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a b s t r a c t 

Development and maintenance of the linearized and adjoint code for advanced circulation models is a 

challenging issue, requiring a significant proportion of total effort in operational data assimilation (DA). 

The ensemble-based DA techniques provide a derivative-free alternative, which appears to be competitive 

with variational methods in many practical applications. This article proposes a hybrid scheme for gen- 

erating the search subspaces in the adjoint-free 4-dimensional DA method (a4dVar) that does not use a 

predefined ensemble. The method resembles 4dVar in that the optimal solution is strongly constrained 

by model dynamics and search directions are supplied iteratively using information from the current and 

previous model trajectories generated in the process of optimization. In contrast to 4dVar, which produces 

a single search direction from exact gradient information, a4dVar employs an ensemble of directions to 

form a subspace in order to proceed. In the earlier versions of a4dVar, search subspaces were built us- 

ing the leading EOFs of either the model trajectory or the projections of the model-data misfits onto 

the range of the background error covariance (BEC) matrix at the current iteration. In the present study, 

we blend both approaches and explore a hybrid scheme of ensemble generation in order to improve the 

performance and flexibility of the algorithm. In addition, we introduce balance constraints into the BEC 

structure and periodically augment the search ensemble with BEC eigenvectors to avoid repeating mini- 

mization over already explored subspaces. Performance of the proposed hybrid a4dVar (ha4dVar) method 

is compared with that of standard 4dVar in a realistic regional configuration assimilating real data into 

the Navy Coastal Ocean Model (NCOM). It is shown that the ha4dVar converges faster than a4dVar and 

can be potentially competitive with 4dvar both in terms of the required computational time and the 

forecast skill. 

Published by Elsevier Ltd. 
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. Introduction 

The ongoing trend toward massive parallelization in computer

echnologies facilitates the use of ensemble techniques in geophys-

cal data assimilation. The ensemble approach becomes attractive

ot only because of its favorable parallelization properties ( Isaksen,

011; Desroziers and Berre, 2012 ). It also brings in more flexibility

nd realism in representing the background error covariances (e.g.,

omine et al., 2014; Ménétrier et al., 2014; Descombes et al., 2015 )

nd appears to be less vulnerable to instabilities associated with

odel linearization employed by the standard 4dVar technique.

esides, the ensemble approach allows to avoid costly develop-

ent and maintenance of the linearized models and their adjoints

hich beyond being costly may impose certain limits on versatility
∗ Corresponding author. 
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n applying dynamical constraints within a particular adjoint-based

ssimilation system. 

In the last decade, the use of ensembles in DA has been un-

er extensive development in several directions. Apart from im-

rovements in the BEC modeling, major efforts have been made to

ombine the benefits of the 4dVar and the ensemble methods. In

articular, Buehner et al. (2010) have shown that the 4dVar system

ith the ensemble-generated BEC outperforms the standard 4dVar

n the global forecast model. Similar results were obtained by Kuhl

t al. (2013) who investigated the performance of the atmospheric

A system ( Rosmond and Xu, 2006 ) with the hybrid BEC formula-

ion. Coupling the regional 4dVar and ensemble KF systems ( Zhang

nd Zhang, 2012; Barker et al., 2012 ) resulted in a significant re-

uction of errors for the forecast lead times up to 2.5 days. All

hese observations underscore the decisive role played by the flow-

ependent BECs delivered by ensembles in improving the forecast

kill. 

http://dx.doi.org/10.1016/j.ocemod.2017.08.003
http://www.ScienceDirect.com
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Another extensive field of development is related to the so-

called 4dEnVar algorithms ( Liu et al., 20 08; 20 09; Fairbairn et al.,

2014 ) which introduce ensembles into the very fabric of the 4dVar

optimization. In contrast to 4dVar which implicitly propagates the

BEC, these ensemble methods leverage the power of massively par-

allel computers and explicitly approximate BEC evolution on the

model grid. The major issue with this approach is a computa-

tionally efficient localization of the raw ensemble-generated BECs

which generally suffer from sampling errors caused by the limited

number of ensemble members. In their recent studies, Desroziers

et al. (2014) and Liu and Xue (2016) established useful relation-

ships between the 4dVar and 4dEnVar variants with different pre-

conditioners and covariance localization schemes. As a result of

these developments, hybrid 4dVar and 4dEnVar methods were im-

plemented operationally in the European ( Clayton et al., 2013 ) and

Canadian ( Buehner et al., 2013; 2015 ) weather prediction facilities. 

In practice, the 4dEnVar technique is formulated as a search for

optimal corrections to the control variables which is performed in

the range of the background error covariance B . For that reason

preconditioning is often made by the square root of B and the

variational optimization problem is considered in the dual (obser-

vation space) formulation which usually has much smaller dimen-

sion than the original control space formulation and therefore will

be more efficient computationally. In particular, this approach has

been adopted in the NAVDAS-AR atmospheric DA system ( Rosmond

and Xu, 2006 ). 

In the ocean, observations are less abundant than in the at-

mosphere and the ensemble-based BEC estimates which constitute

the backbone of 4dEnVar technique tend to be much less accurate.

For that reason, one has to rely on heuristic BEC approximations

(e.g. Yaremchuk et al., 2013; Weaver et al., 2015 ). Development of

an efficient a4dVar DA method also becomes more problematic as

one has to select a few reliable ensemble perturbations with more

care. Early predecessors of practical a4dvar algorithms limited op-

timization to predetermined low-dimensional subspaces spanned

either by the reduced-order approximations of the model Green

functions ( Stammer and Wunsch, 1996; Menemenlis and Wunsch,

1997 ), or by the dominant principal orthogonal vectors (EOFs) as-

sociated with the model statistics (e.g., Robert et al., 2005; Qui

et al., 2007; Hoteit, 2008 ). The 4dEnVar technique proposed by Liu

et al. (20 08) ; 20 09 ), generalizes this approach by representing the

search subspace by the Schur products of the ensemble members

with the eigenvectors of the reduced-order representation of the

localization matrix. 

In the present paper, we further develop an iterative ensemble-

based 4dVar technique ( Yaremchuk et al., 2009 ) which appears

to be competitive with 4dVar in oceanographic applications

( Panteleev et al., 2015, Yaremchuk et al., 2016a , hereinafter Y16). A

distinctive feature of the technique is its self-sufficiency: in con-

trast to many ensemble estimation methods which employ a given

well-trained ensemble to optimize the control variables within a

given time window, the a4dvar sequentially generates search sub-

spaces (bundles of search directions) entirely from the statistics of

the model trajectories and/or the respective model-data misfits ob-

tained in the course of optimization. In that respect, the a4dVar

technique resembles the 4dVar, which uses the adjoint code to

generate a new search direction, whereas in a4dVar that direc-

tion is replaced by a search subspace spanned by the ensemble of

search directions. 

In the previously considered versions of the method search sub-

spaces were built using the leading EOFs of either the model tra-

jectory or the projections of the model-data misfits onto the range

of B at the current iteration inheriting information from either dy-

namical constraints or modeling errors respectively. The present

study blends both approaches in an attempt to improve a4dVar

performance and flexibility. In addition, search subspaces are ex-
licitly confined to the range of B , whose structure is constrained

y the balance operator, which facilitates searches in hydrostati-

ally and geostrophically balanced directions. To avoid searches in

he directions nearly parallel to the ones already explored on the

revious iterations, the descent process is restarted by augmenting

he search subspaces with the eigenvectors of the background er-

or covariance. It is shown that all these modifications result in a

ignificant improvement in the performance of the algorithm. 

