Adjoint-Free 4D Variational Data
Assimilation into Regional Models

M. Yaremchuk, P. Martin, G. Panteleev, C. Beattie and A. Koch

Abstract The ongoing trend towards parallelization in computer technologies pro-
pels ensemble methods toward the forefront of data assimilation studies in geo-
physics. Of particular interest are ensemble techniques which do not require the
development of tangent linear numerical models and their adjoints for optimiza-
tion. These “adjoint-free” methods detect effective search directions for optimization
through direct perturbation of the numerical model across carefully chosen sets of
states. Optimization proceeds by minimizing the cost function within the sequence of
subspaces spanned by these perturbations. In this chapter, an adjoint-free variational
technique (a4dVar) is described and demonstrated in an application estimating ini-
tial conditions of two numerical models: the Navy Coastal Ocean Model (NCOM),
and the surface wave model (WAM). It is shown that a4dVar is capable of provid-
ing forecast skill similar to that of conventional 4dVar at comparable computational
expense while being less susceptible to excitation of ageostrophic modes that are not
supported by observations. Prospects of further development of the a4dVar methods
are discussed.
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84 M. Yaremchuk et al.

1 Introduction

As the speed of a single processor reached its physical limit of around 3GHz, the
general trend in computer development in the last decade has moved from chips
containing several cores to ones with tens or even tens of thousands of cores. In
addition, multi-core chips mixed with simultaneous multithreading, memory-on-
chip, and special-purpose heterogeneous cores promise further performance and
efficiency gains in processing problems which can be efficiently split into parallel
subtasks. In that respect, the maximum improvement that can be achieved in run-
ning atmospheric and oceanic models is limited by the number of grid points, n,,
that can be attributed to a single core without incurring significant performance loss
from inter-core communication.

These new capabilities and the increase in computational power they have pro-
duced have stimulated the development of ensemble methods for data assimilation.
In contrast to adjoint-based 4d variational (4dVar) methods which run the numerical
model and its adjoint in sequence in order to compute the cost function gradient,
ensemble methods directly aggregate ensemble perturbations to acquire information
on the cost function gradient and Hessian structure. In that respect, the ensemble-
based 4dVar techniques offer significant parallel performance advantages, replacing
the sequence of forward/adjoint model runs with up to M?/n, parallel subtasks that
involve only the forward model.

A related advantage that ensemble approaches offer is that they are nonintrusive,
offering the opportunity to treat the numerical model as a black box and thus avoid
the burdensome development and maintenance of tangent linear and adjoint codes
required by 4dVar methods. Employing this property, Anderson and co-workers
(Anderson et al. 2009; Hoteit et al. 2013) developed the Data Assimilation Research
Testbed (DART) system on the basis of the widely used Ensemble Kalman filter
(EnKF).

There has been recent, significant progress in extending EnKF techniques into
the particle filtering framework (Hoteit et al. 2012) and in coupling EnKF tech-
niques with both 3d- and 4d-variational methods (e.g., Zupanski 2005; Liu et al.
2008; Zhang et al. 2009). Of particular interest for the adjoint-free approach that we
present here has been the development of the Maximum Likelihood Ensemble Filter
(Zupanski 2005) based on the explicit computation of the square root of the Hessian
matrix restricted to a subspace spanned by ensemble members.

The merging of ensemble approaches with variational techniques has devel-
oped along two lines: (a) improvement of the background error covariances (BECs)
through the introduction of ensemble-based estimates and their hybrid generaliza-
tions (Clayton et al. 2013; Kuhl et al. 2013), and (b) searching for the optimal
solution within the subspaces spanned by the leading error modes of the BECs.
This second line of approach has been pursued by many authors in the last decade
(Liu et al. 2008; Zhang et al. 2009; Zhang and Zhang 2012; Trevisan et al. 2010)
and implicitly assumes that the BEC structure is well described by these (possibly
localized) BEC modes. More recently, the performance of a family of adjoint-free
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methods (4dEnVar) based on a formulation by Liu et al. (2008) has been com-
pared with the standard 4dVar techniques in the framework of idealized experi-
ments with the Lorenz-05 model (Fairbairn et al. 2014). These results show sig-
nificantly better performance of 4dEnVar for moderate-length assimilation windows
with low-density observations. Desroziers et al. (2014) demonstrated a close rela-
tionship between the 4dEnVar and 4dVar state space formulations and compared
various implementations of 4dEnVar with 4dVar in an idealized setting.

