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High-resolution (swath) altimeter missions scheduled to monitor the ocean surface

in the near future have observation-error covariances (OECs) with slowly decaying

off-diagonal elements. This property presents a challenge for the majority of the data

assimilation algorithms which were designed under the assumption of the diagonal

OECs being easily inverted. In this note, we present a method of approximating the

inverse of a dense OEC by a sparse matrix represented by the polynomial of spatially

inhomogeneous differential operators, whose coefficients are optimized to fit the

target OEC by minimizing a quadratic cost function. Explicit expressions for the cost

function gradient and the Hessian are derived. The method is tested with an OEC

model generated by the SWOT simulator.
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1 INTRODUCTION

Over the last several decades, representation of the

background-error covariances (BECs) by the polynomials of

the diffusion operator has been extensively studied in both

meteorological and oceanographic data assimi9lation (DA)

applications (e.g. Derber and Rosati, 1989; Weaver et al.,
2003; Xu, 2005; Yaremchuk and Smith, 2011; Yaremchuk et
al., 2013). Among the advantages are the computational effi-

ciency of the approach and its ability to preserve the positive

semi-definite (psd) property of the resulting BEC estimates.

The method proves to be especially useful in heuristic mod-

elling of the climatological (static) BECs which supplement

the ensemble-based estimates of the background errors.

In contrast to the BECs, observational-error covariances

(OECs) are conventionally represented by diagonal matri-

ces under the implicit assumption that observation errors are

weakly correlated at spatial scales exceeding the grid step of

the numerical models. This assumption, being realistic for

most current observational platforms, provides an additional

convenience of inexpensive computation of the inverse OECs

and of their square roots currently employed by the majority

of DA algorithms (e.g. Cummings, 2005; Hunt et al., 2007;

Fairbairn et al., 2014).

Recent developments in high-resolution (“swath”) altime-

try (Durand et al., 2010; Ito et al., 2014; Ubelmann et al.,
2015; Gaultier et al., 2016) introduce challenges for DA.

Novel issues emerge due to both the data density that may

approach model grid scales in the horizontal, and because

observational errors at such high resolutions appear to be

highly correlated in space Ruggiero et al. (2016) (hereinafter

R16) due to the design of the satellite and sensor. At the same

time, recent studies (e.g. Stewart et al., 2013; Miyoshi et al.,
2013; Waller et al., 2014) demonstrate substantial benefits of

accounting for spatial correlations of the observation errors

even in low-dimensional DA systems. As a consequence,

these newly arriving data require special treatment in order to

maintain skill and retain the computational efficiency of the

DA schemes.

In most of the DA algorithms, the difference between the

model sea surface height (SSH) and the data has to be multi-

plied by either the inverse of the observation-error covariance

R or by its inverse square root R−1∕2, so a computation-

ally efficient representation Ri of these matrices (e.g. by a
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sparse matrix) is highly desirable. This note contributes to the

methodology of approximating R−1 (or its square root) using

differential operators. Specifically, with the forthcoming Sur-

face Water and Ocean Topography (SWOT) altimeter mission

in mind, we postulate that an estimate of R is available on a

regular two-dimensional set of N = nx × ny observation grid

points from the simulating software of Gaultier et al. (2017).

2 APPROXIMATING THE INVERSE
COVARIANCE

2.1 The matrix parametrization model

In what follows, we present a methodology of parametriz-

ing Ri by a linear combination of sparse matrices with

matrix-valued coefficients represented by discretized differ-

ential operators. To simplify the notation, the method is

illustrated by a particular example relevant to the SWOT

application.