The paper is organized as follows. In the next section we briefly

escribe the basics of 4dvar methodology and its ensemble-based

4dEnVar) variants, outline the a4dvar method, and describe con-

iderations in support of the proposed hybrid methodology of

electing the search subspaces. In Section 3 , performance of the

4dVar technique is analyzed using NCOM configuration in the

driatic sea with a particular focus on the impact of balance con-

traints on the forecast skill and of the new restart procedure on

he convergence rate. Summary and discussion of the results con-

lude the paper. 

. Variational optimization methodologies 

We follow the terminological convention proposed by Lorenc

2013) , and refer to “4dEnVar” for the adjoint-free optimization

lgorithms that recover the gradient information from predeter-

ined ensembles which are intended to capture the dominant fea-

ures of the BEC structure. The a4dVar algorithm being tested here

s designed to perform without a given ensemble: Instead of the

EC model derived from the ensemble, we use a heuristic BEC

odel, which we believe contributes to a more robust strategy

n the face of sparse data. We then iteratively retrieve ensemble

embers (search directions) either from a model trajectory on cur-

ent iteration, or from dominant spectral modes of the BEC matrix

omputed off-line. 

.1. 4dVar 

In order to better illuminate connections between the 4dVar

ramework and what follows, the 4dVar approach in this section is

ormulated as a linear discrete least-squares problem constrained

y model dynamics in a small vicinity of the model’s background

rajectory x n 
b 
: 

 = 

1 

2 

[ 

x 0 T B 

−1 x 0 + 

N ∑ 

n =1 

( H n x 
n − d n ) T R 

−1 
n ( H n x 

n − d n ) 

] 

→ min 

x 0 
(1)

here x n are the deviations of the model state from x n 
b 

at time t n ,

 enumerates observation times, B is the BEC matrix of x n 
b 

which

escribes the (Gaussian) statistics of the model state at n = 0 , H n 

re the model-data projection operators, d n are the discrepancies

 

∗
n − H n x n b 

between observations d ∗n and the corresponding back-

round model values, R n are the observation error covariances, and
 denotes transposition. If B is rank-deficient, B 

−1 is to be un-

erstood as a Moore–Penrose pseudoinverse. We will denote the

imension of the discretized model state vector x by M and the

umber of observations available at time t n by L n . 

The correction vectors, x n , are governed by the recursive rela-

ionship 

 

n = M n x 
n −1 , (2)

here M n is the dynamical operator of the model linearized in

he vicinity of the background trajectory x n 
b 

at the time interval

(t n −1 , t n ) , so that 

 

n = M n M n −1 . . . M 2 M 1 x 
0 . (3)

ntroduce the preconditioned variable c = B 

−1 / 2 x 0 for the control

ector, where B 

−1 / 2 is the square root of B 

−1 , and denote the ag-

regated n -step propagator as M 

n ≡ M n . . . M M . Define (briefly)
2 1 
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 n = R 

−1 / 2 
n H n , d 

n = R 

−1 / 2 
n d n , and then simplify the notation by

ropping overbars. Taking (3) into account, the minimization prob-

em (1) can be rewritten in terms of the correction c to the initial

tate: 

 = 

1 

2 

( 

c T c + 

N ∑ 

n =1 

| Q n c − d n | 2 
) 

→ min 

c 
. (4) 

here Q n := H n M 

n B 

1 / 2 . The 4dVar DA method finds the minimum

f J by solving the associated normal equation: 

 c J = c + 

∑ 

n 

Q 

T 
n ( Q n c − d n ) = 0 , (5)

he 4dVar method uses a descent algorithm employing gradient

nformation (5) which requires computation of the action of Q 

T 
n ,

nd, as a consequence, requires knowledge of the action of the ad-

oint model M 

n T on the vector of control variables. To keep the

iscussion that follows concise, denote the identity matrix by I and

ntroduce the Hessian matrix ˆ H and the right-hand side r in Eq. (5) ,

ˆ 
 = I + 

∑ 

n 

Q 

T 
n Q n ; r = 

∑ 

n 

Q 

T 
n d 

n . (6) 

hen (5) may be rewritten as ˆ H c − r = 0 . 

In the non-linear case, the background solution x b is recom-

uted to initiate the next (outer) loop of the 4dVar minimization

rocess after iteratively solving Eq. (5) (e.g., Courtier et al., 1994 ).

lternatively, the gradient and the non-linear cost function can be

tilized in the iterative loop of a single non-linear minimization

lgorithm. 

Developments in ensemble methods have shown that the use of

angent linear/adjoint models for the gradient computation could

e avoided by employing finite-difference approximations using

he ensemble members in conjunction with localization. The effi-

iency of this approach and its superior parallelization and scal-

bility features gave rise to rapid development of the 4dEnVar

ethods (e.g., Liu and Xue, 2016 ). 

.2. 4dEnVar 

The 4dEnVar approach is based on combining the precondi-

ioning of x 0 by either B 

1 / 2 or B with an algorithm for explicit

ultiplication of the model state by the preconditioner. In a sim-

le case of representing B = B 

1 / 2 B 

T / 2 by the raw ensemble aver-

ge (in which case B 

1 / 2 is the M × m matrix listing m ensemble

embers columnwise), the matrices Q n have a relatively small size

 L n × m ) and can be transposed explicitly to compute a gradient

or J . Since the raw ensemble covariance estimates are susceptible

o sampling errors, localization could be performed by taking the

chur product of B and the localization matrix C . In the case of

 

1 / 2 -preconditioning this operation requires an explicit low-rank

 l ) representation of C which increases the size of Q n to L n × ml .

he low-rank restriction on C could be avoided because the ac-

ion of the localized ensemble covariance on a state vector can be

omputed explicitly at a relatively low cost using various versions

f the domain localization technique (e.g., Janjic et al., 2011 ). 

Recently, the 4dEnVar technique was extended by reformulat-

ng the problem in the space of model trajectories and using the

espective ensemble space-time covariances. This generalization re-

axes the strong dynamical constraint (2) and allows smooth tran-

ition to weak 4dEnVar formulation in both primal and dual forms

see Desroziers et al., 2014 and references therein). 

In general, the 4dEnVar approach provides a powerful optimiza-

ion tool with a number of useful properties: (a) It is flexible in for-

ulating the optimization problem using various dynamical con-

traints; (b) the BEC model representation is versatile; (c) The po-

ential exists for much better performance on massively parallel
omputer architectures; and (d) One avoids the necessity of devel-

pment and maintenance of the tangent linear and adjoint models.

or atmospheric DA applications, the 4dEnVar has already demon-

trated its competitiveness, and in some cases, superiority, in com-

arison with standard 4dVar, and this is mostly due to the use of

ow-dependent covariances derived from the underlying ensemble

 Fairbairn et al., 2014; Lorenc et al., 2015 ). 

.3. a4dVar 

In regional oceanographic practice, observations are sporadic

nd relatively sparse compared to those in atmosphere. As a con-

equence, skillful ensembles are rarely available, so the efficiency

f optimization largely depends on the structure of B used for reg-

larization of the problem. In that respect it is worth considering

inimization algorithms which do not require availability of the

radient and are able to accumulate information on the Hessian

tructure in the course of optimization (e.g., Gratton et al., 2014;

uiz and Sandu, 2016 ). These “derivative-free” techniques draw

earch directions from the (Gaussian) pdf specified by B and show

easonably good performance, especially in the case of significant

on-linearity in the dynamics. 

