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Abstract The Navy Coastal Ocean Model Four-Dimensional Variational Assimi-
lation (NCOM 4DVAR) system is an analysis software package that is designed to
supplement the current capability of the operational analysis/prediction system
known as the Relocatable Navy Coupled Ocean Model (Relo NCOM) system. The
present assimilation component of Relo NCOM employs the Navy Coupled Ocean
Data Assimilation Three-Dimensional Variational Assimilation (NCODA 3DVAR)
system to process and assimilate observations. The NCOM 4DVAR, on the other
hand, uses a representer based 4DVAR method and has been found to improve the
forecast-skill for several regional applications. This chapter presents the results of
validation experiments performed in the Okinawa Trough. The analysis and
resulting forecast skill of the two assimilation methods within Relo NCOM (NCOM
4DVAR and NCODA 3DVAR) are compared, and the operational implementation
of NCOM 4DVAR is examined to verify that it satisfies operational constraints.
The metrics used to validate the NCOM 4DVAR system include: computational
efficiency, scalability, robustness, and the prediction accuracy of temperature, sea
surface height, and sonic layer depth through NCOM 4DVAR and NCODA
3DVAR analyses. Forecast skill metrics are computed using surface observations of
temperature, salinity and sea surface height, and profile observations from gliders
and AXBTs (aerial expendable bathythermograph). Overall, the validation reveals
that NCOM 4DVAR has lower root mean square errors for both analyses and
forecasts than the operational NCODA 3DVAR system.
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1 Introduction

The Navy Coastal Ocean Model four-dimensional variational (NCOM 4DVAR)
system is a data assimilative nowcast/forecast ocean modeling and prediction
system developed at the Naval Research Laboratory (NRL) for use at the Naval
Oceanographic Office (NAVOCEANO) (Smith et al. 2015). This system is built to
be used within the same framework as the Relocatable NCOM (Relo NCOM),
which is the present operational ocean analysis and prediction tool that the Navy
uses for non-global applications. The current data assimilation component of Relo
NCOM uses the three-dimensional variational data assimilation method, performed
by the Navy Coupled Ocean Data Assimilation system (NCODA 3DVAR, Smith
et al. 2012). The newly developed NCOM 4DVAR system is designed to supple-
ment NCODA 3DVAR allowing the user to select either system depending on the
application at hand. Regardless of which assimilation option is selected, Relo
NCOM uses the same forcing, initial and boundary conditions, and the same ocean
model (NCOM) for its forecasting component.

Most ocean models have reduced accuracy and prediction skill at regional and
coastal scales where the prediction of tracers, currents, and acoustic properties are
important for search and rescue operations, hydrocarbon/chemical spill simulations,
environmental prediction, and other Navy operations. While the currently opera-
tional NCODA 3DVAR may be ideal for global and large basin scales due to its
computational efficiency, NCOM 4DVAR has improved analysis/forecasting
capabilities and has shown that it can be operated at sufficiently high resolution in
coastal and/or regional areas in a reasonable amount of time (Ngodock and Carrier
2014b). The NCOM 4DVAR is able to provide an improved analysis by accounting
for observations at their actual collection times, rather than assuming the observa-
tions occur at the same time as in 3DVAR. Also in 4DVAR, observation corrections
are temporally correlated and their influence is propagated throughout the entire
assimilation window via the model dynamics. This allows more information to be
extracted and utilized from sparse observations, thereby producing a more accurate
and dynamically consistent analysis, which in turn increases the forecasting pre-
dictability skill. Another advantage that NCOM 4DVAR has is the capability to
directly assimilate velocity (Carrier et al. 2014) and sea surface height (SSH)
(Ngodock et al. 2015) observations without having to use synthetic observations.
Synthetic observations consist of temperature and salinity profiles that are derived
from SSH observations (Fox et al. 2002). The generation of synthetic observations is
required in the NCODA 3DVAR assimilation system because there are no model
dynamics or cross-covariances to correlate SSH observations to the other variables.

In this study, the resulting analyses and forecasts from three experiments are
analyzed and compared. All experiments are performed using the operational
implementation of Relo NCOM for the Okinawa Trough. The only difference
between the experiments is that the first uses NCODA 3DVAR and the second and
third experiments use NCOM 4DVAR. Two separate NCOM 4DVAR experiments
are performed and presented that use different methods of assimilating sea surface
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height (SSH) observations (described in Sect. 2.3). Every effort is made to keep the
forcing, parameters, data, and data processing as similar as possible between the
experiments, so that the primary aspect being compared is the assimilation method.

Section 2 describes the Relo NCOM system along with its major components
that are relevant to the validation experiments in this study. Then in Sect. 3, the
setup of the validation testing experiments for the Okinawa Trough are discussed,
followed by the results in Sect. 4. Section 5 goes over some of the implications of
applying the NCOM 4DVAR system operationally. Finally, some conclusions are
provided in Sect. 6.