The developments described above mostly deal with meteorological applications,
where ensembles are supported by significantly higher data densities than are avail-
able in oceanographic applications. High data density allows one to obtain reason-
ably good estimates of BECs from the ensemble using truncated representation of the
localization matrices and to efficiently compute the cost function gradient directly
from ensemble perturbations (Liu et al. 2009; Tian and Xie 2012). A significant
advantage of such an approach is the absence of the necessity to develop and main-
tain tangent linear and adjoint codes and the flexibility that results in adapting to
various dynamical constraints.

In the ocean, ensemble-based BEC estimates tend to be less accurate, and one
has to rely on ad hoc BEC representations (Mirouze and Weaver 2010; Yaremchuk
and Sentchev 2012). Without reliable correlation information, the development of
an efficient adjoint-free assimilation method also becomes more problematic as one
must select a small number of reliable perturbations with more care. Early attempts to
develop practical a4dVar algorithms in oceanography were limited to predetermined
low-dimensional subspaces spanned either by the reduced-order approximations of
the model Green’s functions (Stammer and Wunsch 1996; Menemenlis and Wunsch
1997), or by the dominant principal component vectors (EOFs) associated with the
model statistics (Qui et al. 2007; Hoteit 2008). In fact, the 4dEnVar technique pur-
sues a similar, but more general approach, parameterizing the search subspace by
Schur products of the ensemble members with the eigenvectors of the reduced-order
representation of the localization matrix.

In this chapter, we give an overview of recent developments in adjoint-free meth-
ods of data assimilation using both ensemble-generated and ad hoc BEC models,
and illustrate the basic principles of the latter approach using an idealized optimiza-
tion problem constrained by linear dynamics. We describe a particular approach to
adjoint-free 4d Var, referred to here as a4dVar (ct., Yaremchuk et al. 2009), which we
then apply in Sect. 3 to the assimilation of hydrographic surveys and velocity obser-
vations collected in the Adriatic Sea in 2006. Assimilation is constrained by the
state-of-the-art Navy Coastal Ocean Model (NCOM) and a4dVar results are com-
pared with those obtained by means of the traditional 4dVar technique. In Sect. 4
the a4dVar method is tested with simulated data constrained by a spectral surface
wave model and the forecast skill of the optimized solution is compared with one
delivered by an operational method based on sequential assimilation of significant
wave height. Section 5 completes the chapter with a summary and discussion of the
prospects for adjoint-free methods in general, and a4dVar in particular.
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2 Variational Data Assimilation

2.1 Adjoint Methods

Consider the 4dVar method as solving as the following linear discrete least-squares
problem constrained by model dynamics in a small vicinity of the model’s back-
ground trajectory X;:

N
1 — n 7 - 7 1
J=3 x"TB™'X’ + ) (H,x" —d")'R;'(H,x" - d") — min. (1)

n=0

Here n enumerates observation times, B is the error covariance matrix of xg which
describes the (Gaussian) error statistics of the model state at n = 0, H,, are the model-
data projection operators, d" are the misfits y, — H,x; between observations y; and
the corresponding background model values, R, are the observation error covari-
ances, and T denotes transposition. We will denote the dimension of the discretized
model state vector x by M and the total number of observations by M,,.

The optimal correction vector x" is governed by the recursive relationship x" =
M, x"~!, where M, is the dynamical operator of the model linearized in the vicinity
of the background trajectory, xZ, across the time interval (¢,_,, ¢,), so that

x'=MM,_, ... M,M,;x", )

To avoid the ensuing clutter of symbols, we introduce new notation: ¢ = x° for
the control vector, M" = M, ... M, M, for the aggregated n-step propagator, ﬁn =
R;l/ H,, d = R;l/ 2d". We then drop the over-bars and so, taking (2) into account,
the minimization problem (1) can be rewritten in terms of the optimal correction, c,
to the initial state:

N
J= % c'B7'c+ Z(HnM”c -d")"(H,M"c—d")| — min. 3)
c
n=0

A 4dVar data assimilation method finds the minimum of J by solving the normal
equations, expressed as:

VeJ=B"'c+ Y MTHI(H,M"c—d") =0, @

n
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To further simplify discussion, introduce the following notation for the Hessian
matrix, H, and the right-hand side, b,

H=B"+) MTH'H,M"; b=) MTHd", )
n n

allowing us to rewrite the normal equations as Hc = b.