A somewhat more heuristic a4dVar approach has been explored

y Yaremchuk et al. (2009) ; 2016a ), who proposed an iterative pro-

edure of updating search directions (ensemble members) in the

orm of model-data misfits smoothed by the background error co-

ariance. A more traditional method of updating the ensemble by

he leading EOFs of the model trajectory at the current iteration

as tested by Panteleev et al. (2015) in application to the surface

ave model (WAM) and demonstrated a reasonably good perfor-

ance in a set of twin-data assimilation experiments. 

The basic idea of a4dVar approach relies on the possibility of

ow-cost minimization of (4) in a given subspace spanned by the

nsemble members using the technique of Zupanski (2005) , and

ow-cost ˆ H -orthogonalization of the current subspace to the pre-

ious ones which can be implemented by storing perturbations

f the control variables together with respective model-data mis-

ts from the ensemble runs ( Appendix B in Y16). Efficiency of the

4dVar method is based on parallelism in minimizing the cost

unction in the subspace spanned by the ensemble members: In

ontrast to 4dVar, where a new search direction is found after se-

uential runs of the direct and adjoint codes, the a4dVar method

xplores multiple search directions, generated by parallel runs of

he direct code. 

Adopting the notation d = [ 0 d 1 . . . d N ] T , and A = [ I Q 

T 
1 

 . . Q 

T 
N ] 

T for the Hessian square root, the (linearized) cost function

4) is rewritten as 

 = 

1 

2 

( A c − d ) T ( A c − d ) (7)

roducing a minimizer that leads to the solution of (1) : 

 � = ( A 

T A ) −1 A 

T d ≡ ( A 

T A ) −1 r (8) 

olution (8) can be obtained by the iterative process of the form 

 

i +1 = c i + P 

i [( A P 

i ) T A P 

i ] −1 ( A P 

i ) T d = 

= c i + P 

i [ P 

i T ˆ H P 

i ] −1 P 

i T r (9) 

here i is the iteration number, and P 

i is an M × m matrix

f search directions listed columnwise and spanning the m -

imensional minimization subspace. The process (9) converges to

he 4dVar solution (8) in at most rank ( B ) /m steps if all P 

i are kept

utually ˆ H -orthogonal ( Appendix A ). 

For truly non-linear applications as considered below, non-

inear effects make it difficult to retain 

ˆ H -orthogonality with suf-

cient accuracy throughout the iterative process. Even for linear
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problems, retaining global orthogonality for Krylov methods (e.g.,

GMRES) is costly; yet alternative strategies that enforce only local

orthogonality (e.g., Lanczos methods) can exhibit a slow deterio-

ration of global orthogonality with a consequent slowing of con-

vergence as a result. Non-linearity tends to contribute a quick loss

of orthogonality in most practical (non-linear) applications, so that

the iterative process has to be restarted, and the overall efficiency

depends on the selection of P 

i . 

Since the practical number of iterations rarely exceeds one hun-

dred, the key requirement for the search directions is to have

sizable projections on the direction towards the minimum. The

a4dVar method does not require neither computations nor ap-

proximations of the cost function gradient and employs heuris-

tic approaches to generating P 

i . These approaches were shown to

be competitive with 4dVar in idealized settings ( Yaremchuk et al.,

2009 ), and in application to assimilation of the real data in the

Adriatic Sea (Y16). 

2.4. Selection of search subspaces in a4dVar 

In the previous versions, the a4dVar was tested in non-linear

regimes with two configurations, where the columns of P 

i are

composed of either the leading EOFs of the model trajectory

( Yaremchuk et al., 2009; Panteleev et al., 2015 ), or of the model-

data misfits s n smoothed by B ( Yaremchuk et al., 2009; 2016a ).

The leading EOFs of the trajectory ˜ x n = x n 
b 

+ x n tend to have siz-

able projections on the most persistent (time-correlated) compo-

nents of the error fields, whereas search directions specified by

s n = B H 

T ( H x n − d n ) account for the spatial distribution of the ob-

servations and bring in information on the background error co-

variance. When combined, these vectors appear to form search

subspaces generally with larger projections on the leading modes

of inverse Hessian. In the present study we explore such a hy-

brid strategy of generating P 

i and assess performance of the hybrid

a4dVar (ha4dVar) method formulated as follows: 

a) P 

i are built by extracting the leading modes from the hybrid

sequences 

Z i = { ̃ x 1 i , s 
1 
i , . . . , ̃  x N i , s 

N 
i } . (10)

The modes are computed with respect to the norm induced by

the background error covariance: 

Z i Z 

T 
i 

ˆ P i = B ̂

 P i �i ; P i = B ̂

 P i (11)

where �i is the m × m diagonal matrix of the respective eigen-

values and the horizontal means are removed from the TS con-

stituents of ˜ x n i prior to the analysis (11) . The columns of P i are
ˆ H -orthogonalized to the previous search directions until the ac-

cumulated Hessian spectrum degenerates, causing stagnation of

the minimization process. 

b) when the minimization process slows down, it is restarted by

drawing a basis of the new search subspace from precom-

puted eigenvectors of B (see Section 3.3 for the definition of the

restart criterion). 

c) the BEC matrix B is generalized to include balance constraints

(see Appendix B ) 

Note that in accord with the B -preconditioning principle, the

optimization process is automatically restricted to the range of

B due to the strategy of selecting the search directions in (a)

and (b) . This makes a4dVar more consistent with the data-space

4dVar formulation which seeks for optimal corrections of the con-

trol variables in the range of B and is used here for comparison

purposes. 
The updates ( a-b ) of the a4dVar method remain heuristic in na-

ure. However, numerical experimentation shows that they provide

etter approximations to the directions toward minimum, result-

ng in a better convergence rate for practical assimilation windows

typically ∼ 2–4 days). In that respect it is worthwhile to note that

earch directions specified by s n asymptotically approximate com-

onents the cost function gradient when M 

n T → I ). Second, the

estarting procedure ( b ) draws search directions from the leading

igenvectors of another limiting case of the inverse Hessian (when

bservation errors are large and 

ˆ H 

−1 → B ). In oceanographic appli-

ations, this restarting approach provides a better alternative to the

andomized restarts employed, for example, by the breakdown-free

MRES algorithms (e.g., Reichel and Ye, 2005 ). 

The third modification ( c ) of the algorithm has been made to

ntroduce the ability of (partly) constraining the optimization pro-

ess to the balanced manifold with an option to control the degree

f that constraint by tuning the magnitude of unbalanced compo-

ents. 

Overall, the ha4dVar method can be summarized as follows: 

0. Specify the dimension m of the search subspaces, the maxi-

mum number of iterations I , the perturbation magnitude ε, the

restart parameter γ c , and the maximum number of restarts n r .

Compute the N × mn r matrix B n of the first mn r eigenvectors of

B to be used for restarts ( Appendix B ). Set ˜ c 0 = x 0 
b 
, the iteration

number i = 0 and the restart parameter γ = 1 . 

1. Compute (suboptimal) model trajectory ˜ x n i , auxiliary vectors

Y i = 

ˆ H 

1 / 2 
˜ c i , Z i and the matrix of search directions P i ( Eq. (11) ).

2. Perturb the initial conditions ˜ c i → ̃  c i + ε p j 
i 

by the j th column of

P i and run (in parallel) the ensemble of m perturbed models,

computing the perturbed values δJ 
j 
i 

and δY 

j 
i 
, j = 1 , . . . , m re-

quired for ˆ H -orthogonalization (Y16). 