2 Components of Relo NCOM

The Relo NCOM system is a flexible data assimilation/forecasting system (Rowley
2010), with most model configuration parameters available for the user to define.
The Relo NCOM system consists of a suite of scripts that efficiently handle the
input and output data streams, NCODA data processing, the data assimilation, and
NCOM forecasts. It also performs the preparation of a new domain, which includes
interpolating and setting up the initial and boundary conditions and surface forcing.
The initial and boundary conditions are extracted from a larger model, such as the
global Hybrid Coordinate Ocean Model (HYCOM) (Metzger et al. 2014). The
surface forcing fields can come from the Navy Operational Global Atmospheric
Prediction System (NOGAPS, Rosmond 1992; Rosmond et al. 2002); Coupled
Ocean Atmosphere Mesoscale Prediction System (COAMPS; Hodur 1997) prod-
ucts generated at the Fleet Numerical Meteorology and Oceanography Command
(FNMOC); from COAMPS raw output; or now from the Navy Global Environ-
mental Model (NAVGEM, Hogan et al. 2014). In most cases, atmospheric model
wind stresses, radiation fluxes, atmospheric pressure, temperature, and humidity are
prepared for the NCOM model, and bulk flux formulae are used in NCOM to
calculate surface heat fluxes (Rowley 2010).

2.1 Navy Coastal Ocean Model (NCOM)

The Navy Coastal Ocean Model (NCOM, Martin 2000) is the ocean forecasting
component of Relo NCOM. . NCOM was developed primarily from two existing
ocean circulation models, the Princeton Ocean Model (POM) (Blumberg and
Mellor 1983; 1987) and the Sigma/Z-level Model (SZM) (Martin et al. 1998).
NCOM has a free-surface and is based on the primitive equations and hydrostatic,
Boussinesq, and incompressible approximations. Turbulent mixing is parameterized
by the Mellor-Yamada Level-2.5 (MYL2.5) turbulence closure parameterization
(Mellor and Yamada 1982) for vertical diffusion and the Smagorinsky scheme
(Smagorinsky 1963) for horizontal diffusion (Carrier et al. 2014). The vertical
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mixing enhancement scheme of Large et al. (1994) is used for parameterization of
unresolved mixing processes occurring at near-critical Richardson numbers.
A source term is included in the model equations to allow for river input and runoff
inflows (Barron et al. 2007).

As in the POM, NCOM employs a staggered Arakawa C grid with an
orthogonal-curvilinear horizontal grid orientation. Spatial finite differences are
mostly second-order centered, but higher-order spatial differences are optional.
NCOM features a leapfrog temporal scheme with an Asselin filter to suppress time
splitting. Most terms are handled explicitly in time, but surface wave propagation and
vertical diffusion are solved implicitly (Martin 2000). In the vertical, NCOM can be
configured with terrain-following free-sigma or fixed sigma, or constant z-level
surfaces or their combination (Barron et al. 2006). Typically, one of two types of
combinations is used: the first is a hybrid sigma and z-level combination with sigma
coordinates applied from the surface down to a designated depth (100–200 m
depending on where the shelf break is located), and z-levels below this specified
depth. The second vertical grid choice typically used is the general vertical coordinate
(GVC) grid consisting of a three-tiered structure: (1) a near-surface “free” sigma grid
that expands and contracts with the movement of the free surface, (2) a “fixed” sigma,
and (3) a z-level grid allowing for “partial” bottom (Martin et al. 2008).

2.2 Navy Coupled Ocean Data Assimilation 3D Variational
Analysis (NCODA 3DVAR) System

NRL developed and implemented an ocean data analysis component of COAMPS
called the Navy Coupled Ocean Data Assimilation System (NCODA; Cummings
2005). The version of NCODA used operationally and in this study employs the
3DVAR method and is capable of processing observations from a large number of
different platforms. These include, but are not limited to: satellite sea surface tem-
perature (SST), SSH/altimetry, satellite microwave-derived sea ice concentration,
and in situ surface and profile data from ships, drifters, fixed buoys, profiling floats,
XBTs (expendable bathythermographs), AXBTs (aerial expendable bathythermo-
graphs), CTDs (conductivity, temperature, and depth), and gliders. The observa-
tional data are prepared and processed through the NCODA automated data quality
control system (NCODA-QC) which identifies spurious observations compared
against climatological or model fields and associated variability information
(Cummings 2011). Observations that satisfy the quality control are then passed into
another NCODA module called NCODA-PREP where they are combined with the
previous forecast fields to produce the initial innovations. Observation and forecast
errors, and correlation scales are also computed in NCODA-PREP.

The NCODA 3DVAR module reads in the innovations and error covariance
information and uses a conjugate gradient routine to minimize a 3D variational cost
function to determine the analysis increments in observation space. These
increments are then mapped back to the model space using the background error
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covariances resulting in a set of corrections corresponding to the NCOM forecast
fields (Smith et al. 2012). The NCODA 3DVAR system is currently being used
operationally at NAVOCEANO in the Relo NCOM, global HYCOM, and
COAMPS.

2.3 Navy Coastal Ocean Model Four Dimensional
Variational System (NCOM 4DVAR)

The NCOM 4DVAR system operates within the framework of Relo NCOM. The
same scripts that are used to operate Relo NCOM with NCODA 3DVAR are used
to operate the NCOM 4DVAR, with a few additional parameters for the NCOM
model adjoint and the specification of the assimilation window. NCOM 4DVAR
uses the same data that is processed by NCODA-QC and it also uses
NCODA-PREP to process these observations for the specified domain.
NCODA-PREP had to be slightly modified to account for the temporal distribution
of the observations and to create time dependent innovations that are required for
the NCOM 4DVAR. It should be noted that an observation density-reduction
option has been added to the NCOM 4DVAR to ensure that no two observations
fall within a correlation scale distance of one another, as too many correlated
observations can adversely affect the conditioning of the minimization.