Specifically, we consider Ri of the form

Ri = A + 𝛻TB𝛻 + ΔCΔ, (1)

where 𝛻 is the 2N − nx − ny × N matrix, representing the

first-order approximation of the gradient operator on a 2D

grid,Δ = 𝛻T𝛻 is the Laplacian, and A,B,C are sparse control

matrices. Their M non-zero elements populating the vector

x ∈ RM have to be optimized by minimization of the quadratic

cost function, measuring the Frobenius norm || ⋅ ||F of the

respective residual:

J = ||RiR − I||2
F
= tr

[
PPT

]
−→ min

x
. (2)

Here I is the identity matrix and notation P = RiR − I is

introduced. The first variation of Equation 2 has the form

𝛿J = 2 tr
[
𝛿PPT

]
= 2 tr

[
𝛿Ri RPT

]
. (3)

Taking into account that 𝛿Ri = 𝛿A+𝛻T𝛿B𝛻+Δ𝛿CΔ, and

introducing the notation Q = 2PR, transforms 𝛿J to

𝛿J = tr
[
𝛿AQT + 𝛿CΔQTΔ

]
+ tr

[
𝛿B𝛻QT𝛻T

]
, (4)

so that the respective expressions for the gradient are:

𝛿J
𝛿A

= Q,
𝛿J
𝛿B

= 𝛻Q𝛻T,
𝛿J
𝛿C

= ΔQΔ, (5)

and the system of equations 𝛿J∕𝛿x = 0 defining the minimum

of J takes the form

RiR2 = R , (6)

𝛻RiR2𝛻T = 𝛻R𝛻T, (7)

ΔRiR2Δ = ΔRΔ . (8)

Equations 6–8 can be rewritten explicitly in terms of the

Hessian matrix H ∈ R
M×M and the r.h.s. vector r ∈ R

M

Hx = r , (9)

where r contains non-zero elements in the r.h.s.s of

Equations 6–8 listed columnwise as in Equation A7 of the

Appendix.

In this note we consider the simplest sparsity pattern for

A, B and C, assuming that the matrices are diagonal so that

their sparsity patterns are the identity matrices of the respec-

tive size. In this case, the general expression for the Hessian

(Equation A8 in the Appendix) simplifies to

H =
⎡⎢⎢⎢⎣

R2◦I R2𝛻T◦𝛻T R2Δ◦Δ
𝛻R2◦𝛻 𝛻R2𝛻T◦𝛻𝛻T 𝛻R2Δ◦𝛻Δ
ΔR2◦Δ ΔR2𝛻T◦Δ𝛻T ΔR2Δ◦Δ2

⎤⎥⎥⎥⎦
, (10)

where ◦ denotes Hadamard (element-wise) matrix prod-

uct. The latter relationship could be useful for construct-

ing block-diagonal preconditioners for the iterative solvers

of Equation 9, or for direct solution of Equation 9 on the

moderate-size (N < 104) grids.

2.2 Model reduction

The system of Equations 9 may not be well conditioned, so

its solution should be sought using a certain parametrizaion

of the original control variables x. In the linear case, such

parametrization can be expressed in terms of a projection

operator 𝚷
x = 𝚷x̃ , (11)

where m columns of 𝚷 contain the “structure functions”,

parametrizing spatial variability of x, and x̃ stands for the vec-

tor of the reduced control variables. For instance, to enforce

smoothness of the diagonal elements of the control matrices,

these functions can be represented by m smoothest harmon-

ics, the first one being independent on horizontal coordi-

nates. Although in the present study we did not employ any

model reduction (𝚷 = I), more sophisticated projectons (e.g.

Brankart et al., 2009, R16) can be employed (Appendix).

However, using non-trivial structure of 𝚷 requires prior infor-

mation on the spatial variability of the control fields in

order to maintain a reasonable balance bteween the accu-

racy of the approximation of the target matrix and numerical

efficiency.

The reduced normal system H̃x̃ = r̃ is characterized by the

reduced Hessian H̃ ∈ R
m×m and the reduced rhs r̃ ∈ R

m:

H̃ = 𝚷TH𝚷, r̃ = 𝚷Tr . (12)

Since 𝛿J∕𝛿x = Hx − r, the cost function gradient (4) can be

conveniently estimated by applying the projection operator to

Equation 5:

𝛿J
𝛿x̃

= 𝚷T 𝛿J
𝛿x

. (13)

Note that, since the relationships (5) are valid for arbitrary

control matrices, Equations 11–13 could be used in opti-

mization algorithms employing gradient information under

arbitrary linear constraints on spatial variability of the control

matrix elements. In particular, the approach could be use-

ful for maintaining the psd property of Ri in the process of

minimization.
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FIGURE 1 (a) Map of the sum of two columns of the SWOT covariance matrix R (column positions shown by squares) and its approximation (b) by R−1
i .