3. ˆ H -orthogonalize the search basis { p j 
i 
} with respect to the ba-

sis vectors obtained on the previous iterations and compute

optimal corrections δc i by solving the normal equation in the

search subspace. 

4. Set ˜ c i +1 = ̃  c i + δc i . 

5. Compute relative contribution γ = 1 − Tr ̂  H i −1 / Tr ̂  H i of the i th

search subspace to the Hessian spectrum accumulated since the

last restart (see Section 3.3 for details). If the value of γ is less

than γ c , restart the optimization process by populating P i +1 

with the next dominant set of unexplored eigenmodes from B n .

6. If i = I exit. Otherwise set i ← i + 1 , then go to 2. 

In the linear case, the iterative process outlined above would

be equivalent to (9) in the absence of restarts that are caused

by gradual degeneration of the search subspaces. In application

to the non-linear problem considered, degeneration is due to

both non-linearity and a possibility for the new search direc-

tions to be spanned by the previous ones. In the linear 4dVar

this possibility is (formally) absent since the search directions

are built on Hessian polynomials acting on the initial gradient

(residual of the normal system). However, in the applications

involving non-linearity and finite computer precision, restarting

is an obligatory feature of 4dVar as well. 

Although the a4dVar method (9) –(11) remains essentially

euristic in nature, it is based on the possibility of the low-cost

omputation of search directions and their ˆ H -orthogonalization,

hich in turn provides a background for the algorithm’s conver-

ence in a relatively small number of iterations. To assess ha4dVar

erformance, we conducted a series of data assimilation experi-

ents with NCOM model which had identical configuration to the

ne used in Y16. Results of the experiments are compared with op-

imizations performed by the NCOM 4dVar and a4dVar algorithms

eported in Y16. 



M. Yaremchuk et al. / Ocean Modelling 117 (2017) 41–51 45 

50

50

50

50

50
50

50

50

50
50 50

50

50

50

50

100

10
0

10
0

100

10
0

100

10
0

200

20
0

20
0

200

200

200

200

200

500

50
0

50
0

500

10
00

1000

1000

km

km

0 100 200
0

100

200

300

400

500

600

700

800

Fig. 1. Model domain with CTD stations (circles) and moorings (triangles) of the 

DART experiment. Gray contours (m) show bottom topography. 
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. Experimental setting 

.1. Data and model 

The observations used in this study were conducted in Au-

ust 2006 (see Burrage et al. (2009) and references therein) and

panned the period August 14–29. The assimilated dataset con-

isted of 5648 temperature and salinity ( TS ) observations (133 ver-

ical profiles) and 3548 horizontal velocity components ( uv ) ac-

uired at 19 ADCP moorings during the first four days (August

4–17). Velocity observations were available in the depth range 15–

50 m every 12 h. The remainder of the data (4002 TS observa-

ions from 86 profiles and 9958 uv values respectively) observed

etween August 18 and 29 were used to assess the forecast skill

mprovement delivered by the data assimilation. The results were

lso compared with 4dVar data assimilation applied to the same

ata using the same numerical model configuration. 

The considered assimilation methods are strongly constrained

y the NCOM, a free-surface primitive-equation hydrostatic ocean

odel with σ coordinates in the upper layers and, optionally,

xed depths below a user-specified distance from the surface. Al-

orithms that comprise the NCOM computational kernel are de-

cribed in detail by Martin (20 0 0) and with some improvements

y Morey et al. (2003) and Barron et al. (2006) . The model was con-

gured at δx = 3 km resolution on an 85 × 294 horizontal grid

 Fig. 1 ) with 32 levels in the vertical. The top 22 σ levels follow

he bathymetry, stretching from the surface to a fixed depth of 291

, and 10 fixed-depth levels are used below 291 m. Initial and

pen boundary conditions for the sea surface height ζ , tempera-

ure T , salinity S , and horizontal velocities u, v were provided from
he global NCOM ( Barron et al., 2004 ) solution for the region. The

odel was forced by the river runoff and atmospheric fields de-

ived from the regional atmospheric model ( Ivatek-Sahdan and Tu-

or, 2004 ). The model setting was identical to the one used in Y16

or the 4dVar/a4dVar comparison.The mean distance of the model

elds from their initial state on August 14, 2006 ( n = 0 ) averaged

ver the 4-day assimilation window was 0.58 when normalized by

he rms variability of the fields at n = 0 . 

In the described assimilation experiments, initial conditions

ere used as control variables, i.e., the vector c comprised all

he grid point values of ζ , T, S, u, v at n = 0 . With the given

-dimensional grid and bathymetry, the inverse problem has

 = 1,493,570 unknowns. 

.2. The background error covariance 

The cost function of the ha4dvar assimilation system was

lightly different from the a4dVar cost function used in Y16. The

ifference is in the background error correlation model, which

s now identical to the one used by 4dVar. Better compatibility

ith 4dVar formulation was achieved by B 

1 / 2 -preconditioning of

he problem which allowed us to employ the Gaussian correlation

odel instead of its low-order approximation used in Y16. In par-

icular, the BEC matrix was defined by the product V C V , where V

s the diagonal matrix of the background error rms variances and

 is the respective correlation matrix represented implicitly by the

ernel of the heat transfer equation 

 = 

δx 2 

2 π r 2 
exp 

(
1 

2 

r 2 	
)
. (12) 

ere r is the decorrelation length scale and 	 is the discretized 2d

aplacian operator. Numerically, the action of C on a state vector

s computed by integrating the heat transfer equation (e.g., Weaver

nd Courtier, 2001 ). The diagonal elements of V and R were com-

uted from the statistics of the first guess model run and obser-

ations as in Y16. Similarly, the value of r was chosen to be 9 km

o be consistent with the estimates (e.g., Cushman-Roisin and Ko-

otenko, 2007 ) of the Rossby deformation radius in the Adriatic. 

The a4dVar system was also upgraded with an option of incor-

orating balance constraints into the structure of the background

rror covariance ( Appendix B ). The spatial correlations within the

nbalanced velocity and SSH fields were described by (12) with

 smaller decorrelation scale r a used as a tunable parameter in

he assimilation experiments. The respective error variances were

lso tuned and found to be close to the mean ratio γ = 0 . 15 of

he squared magnitudes of the unbalanced (divergent)) and bal-

nced (geostrophic) velocity components in the background solu-

ion ( Yaremchuk and Martin, 2016b ) 

.3. a4dVar parameters 

In the reported assimilation experiments we used the data ac-

uired in the 4-day period between 6 UTC August 14, and 6 UTC

ugust 18, 2006. These data were projected on N = 8 time layers

entered at 0 and 12 UTC. At every iteration the hybrid sequence

 x 0 , x 1 , s 1 , . . . , x N , s N } contained 17 members, including the initial

onditions x 0 . The ensemble size m = 16 was chosen to maximize

arallelization efficiency of the code which was run on IBM iData-

lex supercomputer facility. 

The a4dVar search directions were computed as the leading

odes of the hybrid ensemble which blends two types of state-

pace vectors: the snapshots of model trajectory ˜ x n and the B -

moothed model-data misfits s n = B H 

T 
n ( H n x n − d n ) . To make the

ontributions of ˜ x n and s n to the ensemble statistics compatible,

he vectors x n were multiplied by the square root of the respective
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Fig. 2. Surface velocity and SSH constituents of the search directions associated 

with spectral decomposition of the balanced background error covariance matrix. 