The analysis component of NCOM 4DVAR is a variational assimilation system
based on the indirect representer method as described by Bennett (1992, 2002) and
Chua and Bennett (2001) and uses the tangent linearization (TL) of the NCOM
code and its adjoint. The NCOM 4DVAR system is described in detail by Ngodock
and Carrier (2014a), and a full derivation of the representer method can be found in
Chua and Bennett (2001). Therefore, only an overview is provided here.

The representer method aims to find an optimal analysis solution as the linear
combination of a first guess (i.e., prior model solution) and a finite number of
representer functions, one per datum,

u ̂ðx, tÞ= uFðx, tÞ+ ∑
M

m=1
β ̂mrmðx, tÞ, ð1Þ

where u ̂ðx, tÞ is the analysis solution, uFðx, tÞ is the prior forecast, rmðx, tÞ is the
representer function for the mth observation, and β ̂m is the mth representer coeffi-
cient. The representer coefficients are found by solving the linear system,

ðR+OÞβ= y−HuF , ð2Þ

where O is the observation error covariance, y is the observation vector, and H is
the linear observation operator that maps the model fields to the observation
locations. R is the representer matrix defined as,
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R=HMBMTHT , ð3Þ

whereM is the TL of NCOM,MT is the adjoint of NCOM, and B is the model error
covariance. Since the matrix R+O is symmetric and positive definite, Eq. (2) can
be solved for β iteratively using a linear solver, such as the conjugate gradient
method. From Eqs. (2) and (3), βm can be found for each representer by integrating
the adjoint and TL models over some number of minimization steps until
convergence.

In the NCOM 4DVAR, βm is found with a pre-conditioned conjugate gradient
solver. The preconditioner here follows from Courtier (1997), where β is redefined
as u=

ffiffiffiffi
O

p
β in the minimization step such that Eq. (2) can be expressed as,

ffiffiffiffiffiffiffiffiffiffi
O− 1

p
R

ffiffiffiffiffiffiffiffiffiffi
O− 1

p
+ I

� �
u=

ffiffiffiffiffiffiffiffiffiffi
O− 1

p
y−HuFð Þ ð4Þ

This transformation ensures that there is a lower bound of 1 for the eigenvalues,
which insures that the condition number will remain reasonably small and allow the
conjugate gradient solver to converge relatively quickly. Once β is determined,
Eq. (1) is then used to compute the analysis.

The background and model error covariance in NCOM 4DVAR is univariate
and follows the work of Weaver and Courtier (2001) and Carrier and Ngodock
(2010). This is deemed acceptable as the application of the TL and adjoint
models in the minimization and final sweep provide multivariate balance con-
straints through the linearized dynamics. It has been shown (Yu et al. 2012) that
omitting linear balance constraints does not lead to a significant degradation of
the final solution in terms of the fit to observations. The univariate error
covariance can be decomposed into a correlation matrix and associated error
variance such that,

B=ΣCΣ, ð5Þ

where Σ is a diagonal matrix consisting of the standard deviations of the back-
ground error and C is a symmetric matrix of background error correlations.
In NCOM 4DVAR, the error standard deviations of the background are used at the
initialization of the TL model only, whereas the model error (also contained in the
matrix Σ) is used when the adjoint forces the TL model during integration (i.e., as
the TL model integrates forward in time). This allows the weak constraint method
to correct for the initial condition error while also adjusting the forward model
trajectory based on the specification of the model error. The error correlation, for
both the model and the background errors, is not directly calculated and stored in
NCOM 4DVAR; rather, the effect of the correlation matrix acting on an input
vector is modeled by the solution of a diffusion equation (Weaver and Courtier
2001; Yaremchuk et al. 2013; Carrier and Ngodock 2010; Ngodock 2005).

The NCOM 4DVAR includes two methods for assimilating SSH. The first is by
creating synthetic profiles of temperature and salinity (T and S) in the same way as
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NCODA 3DVAR (Smith et al. 2012). The second option is to assimilate SSH
observations directly. Direct assimilation of SSH is not feasible with the NCODA
3DVAR system because it creates gravity waves. A method has been devised for
NCOM 4DVAR to overcome this issue by assimilating SSH observations only into
the baroclinic mode of the model. NCOM 4DVAR has an internal routine that
checks and adjusts the barotropic mode to ensure that it is in balance with the
baroclinic mode. Therefore, by the time the SSH observation information reaches
the barotropic mode, it is in dynamic balance with the model and does not produce
gravity waves. A more detailed description of this method is provided in Ngodock
et al. (2015).

3 Validation Test Description: Okinawa Trough

The study region encompasses both the Okinawa Trough and Ryukyu Islands of
Japan, from 17°N to 34°N and 118°E to 134°E (Fig. 1). The Okinawa Trough
region is highly dynamic in nature; it has a complex geometry, sharp bathymetry
gradient, a strong Kuroshio current, large barotropic and internal tides, significant
river input, and frequent typhoon passage. All of these features provide an excellent
testing ground to evaluate the predictive capability of the NCOM 4DVAR assim-
ilation system. The Okinawa Trough is located between Taiwan and southern Japan

Fig. 1 The Okinawa Trough
model domain, with 3 km
horizontal resolution. The
study region encompassed
both the Okinawa Trough and
Ryukyu Islands of Japan,
from 17°N to 34°N and 118°E
to 134°E (dashed lines)
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and is a seabed feature of the East China Sea; it is an active, initial back-arc rifting
basin which formed behind the Ryukyu arc-trench system in the western Pacific
Ocean. A large portion of the domain is more than 1,000 m deep with a maximum
depth of 2,716 m.