(c) shows the spectra of the SWOT covariance (thin black line) and its approximation. Covariance values are divided by 100 cm2

3 NUMERICAL TESTING

3.1 SWOT covariance model

The ansatz (1) for the approximation of the inverse obser-

vation error covariance was tested with the target OEC

generated by the Jet Propulsion Laboratory’s (JPL) SWOT

simulator of Gaultier et al. (2017). The simulator generates

realizations of SSH observation-error fields based on the lat-

est estimate of the SWOT error budget of Esteban-Fernandez

(2013). The error field contains six constituents: Ka-band

radar interferometer noise, wet tropospheric error, and errors

associated with uncertainties in the estimation of roll, phase,

baseline, and timing of the SWOT observational platform.

With a reasonable degree of accuracy, the first two error fields

can be considered to be uncorrelated. The remaining four

error sources are of particular interest because they are highly

correlated over large spatial scales: As shown by Ruggiero et
al. (2016), these errors are characterized by typical decorrela-

tion scales of several hundred kilometres along the swath and

approximately a hundred across, with the marginal pointwise

p.d.f.s being very close to Gaussian.

3.2 Results

In generating the target OEC matrix, we used the SWOT

simulator version 2.0.0 with the following parameters: the

default cut-off wavelength of 40,000 km and a two-beam wet

tropospheric error correction. Additionally, anticipating large

decorrelation scales (compared to the projected SWOT res-

olution of 1–2 km) and the absence of smaller-scale spatial

variability in the matrix columns, we elected 40 and 10 km

sampling in the along- and across-track directions respec-

tively. This selection also decreased the influence of uncor-

related Ka-band noise on the OEC structure. 5,000 random

realizations of all error sources summed together were gen-

erated by having the simulator recursively sample the same

21 day repeat orbit over a subdomain of the Western Pacific

(116–133◦E, 18–34◦N) with a total sampled track length of

2,000 km and width of 140 km. Excluding the grid points in

the 20 km wide nadir gap, the sampled OEC field dimensions

were nx = 14, ny = 51, (N = nxny = 714) with the total num-

ber of adjusted degrees of freedom 4N−nx−ny = 2791 and the

number of the independent elements in the target covariance

matrix N(N+1)∕2 = 255, 255. The resulting error fields were

characterized by approximately Gaussian pointwise p.d.f.s

with the average magnitude of the means ∼ 10−4 m and the

standard deviations varying between of 0.03 m near the nadir

gap and 0.31 m at the swath periphery.

Figure 1a shows half the sum of the OEC fields correspond-

ing to the pair of SSH observations located on both edges of

the nadir gap in the centre of the sampled track. Similar to the

results of R16, covariance structures at intermediate scales

are barely visible. However, there is a strong anisotropy of the

covariance with the typical OEC spatial scales in the along-

and across-track directions differing by an order in magnitude

(600 and 60 km respectively).

Figures 1a,b demonstrate the result of approximating R by

the inverse covariance model (1). Due to the limited num-

ber of ensemble members, a slight asymetry (of the order of

1%) has been observed in the structure of the mirror rows

of R. Figure 1b shows that this asymetry is considerably

enhanced in the approximating matrix R−1
i (cf. Figure 1a,b).

The effect is caused by the coarse resolution of the nadir gap

which is only two grid steps wide, and associated errors in the

finite-difference approximation of R−1 by the ansatz (1).

Due to the modest dimension of the control space (N =
2791) and low condition number (cond(H)=2×104) of the

Hessian matrix (10), the optimization took a few seconds on

a single CPU of a PC using the MatLab sparse system solver.