Index k enumerates the respective eigenvalues in the descending order. 
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magnitude ratios: 

αn = 

√ 

s n T V 

−2 s n 

x n T V 

−2 x n 
≡

√ 

〈 s n , s n 〉 
〈 x n , x n 〉 (13)

In the course of experiments it was found that variations of α with

time n have little impact on the a4dVar convergence, so we have

used a constant value of α = 0 . 18 after the experimental adjust-

ment of its magnitude (see Section 4.3 ). 

A partial spectral decomposition of B , required for restarts, was

performed off-line by means of the LAPACK software for finding

the largest eigenvalues of C 

1 / 2 . To obtain the search directions for

restarts ( Fig. 2 ), the respective eigenvectors were multiplied by the

matrix factorizing B to block-diagonal form (Eq. B5, Appendix B ).

Given the relatively small dimension of the search subspace ( m =
16 ), we limited ourselves to computing the first 480 eigenvectors,

which provided search directions for 480/ m = 30 restarts. 

The search subspace generation was restarted when the spec-

trum of the Hessian projection reached a prescribed degree of de-

generacy γ . Specifically, if the cost function has been minimized

over m (l − 1) ˆ H -orthogonal directions ( l − 1 subspaces), minimiza-

tion in the next ( l th) subspace was performed if 

1 − 1 

Tr ̂  H lm 

ml−m ∑ 

j=1 

ξ j = 

ml ∑ 

j= ml−m +1 

ξ j 

[ 

ml ∑ 

j=1 

ξ j 

] −1 

> γ (14)

where ξ j are the descending-order eigenvalues of the Hessian pro-

jection 

ˆ H lm 

on the new lm -dimensional subspace. If the criterion

(14) was not met, l was reset to 1, search directions were initialized

as the next dominant modes extracted from the BEC spectrum, and

the background state was reset to the current suboptimal state. In

handling the effects of non-linearity, the a4dVar restart procedure

is analogous to 4dVar outer loop with the only difference that the
djoint-based 4dVar search direction is replaced by the search sub-

pace extracted from the BEC spectrum. 

. Results 

To assess the ha4dVar performance, we conducted a series of

ssimilation experiments and compared the results with 4dVar and

4dVar assimilations reported in Y16. The comparison criteria were

he forecast skill and computational cost. 

.1. Computational cost 

Fig. 3 compares the total cpu time τ and wall time τw 

required

y the NCOM 4dVar and a4dvar algorithms. The vertical axis shows

eduction of the model-data misfit given by the second term in the

on-linear version of Eq. (1) , normalized by its initial value. In both

ases computer time is normalized by the time of one a4dVar it-

ration (i.e., basically one ensemble run) which was executed on 9

pus. For this reason the ha4dVar method parallelized on 16 cpus

ppears to be less efficient on the first iteration since both meth-

ds deliver similar reduction of J ′ (compare black and red curves

n the left panel). However, after the second iteration the ha4dVar

ost function values keep being below the red curve throughout

he entire minimization process. 

In terms of the wall time (right panel in Fig. 3 ), the a4dVar and

a4dVar values of J ′ appear to be nearly identical on the first iter-

tion, which is explained by the dominant role of the eight model-

ata misfit modes in solving the normal system. In that respect

here might be some room for increasing the ha4dVar computa-

ional efficiency by implementing an algorithm for automatic se-

ection of the number m of search directions (e.g., Uzunoglu et al.,

007 ). 

Comparison with 4dVar (thick blue curves in Fig. 3 ) shows cer-

ain advantage of a4dVar in terms of τ during the first 10–20 iter-

tions (left panel in Fig. 3 ) which becomes more prominent if the

all times are considered (right panel). With seven inner iterations

er outer loop (marked by squares in Fig. 3 ) the 4dVar total cpu

ime per outer loop is approximately equivalent to 6.5 a4dVar and

.9 ha4dvar iterations, that is roughly 70 direct model runs τm 

in

ither case. 

The (h)a4dVar advantage can be explained by at least two fac-

ors: a) compared to the native non-linear NCOM code, execution

f the linearized model codes within an outer loop is several times

ore expensive due to the necessity to extract from memory (or

ecompute) certain features of the background model trajectory;

) the NCOM 4dVar code has been designed for running opera-

ionally in the weak constrained mode and, therefore has more

omplex structure than the a4dVar code tailored specifically for

he NCOM configuration described in Section 3.1 . The second factor

an be roughly accounted for by assuming that a 4dVar inner iter-

tion requires 5 τm 

(i.e. 2.5 τm 

for the linearized and adjoint model

uns). The respective convergence curves are shown by thin blue

ines and labeled by 4dVar ∗) in Fig. 3 . In this case 4dVar outper-

orms ha4dVar in terms of τ (left panel), but still lags far behind

n terms of τw 

due to the necessity to sequentially perform the

inearized model runs within the outer loops. 

It is also noteworthy that in terms of τ the a4dVar (ha4dVar)

chemes deliver similar reductions to J ′ after 3 (2) iterations as

he 4dVar method after the first outer loop (thin blue line in the

eft panel of Fig. 3 ). The ha4dVar scheme remains τ -competitive to

dVar within 2–3 outer loops that are usually executed in practical

pplications (e.g., Bonavita et al., 2017 ). 

The 4dVar computational efficiency could also be improved by

aking fewer (than 7) iterations within an outer loop and making

ess computationally expensive approximations to the linearized
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Fig. 3. The normalized cost function value J ′ against the total cpu time (left) and wall time (right) required by the 4dVar method and two versions of a4dVar algorithm. The 

x-axis in the left panel is normalized by the total CPU time required by one a4dVar iteration described in Y16. Similar normalization is used in the right panel, but with 

respect to the wall time. 
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Fig. 4. Forecast skills of the optimized solutions. The relative number of the re- 
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rectangles corresponding to velocity data. Vertical dashed line shows the time in- 

terval of data assimilation. The black line corresponds to the model-data misfits of 

the first guess (FG) model run. 

Table 1 

The forecast skill of the a4dVar and ha4dVar tech- 

niques relative to 4dVar for the balanced (third 

line) and unbalanced (second line) BEC models. 

Values less than 1 correspond to skill improve- 

ment as compared to 4dVar. 

F T F S F u F 

a4dVar 1.103 1.021 0.994 1.028 

ha4dVar ∗ 1.098 1.025 0.973 1.020 

ha4dVar 1.046 1.034 0.924 0.991 

a  
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t  

i  

t  

a  

t  

c  

b  

v  

t  

p  

a  
ode (e.g., for example, removing linearizations ( Ngodock and Car-

ier, 2014 ) with respect to time variations of σ -coordinates in the

ppermost layer). Also, we did not take into account the computa-

ional expense of the partial spectral decomposition of B required

y ha4dVar (black lines in Fig. 3 ). Nevertheless, it may seem evi-

ent that a4dvar is likely to maintain its wall time advantage on

he massively parallel computers because of the sequential nature

f the 4dVar method. 