All of the Relo NCOM Okinawa Trough experiments that are compared in this
study are 12 months long (Jan 1, 2007–Dec 31, 2007). Each of these experiments
uses surface boundary conditions from the global 0.5° NOGAPS (Rosemond et al.
2002) and lateral boundary conditions from a 6 km Relo NCOM Western Pacific
domain. This Western Pacific Relo NCOM is performed operationally at NAVO-
CEANO and receives its lateral boundary conditions from the global NCOM
(Barron et al. 2006 and 2007). Each experiment employs NCOM configured with
50 layers in the vertical including 25 free-sigma layers extending to a depth of
116 m with constant z-levels extending down to a maximum of 5500 m.

The following three experiments will be used in this comparison: (1) a standard
Relo NCOM using the operational implementation of NCODA 3DVAR (EXP1);
(2) the NCOM 4DVAR where the SSH observations are assimilated via synthetic
profiles of temperature and salinity generated by the Modular Ocean Data Assim-
ilation System (MODAS, Fox et al. 2002) (EXP2); and (3) NCOM 4DVAR
assimilating SSH observations through direct assimilation of the along-track mea-
surements (EXP3). The standard implementation of NCODA 3DVAR (EXP1) uses
the MODAS synthetic profiles to assimilate SSH observations, as is the case with
EXP2.

The 4DVAR assimilation of along-track SSH (EXP3) is included in this com-
parison because it is a relatively new technique and has outperformed the other two
methods in previous tests. In order to run EXP3, an estimated mean SSH field is
needed to transform the observations from height anomalies into the SSH form of
the ocean model. Since a sufficiently long enough time period of Relo NCOM does
not exist for this domain, a 5-year mean SSH field from the global HYbrid
Coordinate Ocean Model (HYCOM) is interpolated to the observation locations and
added prior to the inclusion of the data within the assimilation. Another reason to
include the direct assimilation of SSH in this study is to identify any model-drift
that may be present in the cycling forecast from the 4DVAR analysis. There is a
possibility that the assimilation of along-track SSH may produce unrealistic cor-
rections to the thermodynamic state of the model. This is not a concern when
synthetic profiles are assimilated, as the generation of these profiles uses clima-
tology to constrain the temperature and salinity profiles. This climatological con-
straint does not exist when SSH observations are assimilated directly. On the other
hand, the 4DVAR does constrain the adjustments to the temperature and salinity by
the background around which the adjoint and TL models are linearized. The
objective is to determine if this constraint is sufficient to prevent unrealistic
adjustments to the thermodynamic structure and, therefore, prevent the model
solution from drifting far from reality.

The observational data used in these experiments come from several sources:
subsurface in situ and profile temperature (T) and salinity (S) observations were
collected from XBTs and Argo Floats, SST observations are collected from
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NOAA’s GAC and LAC satellites, and SSH observations are from altimeter data
obtained from the ENVISAT, GFO, and Jason-1 satellites. The SSH data are
processed through the ALtimeter Processing System (ALPS; Jacobs et al. 2002),
which is available from the Altimetry Data Fusion Center (ADFC) at the Navy
Oceanographic Office (NAVOCEANO). A collection of additional glider and
AXBT observations are also provided and used in this study.

At 3 kilometers (km) resolution, the Okinawa Trough domain has a spatial size
of 535 by 628 grid points and 50 layers; this corresponds to a total of 16,799,000
grid points. Due to the computational cost of NCOM 4DVAR, which involves
solving the adjoint and TL models several times within the minimization driver, the
total time to run the assimilation for a model grid of this size is operationally
prohibitive.

To reduce the computational time it is necessary to run the NCOM 4DVAR
assimilation on a reduced resolution grid. For the 4DVAR experiments (EXP2 and
EXP3), the model grid is coarsened by interpolating the 3 km model background to
a 6 km analysis grid that covers the same region and vertical structure as the
original configuration. This is deemed acceptable as the static spatial covariance
scales employed by the NCOM 4DVAR are based on the Rossby radius of
deformation, which is approximately 40 km for this region. Once the assimilation is
complete on the reduced-grid, the analysis increments are projected back to the
original 3 km resolution and added to the full-resolution background state to pro-
duce the analysis. A series of experiments conducted during the early testing phase
for the NCOM 4DVAR in the Okinawa Trough confirmed that a forecast run at
3 km initialized by a 6 km analysis yields a nearly identical solution as one run
from a 3 km analysis. This result, coupled with the fact that the computational cost
of the analysis is greatly reduced by the use of the coarse-resolution analysis,
justifies this method.