As it is seen, the algorithm provides a reasonably accurate fit

to the leading eigenmodes of R (Figure 1c) with the relative

error tr(R−1
i − R)∕tr(R) of 22%.
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FIGURE 2 As Figure 1, but the inverse covariance model is described by Equations 12 and A1–A7

As a matter of comparison, we performed approximation of

R−1 in the reduced five-dimensional space proposed by Rug-

giero et al. (2016), who assigned a fixed spatial variability to

the diagonals of the control matrices and minimized Equation

2 by varying five diagonal scaling factors x̃ (Appendix). In

this procedure, we employed the technique of sections 2.1 and

2.2, which can be viewed as a generalization of the computa-

tional approach of Ruggiero et al. (2016) who used five-fold

expansion of the data space by computing the derivatives of

the error fields in SWOT simulator output instead of explicit

computation of the Hessian (Equation A6 in Appendix) and

its projection on the reduced control space (Equation 12).

Figure 2 shows the results of the reduced space optimiza-

tion. As it is seen, the reduced method provides a poorer fit

to the SWOT spectrum being tested (cf. Figures 1c and 2c)

and a larger error in approximating the columns of the SWOT

covariance matrix (cf. Figures 1b, 2b and 1a). This should be

attributed to lesser flexibility of the reduced procedure, as the

number of adjusted parameters is approximately 2791/5≈560

times smaller than the case of full optimization involving

solution of Equations 6–8.

4 SUMMARY AND DISCUSSION

In recent years, there has been an increased interest in inverse

OEC modelling due to the high-resolution swath altimetry

missions planned in the near future Durand et al. (2010), Ito

et al. (2014), Ichikawa (2014). Although this new type of

observational platform is characterized by improved accuracy

(1–2 cm) and higher spatial resolution (1–2 km), the respec-

tive OECs are expected to be highly correlated in space.

This property presents a computational challenge for many

operational DA algorithms that are based on the diagonal

OECs.

This note proposes a methodology of approximating the

inverse OECs by a polynomial in differential operators act-

ing on sparse control matrices whose non-zero elements are

adjusted to minimize the Frobenius norm of the approxima-

tion error. Explicit relationships for the cost function gradient

and the Hessian matrix of the optimization problem have

been obtained for control matrices with fixed sparsity pat-

terns. A method of reduction of the optimization problem has

been demonstrated for the case of the degenerate Hessian.

The proposed approach could be used in realistic DA sys-

tems by replacing the code normalizing model–data misfits

by observation-error variances with the code multiplying the

misfits by a sparse matrix retrieved from an estimate of the

respective error covariance.

Further developments of the approach can be foreseen in

several directions. First, the method does not maintain the

positive semi-definite (psd) property of the approximation

matrix in the process of optimization. The psd constraint can

be imposed in many ways if the method is restricted to the

diagonal control matrices. A straightforward way is to con-

strain all the components of the control vector to be positive

in the process of optimization. This approach (combined with

the projection technique) was used by Ruggiero et al. (2016)

to ensure the psd property. A somewhat more sophisticated

methodology is based on factorizing Ri = LLT and repre-

senting L as a composite of (sparse) control matrices: L =
[L0 𝛻TL1 ...]T with diagonal controls Li, i = 0, 1..,. How-

ever, this option destroys the attractive quadratic property of

the optimization problem. More general approaches going

beyond the fixed sparsity patterns of the controls can also be

explored (e.g. Hsieh et al., 2014). However, our experience

with the presented version of the method have shown that

optimal Ri was very close to psd with only a few negative

eigenvalues that contributed less than 0.1% to the trace of Ri.

The cost function could also be defined by J = ||I −
RiRRi||2F to directly retrieve a sparse approximation to R−1∕2

which may be more useful in the DA applications. Our

numerical experiments with this formulation have shown that

one has to pay more attention to initialization of the con-

trol variables, because starting the quasi-Newtonian descent

from x = 0 proved inefficient for several simulated classes
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of OECs. In contrast, the considered quadratic/diagonal for-

mulation (1) performed well and never encountered conver-

gence/conditioning problems for the same classes of OECs.