There are two major approaches to 4dVar data assimilation. The first one, the state
space approach, iteratively solves (4) through a conjugate gradient descent or related
algorithm, which on every iteration computes the gradient and then estimates an
effective descent direction using information on the Hessian accumulated in previous
iterations. This method is widely used in a number of community OGCMs (NEMO,
ROMS), and in operational meteorology (ECMWF).

As may be seen from (4), this process must involve the application of both the
model evolution operator, M”, and its transpose, M"" (the “adjoint model”). The
numerical procedure of calculating the gradient involves two major steps:

(1) Sequential calculation of x!" = M"c; (forward run of the tangent linear model),
supplemented additionally by the calculation of the quantities q! = D,x! —
H'd".

(2) Accumulation of the products M”Tq? conveniently performed in the reverse-
time order because M"T = M,..M)" = MI MZ (backward-in-time inte-
gration of the adjoint model).

The sequential nature of this algorithm generally will limit parallel scalability.

A second approach to 4dVar data assimilation is the observation space approach—
so called because the solution process is mapped into the space of observations
instead of remaining solely in the state space. The framework for this may be devel-
oped by using the Sherman-Morrison-Woodbury formula to transform the Hessian
inverse from having action defined directly in the state space to equivalent action
defined in the (generally lower dimensional) observation space. This transformation
tactic is closely related to “optimal interpolation” as it seeks the optimal solution in
the form of a linear function of model-data misfits, leading also to a family of meth-
ods called “representer methods” (Bennett 2002; Rosmond and Xu 2006). In most
geophysical applications there will be significant benefit in searching for a solution in
the M ,-dimensional observation space as opposed to the much larger M-dimensional
state space. The observation space method also has a certain advantage over the state
space approach with respect to parallel computing efficiency, since the computation
of M, representers can be performed independently and in parallel.

The robustness of final estimators may be improved if one separates the aggre-
gate background error covariance term into a component, B, associated with the
uncertainty of the initial state, and components, B,,, associated with the uncer-
tainties of the model equation and forcing. In effect, one replaces c"B™'c in the
cost function (3) with ¢’ B, e+ an | e’m B;le” which now involves model errors,
e" = x" —M,_;x""!. The normal equations in this case are more complicated than
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(4), but some numerical advantages accrue in approaching the resulting computa-
tional task using the representer method (Bennett 2002; Rosmond and Xu 2006).
Minimization of the (non-linear) cost function in the observation space involves mul-
tiple convolutions with the (generally nonsparse) matrices B,,, making the method
sometimes more computationally expensive than the state space approach. This
method has been implemented in ROMS (Moore et al. 2011) as an optional feature,
and in the Naval Research Laboratory for both atmospheric (Xu and Rosmond 2004;
Xu et al. 2005) and oceanic (Ngodock and Carrier 2014) data assimilation systems.

2.2 Adjoint-Free Methods

As the name suggests, adjoint-free methods perform minimization of the cost func-
tion without using linearized models and their adjoints. This is achieved by the
direct assessment of cost function sensitivity through an ensemble of parallel model
runs using perturbed control parameters. Assuming that control parameter perturba-
tions capture the dominant modes of the background error statistics, the ensemble
of model trajectories that is produced can be used to estimate the dynamically con-
sistent evolution of the background error covariance, which is implicitly performed
by the 4dVar algorithm during optimization.

Currently, the most developed adjoint-free technique is the B-preconditioned state
space approach proposed by Liu et al. (2008, 2009), referred to as 4dEnVar in lit-
erature. The major idea is to seek the 4dVar solution in the subspace spanned by
the model perturbations. This makes the method equivalent to the observation space
4dVar with the only difference that the search is executed in R¥", where m is the
ensemble size and k is the number of eigenmodes in the covariance localization
matrix used to diversify search directions (Hamill et al. 2001; Liu et al. 2009). Cur-
rently, the method has been successfully tested with real data (Liu et al. 2013) and
in Meteo France/UK Met Office (Fairbairn et al. 2014; Desroziers et al. 2014) in a
more theoretical context.