.2. Forecast skill 

In assessing the forecast skill F we followed the general ap-

roach of Y16 while using the 4dVar skill as a benchmark for nor-

alization. The procedure is outlined as follows. First, an optimal

olution is obtained by minimizing the model-data misfits in the

rst 4 days (August 14–17). Then, the optimized state at 0 UTC Au-

ust 18 is used for model integration to 0 UTC on August 29, to

btain 20 model snapshots x 9 , . . . , x 28 at 12 h discretization. After

hat the cost function model-data misfit term J a 
f 

is daily averaged

etween August 18 and 28, 

˜ 
 

k 
f = 

8+2 k ∑ 

n =7+2 k 

( H n x 
n − d n ) T ( H n x 

n − d n ) , k = 1 , . . . , 10 (15)

nd then normalized by the corresponding 4dVar values J k 
f 

ob-

ained after 4-day optimization in Y16. The forecast skill is defined

s the square root of the respective ratio F = [k ̃
 J k 
f 
/J k 

f 
] 1 / 2 To distin-

uish between the forecast skills for different types of observations

 T , S, u ) we also estimated the values of F T,S, u by separate compu-

ations of the respective cost function terms in (15) . 

The procedure outlined above is limited in scope and does

ot constitute a comprehensive assessment of a4dvar performance.

uch an assessment would require analyses of multiple data sets

rom various regions of the World Ocean and lies beyond the scope

f this study, which has the more modest objective of showing im-

rovements that can be delivered by the ha4dVar method. 

Fig. 4 shows the daily-averaged values of the model-data mis-

t (J k 
f 
/n d ) 

1 / 2 in (15) for various assimilation methods normalized

y the respective numbers of observations n d whose relative val-

es are given by shaded rectangles. The ha4dVar model-data mis-

ts (solid red) lie pretty close to the a4dVar (red dashes) and

dVar (blue) results of Y16. Compared to a4dVar, minor improve-

ents are observed on August 15, 19 and 22–26, while the value

f model-data discrepancy is somewhat higher on August 14. This

ould be explained by the fact that ha4dVar control variables are
dditionally constrained by the balance relationships. In terms of

he overall forecast skill F the ha4dVar demonstrates a modest (3%)

mprovement compared to a4dVar. 

Table 1 summarizes the forecast skills F for various fields in

hree optimization experiments: using the a4dvar method reported

n Y16 (first line), and using the hybrid scheme with or without

he balanced background error covariance. Compared to 4dVar, the

4dvar method produces slightly (2–10%) less accurate forecast of

emperature and salinity, but appears to be 1–8% better in fore-

asting the velocity field (third column in Table 1 ). This advantage

ecomes more significant with the balanced background error co-

ariance version of ha4dVar (last line in Table 1 ). This experiment

ends to perform searches in the directions which generate more

ersistent (geostrophically balanced) velocity and SSH fields such

s those exposed in Fig. 1 . Balance constraints also appear to have
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Table 2 

Sensitivity of the ha4dVar forecast skill with the optimally balanced ( r a = 4 . 3 km, β = 0.28) background error covari- 

ance to variations of α and γ . 

α = 0 . 05 α = 0 . 14 α = 0 . 50 

γ 0.0 0.012 0.1 0.25 0.0 0.012 0.1 0.25 0.0 0.012 0.1 0.25 

F T 1.184 1.104 1.093 1.198 1.127 1.046 1.044 1.183 1.208 1.094 1.089 1.236 

F S 1.066 0.983 0.969 1.095 1.061 1.034 1.033 1.089 1.078 1.014 1.005 1.114 

F u 1.085 0.974 0.971 1.118 1.074 0.924 0.931 1.102 1.103 0.994 0.983 1.123 

F 1.101 1.008 0.999 1.128 1.081 0.991 0.993 1.119 1.119 1.024 1.015 1.146 
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a positive effect on the temperature field, improving its forecast

skill by 5% (first column in Table 1 ). 

On the opposite, salinity forecast skill becomes slightly (1%)

worse. This can be explained by the fact that contribution of salin-

ity variations into the density anomalies become significant only

in the shallow northern part of the Adriatic Sea strongly affected

by the outflow of the Po river. The depths in this region are well

below 50 m ( Fig. 1 ), where balance constraints become less appli-

cable. 

It should also be noted that the reference 4dvar optimization

was performed in Y16 without introducing balance constraints

into the background error covariance. This 4dVar option is cur-

rently under development and could possibly affect the numbers

in Table 1 in favor of 4dVar. 

4.3. Sensitivity to a4dVar parameters 

A large series of experiments were performed to assess the

ha4dVar sensitivity to its free parameters. Specifically, we var-

ied a) the decorrelation scale r a of the unbalanced (ageostrophic)

SSH/velocity components ( Eq. (17) ); b) the relative magnitude β of

the error variance of unbalanced components V 2 = β ˜ V , where ˜ V

is the diagonal matrix of rms variations of the velocity and SSH

fields in the background solution; c) the relative weight α of the

model snapshots x n in the hybrid ensemble ( Eq. (13) ); and d) the

parameter γ ( Eq. (14) ) triggering the restarts. 

The first guess value of β was established through the statisti-

cal analysis of the background horizontal velocity field u b . It was

defined by 

β = r 
| div u b | 
| u b | 

(16)

where r = 9 km is the local Rossby deformation radius and over-

bar denotes averaging over the upper 290 m and time of the

model integration (August 14,–August 28, 2006). The resulting

value was found to be 0.34, indicating the presence of a significant

ageostrophic component, primarily associated with inertial oscilla-

tions and upper-layer Ekman dynamics. In a subsequent series of

assimilation experiments this value was fine-tuned ( β = 0 . 28 ) to

maximize the forecast skill. 

A similar series of experiments was performed to tune the

ageostrophic decorrelation scale r a in the correlation model for the

respective background error covariance B 2 : 

B 2 = 

δx 2 β2 

2 π r 2 a 

V exp 

(
1 

2 

r 2 a 	
)
V (17)

The optimized parameters r a = 4 . 3 km, β = 0 . 28 were then used

to study sensitivity of the ha4dVar solutions to the variations of α
and γ . 

Table 2 shows the basic results of these experiments. The best

forecast skill achieved with α= 0.14 and γ = 0.012 is italicized in the

middle column (also shown in the last line of Table 1 ). In the first

series of experiments we adjusted the ensemble weighting param-

eter α using its time-mean background value 0.34 ( Eq. (13) ) as a

first guess. The value of α was varied in the range between 0.05
nd 0.5. Although the overall forecast skill F was weakly sensi-

ive to the choice of α (last line in Table 2 ), it showed a distinct

inimum at α = 0.14, and, more importantly, had a more signifi-

ant effect on the convergence rate. All assimilation experiments

ere terminated when the total cpu time τ reached the bench-

ark 4dVar value τ 4 dVar approximately equivalent to 70 a4dVar or

2 ha4dVar iterations (left panel in Fig. 3 ). However, for the val-

es of α between 0.1 and 0.3 the 1% difference from the limiting

alue of the cost function was achieved 1.3–1.5 times faster than

or α = 0.05, 0.5. 

Convergence rate was more strongly affected by the parameter

initiating the restarts. First of all, because of the much slower

onvergence, exception was made for the τ -termination criterion

n the experiments without restarts ( γ = 0 ). For these cases the

orecast skills displayed in Table 2 were achieved after 200 ha4dVar

terations. In general, in the interval 0.01 ≤γ c ≤ 0.1 the first restart

sually emerged after 5–8 iterations (searching over 80–128 direc-

ions). After that the restart frequency gradually increased, occur-

ing every second iteration by the end of minimization process. For

hese values of γ c , the optimization required between 10 and 20

estarts. It is worthwhile to note that we also tried an alternative

estarting criterion based on the entropy estimation of the Hes-

ian spectrum (e.g., Uzunoglu et al., 2007 ), but a simpler method

14) appeared to be more efficient. 

