poor job of

simulating the vertical structure of moisture tendencies

as a function of precipitation rate. A closer examination

of the moisture budget of the MJO and process-based

diagnostics in the NESM and how they compare to other

S2S models could guide further improvements to the

model physics and MJO predictive skill.
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