4 Validation of NCOM 4DVAR

The results of the validation testing are broken up into 4 subsections. The first is the
analysis and 24-h forecast errors of the different experiments as a function of time
throughout the 12-month time period. The remaining 3 subsections focus on sub-
surface predictability. These statistics are only computed over a 3-month time
period (Aug–Oct, 2007), because the vast majority of profile observations are
collected during this time. It is also important to examine the predictability and
persistence of extended forecasts out to 96 h, and it is prohibitive to perform these
extended forecasts for the entire year. In the second and third subsections, the time
average predictability of the subsurface temperature and salinity is compared with
all assimilated profile data (Sect. 4.2); and then with non-assimilated AXBT and
glider profile data for independent verification (Sect. 4.3). Finally, in Sect. 4.4, the
predictability of sonic layer depth (SLD) is analyzed.
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4.1 Time Distribution of Errors

The first comparison performed on these experiments is to examine the seasonality
and errors of the analysis and the corresponding 24-h forecast that is generated by
NCOM. To do this, a normalized error metric is computed as a function of time
over the 12 month time-period of the experiments. This evaluation can also help
determine if any model drift is present in the solution; this would manifest itself as
an increasing 24-h forecast error with time as the model solution slowly drifts from
reality. The error metric employed for this is a normalized mean absolute error that
will be referred to as the Jfit measure,

Jfit =
1
M

∑
M

m=1

ym −Hmxj j
σm

, ð6Þ

where M is the total number of observations; ym, Hm, and σm are the observation,
observation operator, and observation error, respectively, associated with the mth
observation; and x is the model state (either the forecast or analysis). Equation 6
indicates that if the forecast or analysis fits the collective observations within their
corresponding prescribed observation errors, the Jfit value will be at or below one. If
the Jfit value is well below the value of one, then this may indicate that the solution
is over-fitting the observations, and the prescribed model errors may need to be
reduced.

Figure 2 shows the Jfit normalized error of the analysis (red) and the 24-h
forecast (blue) for both 4DAR NCOM experiments. In these figures, the dashed
black line represents the overall observation error. The normalized errors (Jfit) are
computed relative to all of the observations that are assimilated; or in the case of the
24-h forecast it is all of the observations that will be assimilated in the next cycle.
These observations include temperature, salinity and in the case of EXP3, SSH. For
both 4DVAR experiments (Fig. 2a, b) the analysis fits within the observation error
for the majority of the time period and the 24-h forecasts are generally within 2
standard deviations of the observation error.

The results in this figure also show that the 4DVAR assimilation of synthetic
observations (EXP2) is outperforming the 4DVAR assimilating SSH directly
(EXP3). This, however, does not necessarily imply that EXP2 is better, because the
normalized error metric (Jfit) computed for these two experiments uses different
observations and observation errors. In EXP2 (Fig. 2a) SSH observations are
converted to synthetic temperature and salinity observations, and it is these syn-
thetic observations that are assimilated and used in the Jfit value, along with the
remaining in situ temperature and salinity observations. The synthetic observations
have a relatively high observation error, higher than the real observations of
temperature and salinity that are assimilated directly in EXP3 (Fig. 2b). Therefore,
the solution in EXP2 will fit within a lower percentage of the observation error.

Figure 3 displays comparisons of SSH normalized error of the 24-h forecasts
generated from NCODA 3DVAR (EXP1) and the two 4DVAR NCOM
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experiments (EXP2 and EXP3). In these error metrics, the SSH forecasts are
compared to a SSH map product created by the ALtimeter Processing System
(ALPS) (Jacobs et al. 2002). Along-track SSH observations are high resolution in
the along-track direction, but sparse in the cross-track direction. This makes
comparisons with models difficult as the structure of mesoscale eddies cannot be
entirely resolved using instantaneous SSH observations. The ALPS SSH product is
a 2D optimal interpolation of sea surface height anomalies (SSHA) from multiple
altimetry sources using characteristic covariance information regarding the scale of
typical ocean eddies, propagation speeds, and time scales. A 5-year HYCOM mean
SSH field is added to the ALPS SSH, in the same manner as the along-track SSH
observations.

Figure 3a displays a comparison of the 24-h SSH forecast error between EXP1
(black) and EXP2 (red) for the 12 months of the experiments using the Jfit error
metric in Eq. 6. In this comparison, EXP2 exhibits similar SSH forecast error as
EXP1, albeit lower from January through May, and higher from May through
September. This result is not surprising, as both forecasts are generated from

Fig. 2 Normalized error of the analysis (red) and 24-h forecast (blue) from the 4DVAR
experiment assimilating a SSH via MODAS synthetics (EXP2) and b SSH directly (EXP3). The
normalized errors are computed using Eq. 6 and are relative to all of the assimilated observations
during the year-long Okinawa Trough experiments
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analyses that use synthetic profiles from MODAS to constrain the mass field.
Since MODAS synthetics are based on climatology, they are generally more iso-
tropic and slowly varying; therefore, limiting the advantage of 4DVAR over
3DVAR.

Figure 3b compares EXP3 and EXP1 24-h SSH forecast errors. In the case of
EXP3, the 4DVAR analysis assimilates the along-track SSH observations directly.
As such, the EXP3 24-h SSH forecast exhibits lower error than EXP1 generally
throughout the entire 12-month experiment. This indicates that directly assimilating
SSH, rather than through derived synthetic profiles of temperature and salinity,
yields a superior SSH forecast. This is consistent with theory, as the observation
errors for synthetic profiles are relatively high (Ngodock et al. 2015).