Another extreme case ( γc = 0 . 25 ) shown in the Table triggered

 restart at almost every iteration, so that the overall descent pro-

ess was done mostly within the subspace spanned by the leading

igenvectors of B , requiring more than 600 precomputed modes.

n terms of the forecast skill improvement, this type of descent ap-

ears to be much less effective than optimization with γ c varying

n the range between 0.01 and 0.1. As a consequence, there ex-

sts an optimal range of γ c determining the number of restarts.

n one extreme case (no restarts, γc = 0 ) the descent process stag-

ates due to eventual degeneration of the search directions defined

y Eq. (11) . If restarts are performed on every iteration (large γ c ),

he descent loses efficiency, as it is performed along the smoothest

igenvectors of B , which do not contain any information on the

odel-data misfits and model dynamics present in the ensembles

enerated by Eq. (11) . 

The benefit of the new ha4dVar restarting procedure can be

een by comparing the fourth column of Table 2 ( α = 0 . 05 , γ = 0.1

more frequent restarts), with Y16 a4dVar result ( Table 1 , first

ine) when restarts were effectively performed by alternating the

tate space metric in the EOF analysis of the ensemble. Perform-

ng restarts with the eigenvectors of the balanced background er-

or covariance improves the forecast skills of all the state vec-

or components with the overall improvement of F from 1.028 to

.999. What is more important, the eigenvectors of the balanced

ackground error covariance give restart directions a more efficient

kick”, since they tend to persist longer in time. Besides, smooth-

ng of the model-data misfits with the balanced B effectively dis-

ributes observed information between all the state vector com-

onents in a manner consistent with geostrophic, hydrostatic and

ontinuity constraints. 
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Additional assimilation experiments were performed to assess

he impact of balance constraints on the convergence rate and the

orecast skill. In terms of the forecast skill the best result with un-

alanced BEC was obtained with α = 0 . 12 , γ = 0 . 017 (second line

n Table 1 ). The convergence rate was noticeably slower than for

he balanced case (black lines in Fig. 3 ), although the use of hybrid

nsemble delivered somewhat faster reduction of the cost function

han that of a4dVar (shown by red lines in Fig. 3 ). Overall, the im-

act of balance constraints appears to be beneficial to improving

he forecast skill, although the average value of F in Table 2 re-

ains larger than 1 by approximately 2% (excluding the cases with

= 0). A few attempts to improve the skill were made by letting

in Eq. (16) to vary in space. Indeed, the values β derived from

he background solution have shown a tendency to increase 1.5–2

imes in the northern part of the sea. These experiments, however,

id not have any positive impact on the forecast skill. 

Since the ha4dVar forecast skill is close to that of 4dVar, it is in-

tructive to quantify the ability of the ha4dVar ensemble { δ˜ c j } , j =
 , . . . , mI to approximate the 4dVar increment δ˜ c ∗. To perform the

omparison, the 4dvar increment was restricted to the range of B :

˜ c ∗ ← B 

1 / 2 V 

−1 δ˜ c ∗ and then projected onto the set of basis vectors

 δ˜ c j } generated by the ha4dVar procedure. The resulting vector δ˜ c

as found to differ by 13% from the ha4dVar increment δ˜ c h : 

〈 δ˜ c − δ˜ c h , δ˜ c − δ˜ c h , 〉 
〈 δ˜ c h , δ˜ c h 〉 

)1 / 2 

= 0 . 13 (18) 

his value appears to be in a reasonable agreement with the ear-

ier results of Yaremchuk and Martin (2014) , and Yaremchuk et al.

2016a ) who compared 4dVar/a4dVar increments and sensitivities

n idealized linear and non-linear settings. 

. Summary and discussion 

The purpose of this work is to describe and assess perfor-

ance of an adjoint-free assimilation method based on the ensem-

le approach to generating search directions for minimizing the

ost function. Ensemble-based variational optimization methods

re rapidly gaining popularity in the meteorological community

e.g., Buehner et al., 2015 ) due to their relative simplicity and en-

anced parallelization capabilities. In oceanography, where obser-

ations are less abundant, generation of skillful ensembles (search

irections) is more problematic, especially in regional studies that

ften suffer from poor background error statistics and sparsity of

bservations. 

A distinctive feature of the presented ha4dVar method is the

bsence of necessity to have neither an ensemble well approximat-

ng the background error statistics, nor the adjoint model for effi-

ient gradient estimation. The presented ha4dVar method retrieves

earch directions from the joint statistics of model trajectory and

odel-data misfits at the current iteration and employs the lead-

ng BEC modes to restart the minimization process. In the present

tudy, the BEC model is generalized to include balance constraints,

hich tend to guide the new ensemble members towards the di-

ections on the slow manifold. 

Performance of the ha4dVar method has been assessed against

he traditional dual space 4dVar by comparing the forecast skill

nd computation time. The comparison has shown faster conver-

ence ( Fig. 3 ) and dummyTXdummy-(improved computational effi-

iency compared to 4dVar and the previous a4dVar version (Y16).

he ha4dVar forecast skill appears to be compatible to 4dVar, al-

hough, on average, it seemed to be somewhat worse ( Table 2 ) re-

uiring some additional tuning of ha4dVar parameters whose im-

act on the efficiency of the algorithm was then studied in more

etail. In particular, we have analyzed sensitivity of the ha4dVar

cheme to changing the relative contribution of the model states
n the ensemble, the effective weight of balance constraints in the

ackground error covariance, and the frequency of the restarts. Nu-

erical experiments have shown that the best forecast skill was

chieved when a) contributions of the model states and model-

ata misfits to the ensemble measured in terms of the respective

ariances of the background fields were approximately equal; b)

he error variance of the unbalanced velocity field was approxi-

ately equal to the kinetic energy of ageostrophic motions esti-

ated from the background model trajectory; and c) restarts were

erformed when new search directions contributed less than 1.2%

o the trace of the updated Hessian projection. The first two results

ndicate that a typical background state of a regional model may

till provide reliable estimates of the integral statistical parameters

uch as time-averaged magnitudes of the oceanographic fields and

he relative magnitude of ageostrophic motions in the area. 

The analysis presented here is narrowly focused and certainly

ot comprehensive as it involves a single regional application. In

articular, the space-time distribution of observations could bias

he forecast skill estimate in favor of ha4dVar, which tends to bet-

er retrieve the velocity field from observations, which in this ap-

lication were three times more abundant than TS data during the

orecast period of August 19–28 ( Fig. 4 ). More comprehensive test-

ng with a larger variety of domains/datasets and using a compa-

ably tuned 4dVar system are required for a more rigorous com-

arison. In particular, the 4dVar system should be constrained by

he balanced background error covariance because our experiments

ndicate that constraining search directions by the balance rela-

ionships improves both the ha4dVar forecast skill and the con-

ergence rate. 