Elaboration of an efficient reduction scheme also remains

an important issue. Ruggiero et al. (2016) have shown that

certain OECs can be efficiently approximated with just a few

parameters, if an appropriate projection method is elected.

In particular, useful information on the structure of 𝚷 could

be retrived from the structure of the diagonal cells of the

Hessian matrices. An alternative way of regularizing the

problem is to augment (2) with the terms which penalize

high-frequency variations of the control variables. However,

the respective low-pass filter should be designed with cau-

tion, as the high-frequency variations of the inverse matrix

elements (partly simulated by the differential operators) are a

key component of the optimized matrix.

We believe that further studies of the matrix approxima-

tion methodologies in application to the class of psd matrices

with slowly varying spatial structure has good prospects in the

future development of DA techniques in geophysical applica-

tions and may benefit more general areas such as the search

for efficient preconditioners.
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with a projection scheme which assigns a certain spatial

structure to the matrices A,B,C and D. In Equation A1 the

operators Δx and Δy stand for the cross- and along-track

constituents of the Laplacian: Δ = Δx + Δy.

Specifically,the projection adopted in R16 is defined by

A = 𝛼0(R◦I)−1, (A2)

B = 𝛼1c(𝜕xR 𝜕T
x ◦I)−1

𝛼1a(𝜕yR 𝜕T
y ◦I)−1,

(A3)

C = 𝛼2c(ΔxRΔx◦I)−1, (A4)

D = 𝛼2a(ΔyRΔy◦I)−1, (A5)

with the control vector x̃ = [𝛼0 𝛼1c 𝛼1a 𝛼2c 𝛼2a]T and the

projection operator 𝚷 represented by a (5N − nx − ny) × 5

block-diagonal matrix containing the inverse matrices in the

r.h.s.s of Equations A2–A5 on the diagonal.

The system of equations Hx = r is

H=
⎡⎢⎢⎢⎣

R2◦I R2𝛻T◦𝛻T R2Δx◦Δx R2Δy◦Δy
𝛻R2◦𝛻 𝛻R2𝛻T◦𝛻𝛻T 𝛻R2Δx◦𝛻Δx 𝛻R2Δy◦𝛻Δy
ΔxR2◦Δx ΔxR2𝛻T◦Δx𝛻

T ΔxR2Δx◦Δ2
x ΔxR2Δy◦Δxy

ΔyR2◦Δy ΔyR2𝛻T◦Δy𝛻
T ΔyR2Δx◦Δxy ΔyR2Δy◦Δ2

y

⎤⎥⎥⎥⎦
,

(A6)

r =
⎡⎢⎢⎢⎣

R ◦I
𝛻R𝛻T◦I
ΔxRΔx◦I
ΔyRΔy◦I

⎤⎥⎥⎥⎦
. (A7)

It it noteworthy, that the ansatz (A1) produced a degenerate

Hessian (A6) which did not allow us to compare the results of

full optimizations with the inverse OEC models (1) and (A1).

Reduction of the control space regularized the problem, but

resulted in a relatively poor fit to the spectrum of the tested

covariance (cf. Figures 1c and 2c).

As a final note, we present the general expression for the

Hessian matrix associated with the column-vectorized form

of Equations 6–8. Defining the sparsity pattern SA of a matrix

A by replacing non-zero elements of A with ones, and adoptng

the notation SAB = vec(SA)⊗ vec(ST
B) for mutual Kronecker

products of the sparsity patterns, the Hessian is given by

H=
⎡⎢⎢⎣
(R2⊗ I)◦SAA (R2𝛻T⊗ 𝛻T)◦SAB (R2Δ⊗ Δ)◦SAC
(𝛻R2⊗𝛻)◦SBA (𝛻R2𝛻T⊗𝛻𝛻T)◦SBB (𝛻R2Δ⊗𝛻Δ)◦SBC
(ΔR2⊗Δ)◦SCA (ΔR2𝛻T⊗Δ𝛻T)◦SCB (ΔR2Δ⊗Δ2)◦SCC

⎤⎥⎥⎦
.

(A8)