4.2 Profile Distribution Errors

It is important for the subsurface thermodynamic characteristics to be captured
by the model, thus the first comparison presented is the RMS errors computed as
a function of depth, rather than time. This error metric, calculated for the

Fig. 3 Comparison of the 24-h SSH forecast error resulting from the year-long 3DVAR
experiment (EXP1, black) and the two 4DVAR experiments: a assimilation of SSH via MODAS
synthetics (EXP2, red) and b assimilation of SSH directly (EXP3, red). The normalized errors are
computed using Eq. 6 and are relative to the SSH maps from ALPS
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forecasts generated from NCODA 3DVAR and NCOM 4DVAR, presents a
comparison of the model layer-by-layer error relative to available profile
observations.

Figures 4 and 5 show the 24-h forecast layer-by-layer RMS error value com-
parison between EXP1 and the 2 4DVAR experiments, EXP2 and EXP3, respec-
tively. These error statistics are calculated for temperature (left panel) and salinity
(right panel) relative to profile observations from three out of the 12 months of the
experiments (August–October). In these figures, the value (N) in the left panel is the
total number of profiles used to compute these statistics during the 3-month time
period. Each profile consisted of both temperature and salinity observations down
to a particular depth, so the total number of temperature and salinity observations
used in these comparisons is the same. NCODA-QC calculates synthetic salinity
profiles using MODAS for profile observations of just temperature (such as
AXBTs). Then, layer-by-layer, RMS error values are computed for each experiment
using forecast-observation comparisons during the entire 3-month period. It should
be noted that not all of the profiles used for these comparisons went below 1400 m
and many were confined to the upper 100 m. The results shown in these figures
reveal that both EXP2 and EXP3 outperform EXP1 in predicting temperature,
especially within the depth range of 100–600 m. Whereas, the systems are pretty
similar at predicting salinity, except that EXP2 does not have the increased error
near 350 m that is in EXP1.

Figure 6 is an overlay of all the error profiles in Figs. 4 and 5 for comparison,
including their corresponding 96-h forecasts (dashed lines). As expected, the error

Fig. 4 Comparison of 24-h
forecast RMS profile errors
between EXP2 (red) and
EXP1 (black) for temperature
profiles (left panel) and
salinity profiles (right panel).
These are from 3-months
(August–October). The value
N is the total number of
profile observations used in
these statistics
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characteristics grow from the 24-h forecast to the 96-h for both 4DVAR systems.
However, the gains provided by the 4DVAR analyses do not degrade much over the
period of 96-h and the forecasts generated from the 4DVAR analyses continue to
demonstrate skill over the forecasts generated by NCODA 3DVAR. It is interesting
to point out that the 96-h forecasts of EXP2 and EXP3 have the same, or better, skill
than the 24-h forecast of EXP1.

Fig. 5 Comparison of 24-h
forecast RMS profile errors
between EXP3 (red) and
EXP1 (black) for temperature
profiles (left panel) and
salinity profiles (right panel).
These are from 3-months
(August–October). The value
N is the total number of
profile observations used in
these statistics

Fig. 6 Comparison of 24-h
(solid) and 96-h (dashed)
forecast RMS profile errors
between EXP1 (black), EXP2
(red), and EXP3 SSH (blue)
for temperature profiles (left
panel) and salinity profiles
(right panel). These statistics
are computed over 3-months
(August–October). The value
N is the total number of
profile observations used in
these statistics
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4.3 Profile Errors Relative to Independent Data

In addition to the 12-month experiments, a series of smaller 3-month runs using the
NCOM 4DVAR (with direct SSH and synthetic assimilation) and the NCODA
3DVAR experiments were performed with some data types withheld for indepen-
dent forecast evaluation. For these comparisons, EXP1 and EXP3 are compared
with (1) all withheld glider data (Fig. 7) and (2) all withheld AXBT data (Fig. 8).

Figure 7 illustrates the layer-by-layer Jfit values (Eq. 6) for the EXP3 24-h
forecast (red) versus the EXP1 24-h forecast (black) for temperature (left panel) and
salinity (middle panel) computed against withheld glider observations. It should be
noted that the withheld glider observations were also processed through NCODA-
PREP. Therefore, the observation counts in the right panel of this figure are the
processed glider observations binned into the NCODA analysis layers in time
increments of 3 h. Clearly, the forecast using EXP3 outperformed EXP1 according
to this independent data comparison, for both temperature and salinity through all
model layers. Figure 8 shows the same comparison, but using withheld AXBT data.
There is no salinity AXBT data, therefore there is no panel for salinity. Just as in the
glider comparison, EXP3 outperforms EXP1 when compared to this independent
data set.

Overall, the results from these experiments indicate that the NCOM 4DVAR
analysis system, when assimilating SSH observations directly or through synthetic
profiles of temperature and salinity, fits the assimilated observations within the

Fig. 7 The layer-by-layer Jfit error values (Eq. 6) for the EXP3 24-h forecast (red) versus the
EXP1 24-h forecast (black) for temperature (left panel) and salinity (middle panel) computed
against withheld glider observations (right panel)
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prescribed observation error. Further, the resulting forecasts generated from the
NCOM 4DVAR analyses perform equally or better than the forecasts generated
from the NCODA 3DVAR analyses, for both subsurface temperature and salinity,
and also for model sea surface height.