The major advantages of ha4dVar with respect to 4dVar are

etter parallelization efficiency and simplicity of implementation:

he method treats a numerical model as a black box optimizing

he background solution to observations by analyzing (the ensem-

le of) multiple model trajectories. In that respect ha4dVar bears

imilarity to the DART system ( Anderson et al., 2009 ) which, nev-

rtheless, relies on a user-defined ensemble. Since a4dVar relies

n the direct estimation of the cost function derivatives, our ma-

or effort in the current research has been focused on elaborat-

ng strategies for selecting “best” directions to assess cost function

ensitivity, i.e., the best directions of differentiation. In particular,

e tried updating the ensembles using basis functions generated

y coarse granulation of the initial fields (as in the Green’s func-

ion approach of Stammer and Wunsch (1996) , and by the breed-

ng technique of Toth and Kalnay (1993) . Both methods appeared

o be less efficient in minimizing the cost function, but for differ-

nt reasons. The breeding technique had a tendency to generate

earch directions localized near the western and southern bound-

ries of the domain, often far away from the observational arrays,

hile the Green’s function method was lacking a sufficiently stable

e-granulation strategy with iterations. It is noteworthy, however,

hat the ha4dvar method presented here can certainly be repre-

ented as a version of the Green’s function approach with a par-

icular strategy of updating the perturbations. Although this strat-

gy appears somewhat heuristic and dependent on “semi-random”

hoices of search directions in contrast to the actual the cost func-

ion gradients, its success may have connections to recent advances

n randomization approaches for extra-large dimensional optimiza-

ion problems which arise in machine learning (e.g., Bottou et al.,

017 ). 

In the context of oceanographic applications, the ha4dVar al-

orithm should be considered as an attempt to develop another

pproach to a large variety of the existing 4d optimization meth-

ds based on the ensemble technique which basically employs fi-

ite differentiation to retrieve the gradient information. Although

his “brute force” technique well fits the current paralleliza-

ion trend in computer technologies, it still requires an efficient
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strategy in choosing the optimization subspace which in most

applications relies on the accuracy of a given background er-

ror covariance. In that respect ha4dVar is self-sufficient because

it retrieves ensemble members by blending a heuristic back-

ground error covariance model with the statistics of the dynam-

ical model and model-data misfits gained during the search pro-

cess. This feature makes ha4dVar suitable for oceanographic appli-

cations characterized by relatively sparse data and inaccurate back-

ground states. We believe that further development to a4dVar and

similar self-sufficient/parallelization-friendly techniques has good

prospects from both theoretical and numerical points of view. 
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Appendix A. Equivalence of the a4dVar and 4dVar solutions 

For simplicity, assume that c 0 = 0 and rank( B ) = ρ ≤ M with

ρ/m = L an integer. (In particular, we allow for the case that B is

rank deficient.) If the sequence of search subspaces P 

1 , P 

2 . . . are

chosen according to criteria given in Section 2.4 , then the iteration

process (9) will terminate with a solution c � to (4) in no more than

L steps, and this leads immediately to the solution that 4dVar pro-

vides for (1) , x 0 � = B 

1 / 2 c � . 

To see this, note first that if P 

i are generated in accord with

conditions (a) and (b) in Section 2.4 , then each search subspace is

contained in the range of B and will have full rank m . Since the

columns of P 

i are ˆ H -orthogonal, one may introduce a composite

matrix P = 

[
P 

1 , P 

2 , . . . , P 

L 
]

and observe that its columns span the

range of B . Thus, at step L of the iteration process (9) , 

 

L ∑ 

k =1 

P 

k [ P 

k T ˆ H P 

k ] −1 P 

k T r = P [( A P ) T A P ] −1 ( A P ) T d (A.1)

and so, c L = P a � where a � solves 

‖ A P a − d ‖ −→ min 

a 
(A.2)

However, c � that solves (8) must also lie in the range of B which

by our discussion above coincides with the range of P . But this

means, 

min 

a 
‖ A P a − d ‖ = min 

c 
‖ A c − d ‖ . (A.3)

and so, c � = P a � = c L and the a4dVar solution, B 

1 / 2 c L , coincides

with the exact solution of the 4dVar problem, x 0 � = B 

1 / 2 c � . 

Appendix B. Balanced BEC model 

Following the definition of the balance operator (e.g., Weaver

et al., 2005 ), we partition the state vector x := { T , S, u , ζ } into two

components x 1 = { T , S} and x 2 = { u , ζ } , where T , S, u are the 3d

fields of temperature, salinity and horizontal velocity, and ζ is the

2d sea surface height. We further split x 2 into the balanced x̄ 2 and

unbalanced ˜ x 2 components, assuming that x̄ 2 (the balanced com-

ponent) linearly depends on x 1 : x̄ 2 = L x 1 , where L is the finite-

difference discretization of the following balance operator: 

ρ = ρ0 + α( x , z) T + β( x , z) S, (B.1)

∇ h ( x ) ∇ ζ = div 

∫ 0 

h ( x ) 

∫ 0 

z 

∇ρ( x , z ′ ) dz ′ dz, (B.2)
 = 

g 

f 
k × ∇ 

[
ζ + 

∫ 0 

z 

ρ( x , z ′ ) 
ρ0 

dz ′ 
]

(B.3)

here ρ0 is the background density of seawater, ρ stands for the

eviations from the background associated with variations of the

emperature T and salinity S fields, h ( x ) is the bottom topography,

 is acceleration due to gravity, f is the Coriolis parameter, and k is

he vertical unit vector. 

Dynamically, these equations constrain x̄ 2 to be in hydrostatic

nd geostrophic balance (B.3) , satisfy the vertically integrated con-

inuity constraint (B.2) , and the linearized equation of state of sea-

ater (B.1) . 

The specified structure of the state vector x , implies the follow-

ng form of the BEC matrix 

 = 〈 x x T 〉 = 

[
B 1 B 1 L 

T 

L B 1 L B 1 L 
T + B 2 

]
= (B.4)

= 

[
I 1 0 

L I 2 

][
B 1 0 

0 B 2 

][
I 1 L T 

0 I 2 

]
here B 1 , 2 are the BEC matrices of x 1 and ˜ x 2 and I 1 , 2 are the iden-

ity matrices of the respective size. 

The background error covariances B 1 , 2 are factorized using the

aussian correlation model (12) with the decorrelation scale r a of

he unbalanced components B 2 being set to 4.3 km. The respective

iagonal values of V 2 depend on spatial coordinates and were esti-

ated from the statistics of the divergent component of the back-

round solution ( Yaremchuk and Martin, 2016b ). 

Relationships (B.4) and (12) allow to obtain explicit factoriza-

ion B = B 

1 / 2 B 

T / 2 with 

 

1 / 2 = 

[
V 1 0 

L V 1 V 2 

][
C 

1 / 2 
1 

0 

0 C 

1 / 2 
2 

]
(B.5)

here 

 

1 / 2 = 

δx 2 

π r 2 
exp 

[
r 2 

4 

	

]
(B.6)

actorization (B.4) provides a shortcut for computing the leading

earch directions p m 

defined through the spectral decomposition

f B 

 = 

M ∑ 

m =1 

λ2 
m 

p m 

p T m 

= ( P �)( P �) T . (B.7)

here λ2 
m 

are the eigenvalues of the correlation matrix in the de-

cending order, � = diag { λm 

} and P is the matrix of search direc-

ions p m 

listed columnwise. Substitution of (B.5) for P � in the rhs

f (B.7) , shows that the leading search directions can be defined by

 m 

= { V 1 e 
1 
m 

; L V 1 e 
1 
m 

+ βV 2 e 
2 
m 

} T (B.8)

here e 1 , 2 m 

are the leading eigenvectors of C 

1 / 2 
1 , 2 

and β is a param-

ter controlling projection of a search direction on the unbalanced

ubspace. In the reported experiments the value of β was set to

.2 and e 1 , 2 were computed as eigenvectors corresponding to the

mallest eigenvalues of the operators I 1 , 2 + r 2 
1 , 2 

/ 4	1 , 2 . 
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