4.4 Sonic Layer Depth Prediction

Sonic Layer Depth (SLD) is the depth at which sound speed is maximum in the
upper water column. SLD is an important quantity to the Navy, because it is the
upper boundary of the SOFAR (sound fixing and ranging) channel in which
acoustic signals at certain frequencies can become trapped. Therefore, the predic-
tion skill of SLD is one of the more important metrics that the Navy uses in
determining the quality of a prediction system. For the comparison in this section,
SLD was calculated using NRL’s ProfParam software (Helber et al. 2008) for all of
the glider and AXBT profile data (collected during 1 August 2007 through 31
October 2007). The analyses, and 24, 48, 72, and 96-h forecasts of EXP1, EXP2,
and EXP3 were interpolated to these observation locations and times.

Table 1 provides the overall statistics of SLD prediction skill of each of the three
experiments over the 3-month time period. In this table, N is the total number of
SLD observations computed from glider and AXBT profiles. The mean difference

Fig. 8 The layer-by-layer Jfit
error values for the EXP3
24-h forecast (red) versus the
EXP1 24-h forecast (black)
for temperature (left panel)
computed against withheld
AXBT data (right panel).
There is not a panel for
salinity, because there are no
salinity AXBT data
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(bias) between the SLDs calculated from the prediction system and data (Model
SLD–Data SLD) reveal that the analysis and forecast systems are consistently
predicting a shallower SLD than the data in all experiments. The RMS errors from
these differences, along with their correlation coefficient, demonstrate that both
versions of 4DVAR perform better than the NCODA 3DVAR at predicting SLD for
the analysis and all forecast lengths.

Figure 9 displays 2D histograms of occurrence counts between matching
observation (x-axis) and model (y-axis) SLDs. Here, the model SLD values are
interpolated to each observation location and compared to the observed SLD.
The SLD matchups are binned in 5 m resolution cells and the number of occur-
rences of each matchup within each cell is indicated by the colorbar. This is done
for the analysis (top row), 24-h forecast (middle row), and 96-h forecast (bottom
row) for EXP1 (left-most column), EXP2 (middle column), and EXP3 (right-most
column). Note that the color bar is in log scale. Also, there are no observation
counts shallower than 10 m (for both data and model), because the ProfParam
software used to calculate SLDs does not allow for a SLD below 10 m. Therefore,
more occurrence counts concentrated near the diagonal black line signifies that the
model is doing well at predicting SLD.

Table 1 Sonic Layer Depth (SLD) prediction errors of the NCODA 3DVAR and NCOM
4DVAR analyses, along with their ensuing 24, 48, 72, and 96-h forecasts. Errors are relative to the
SLD computed from all AXBT and glider profile observations during Aug–Oct 2007. The
experiments with the best correlation are in bold

N RMS error (m) Correlation coefficient Mean diff (m)

Analysis

EXP1 5579 22.59 0.46 −9.07
EXP2 5579 18.07 0.65 −1.79
EXP3 5579 17.85 0.65 −2.02
NCOM 24 h forecast

EXP1 5600 21.28 0.52 −7.96
EXP2 5600 19.14 0.61 −2.68
EXP3 5600 18.68 0.63 −2.84
NCOM 48 h forecast

EXP1 5602 20.41 0.55 −7.14
EXP2 5602 19.71 0.59 −3.43
EXP3 5602 19.27 0.60 −3.58
NCOM 72 h forecast

EXP1 5531 20.25 0.55 −6.75
EXP2 5531 19.82 0.58 −3.51
EXP3 5531 19.54 0.58 −3.76
NCOM 96 h forecast

EXP1 5469 20.02 0.55 −6.18
EXP2 5469 19.83 0.57 −3.53
EXP3 5469 19.60 0.58 −4.05
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In the EXP1 analysis histogram, there is an unusual band of modeled SLD
counts between 10-15 m depth, and there is an overall significant bias towards the
model under-predicting SLD relative to the observations (there are more red squares
below and to the right of the diagonal black line). In the EXP3 analysis this bias is
significantly reduced; and in the EXP2 analysis, one can barely notice the bias. As
the forecast proceeds from 24 to 96-h, there is a clear trend of the shallow modelled
SLD bias becoming more pronounced in the 4DVAR and the overall SLD pre-
diction capability of 4DVAR moving towards that of EXP1. However, it can be

Fig. 9 Okinawa Trough 2D histograms of SLD (m) of NCODA 3DVAR (left), NCOM 4DVAR
with synthetic SSH assimilation (middle), and NCOM 4DVAR with direct SSH assimilation
(right) analyses (top), 24-h forecasts (middle) and 96-h forecasts (bottom) relative to SLD
computed from profile observations during the 3-month time period of 1 August to 31 October
2007. The diagonal black line denotes the locations on each histogram where the modelled SLD
matches the observed and the color bar denotes the number of counts on a log scale
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seen that EXP2 does better than EXP3 at predicting SLD, and both 4DVAR sys-
tems perform significantly better than EXP1 (even after 96-h of forecasts).

To better visualize this improvement, Fig. 10 shows the difference in counts
between EXP1 and EXP2 for both the analysis and the 96-h forecast. In this figure,
a blue box signifies that EXP2 has more counts at that particular SLD comparison.
The analysis histogram (left panel of Fig. 10) has mostly blue boxes along and near
the diagonal, and red boxes below and to the right; it is clear that the 4DVAR is
doing better and that the NCODA 3DVAR has a significant shallow SLD bias. This
improvement persists throughout the 96 h of forecast (right panel of Fig. 10).

5 Operational Implementation of the NCOM-4DVAR

The majority of the NCOM 4DVAR experiments were performed at the DoD
Supercomputing Resource Center (DSRC) where the average wall clock time for an
analysis/forecast cycle was 70 min. Occasionally, if there were a significant number
of observations during a cycle, the conjugate gradient solver would take up to ten
iterations to converge, and hence take up to 1.5 h to complete a cycle. Most of the
cycles, however, required an hour or less. This puts the time it takes to perform the
NCOM 4DVAR for a relatively large domain within the operational constraints of
NAVOCEANO.

Fig. 10 2D histograms showing the difference in SLD counts between EXP1 and EXP2 analyses
(left) and 96-h forecasts (right). Blue (red) squares signify that the NCOM 4DVAR has more (less)
SLD combination counts than NCODA 3DVAR
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Although there is room for improvement, much effort was put into the paral-
lelization of the NCOM 4DVAR software such that it can operate on as many
processors as efficiently possible. The software is parallelized by splitting the
horizontal domain into separate tiles that are each assigned to a processor (CPU).
Periodically, throughout the operation of the code, information has to be transferred
amongst the tiles. Therefore, as the number of CPUs is increased, so does the
amount of data that needs to be transferred amongst the tiles, and there comes a
limit when adding more CPUs for a particular domain only marginally decreases
the total wallclock time (this is the software’s scalability). The core of the NCOM
4DVAR software scales relatively efficiently. Through a number of tests, it was
determined that the optimal CPU tile size for the NCOM 4DVAR is about 20 × 20
grid points, therefore, 192 CPUs was the optimal number for the Okinawa Trough
domain.

To achieve the goal of performing an analysis/forecast cycle in about an hour, a
software module was created to allow the analysis and the forecast to operate at
different grid resolutions. As discussed in Sect. 3, this module is used to interpolate
the high resolution forecast to a coarser resolution to be used as the background for
the 4DVAR analyses. After the analysis, the module is used to interpolate the
coarse analysis to the high resolution grid for the initial conditions of the forecast.
In the Okinawa Trough experiments, the 4DVAR analysis is run at a 6 km reso-
lution and the forecast is run at 3 km resolution. A number of experiments were
performed testing the impact of reducing the resolution of the analysis component
of the system and it was determined that the impact on forecast skill was negligible,
but the reduction in computation time was tremendous.

Even though the NCOM 4DVAR takes significantly longer and requires more
resources to operate than the 3DVAR (the average wall clock time to perform an
analysis/forecast cycle with the 3DVAR is 5 min on 12 CPUs) the ability to cor-
relate observations with the dynamics over multiple days significantly improves the
analysis and ensuing forecast skill. Also, innovations are computed and applied in
NCOM 4DVAR at the actual observation time. Whereas, the assimilation window
for 3DVAR is only one day and regardless of when the observations are recorded,
their innovations are all applied at a single analysis time.

The optimal assimilation window length for the NCOM 4DVAR can vary
depending on the region, grid resolution, and the observations being assimilated.
A longer assimilation window allows the observations more time to propagate
throughout the domain via the model dynamics, which therefore should improve the
model covariance and produce a better analysis. However, increasing the assimi-
lation window increases the computational time and allows more time for small
errors that may arise from the TL approximation to potentially grow. Figure 11
shows the impact the length of the assimilation window has on the predictability of
the 24-h forecast. In this figure, experiments were performed on the Okinawa
Trough domain during August 2007 for assimilation windows ranging from one to
five days. The RMS errors of the 24-h forecast of temperature and salinity follow
the correct pattern and generally decrease as the assimilation window is increased.
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The improvement resulting from increasing the assimilation window, however, is
minor and doesn’t warrant the extra computational cost. This is why just a 3-day
assimilation window was used in the experiments presented in this chapter.

6 Conclusions

In this chapter, the accuracy of NCOM 4DVAR was compared to the operational
3DVAR-based Relo NCOM analysis/prediction system. Year-long experiments
were performed for the Okinawa Trough domain. For three of the months in these
experiments, the forecasts were extended out to 96 h so that the long-term pre-
dictability can be examined. A number of different types of observations were used
in both the assimilation and validation: SST observations from satellites, subsurface
temperature and salinity profile observations from ARGO floats, AXBTs and
gliders, and SSH observations from altimeters. In some of the experiments, portions
of the profile data were removed from the assimilation and used as an independent
validation data set. The overall results from these experiments indicate that the
NCOM 4DVAR analysis system, when assimilating SSH observations directly or
through synthetic profiles of temperature and salinity, fits the assimilated obser-
vations within the prescribed observation error. Further, the resulting forecasts
generated from the NCOM 4DVAR perform equally or better than the forecasts
generated from the NCODA 3DVAR for subsurface temperature and salinity,
model sea surface height, and sonic layer depth. Finally, it is demonstrated that

Fig. 11 Comparison of
assimilation window lengths
for the NCOM 4DVAR in the
Okinawa Trough. RMS errors
are computed for the 24-h
forecasts of temperature (left)
and salinity (right) during
August 2007 using
assimilation windows ranging
from 24 to 120-h
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despite the computational requirements of the NCOM 4DVAR exceeding those of
NCODA 3DVAR, they are within the operational constraints.
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