Although 4dEnVar has shown promise, the method has some deficiencies which
may hinder its use, especially in oceanographic practice, where observations are not
as plentiful as in atmospheric practice and, as a consequence, ensembles may be
insufficiently accurate in approximating the background error statistics. One may
also note that the 4dEnVar minimization process is still based on the sequential com-
putation of gradients used in the course of building the optimal solution; this could
lead to a performance bottleneck in massively parallel computing environments.

We discuss another method of adjoint-free minimization based on projecting
H onto the subspace spanned by ensemble perturbations. The approach was first
utilized in the Maximum Likelihood Ensemble Filter (Zupanski 2005) and later
extended to an adjoint-free 4dVar variational algorithm that we will refer to as a4dVar
(Yaremchuk et al. 2009; Panteleev et al. 2015). The technique involves direct mini-
mization of the cost function in a sequence of H-orthogonal subspaces and requires
an efficient algorithm for computing the action of B~!/2 on a vector which nicely fits
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the approach in heuristic BEC modeling using polynomials of the diffusion operator
(Yaremchuk et al. 2013; Yaremchuk and Sentchev 2012). Although the a4dVar for-
mulation guarantees its convergence in M /m iterations, practical feasibility requires
obtaining a reasonable degree of accuracy in solving the normal equation within sev-
eral dozen iterations. This is achieved by restricting the basis vectors of the search
subspaces to be smooth, implicitly assuming that the leading eigenvectors of A
have this property and that the rhs b of the normal equation will have a sizable pro-
jection onto this “smooth manifold”.

To illustrate these ideas, consider a simple problem of retrieving the initial field
of tracer concentration c(x, 0) from observations at some distant time 7. The tracer
evolution is governed by

d,c +uVc — udc = f(x,1) (6)

in a closed rectangular 49x91 domain £2 (Fig. 1) with the boundary condition
n(0€2,t) = 0. Equation (6) is discretized on a regular grid using simple first-order
explicit time-stepping, upwind advection, and a standard 5-point stencil for the
Laplacian with unit steps in temporal and spatial directions. The velocity u = (u, v) at
any space-time location is defined by u = —0.2 + 0.01v; v = —0.1 4 0.01#, where
n is the white noise on unit interval. The forcing f is generated by setting f(x, ) =
0.0017 in every point of the space-time grid. The coefficient y is set to 107>, so that
diffusion is largely determined by the numerics.

The simulated data experiment is set as follows: Given the initial tracer distri-
bution & = c(x, 0) = exp[—(x — x,)?>/9] with x,, = (70, 35) (bell-shaped disturbance
in Fig. 1a), the model is integrated for 7' = 200 time steps to obtain the final distri-
bution c(x, 7)) shown by contours in the same panel. Notice that the initial distur-
bance almost completely dispersed and migrated to x; ~ (25, 15). After that, c¢(x, T)
is sampled at 200 points shown in Fig. 1a, and the numbers obtained are used to
reconstruct ¢ by minimizing the cost function (3) under the dynamical constraint (6)
with an inverse background error covariance defined by

B!= |—a—24 2 (7)
2

where | is the identity operator in state space and a = 1.5 is the decorrelation scale.

With the definition (7) at hand, it is easy to compute the action A'/* on a control
vector and perform H-orthogonalization (see Appendix).

For the purpose of comparison, the cost function is minimized using the state-
space 4dVar technique and two versions of addVar, which differ in the method of
building the search directions (SDs). The number m of SDs (ensemble size) in both
addVar versions is set to 10. The first version specified SDs as a sequence of tens of
eigenvectors of B in descending order of eigenvalue magnitude. To specify search
directions for the second a4dVar method, 200 observations were split into m = 10
equal groups so an observation operator H; for the jth search direction is sampling
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60

Fig. 1 Reconstruction of the initial condition of the tracer field by 4dVar (b) and a4dVar (c, d)
techniques. Composite map of the tracer field evolution being reconstructed is shown in panel a
with the initial position of the reconstructed feature (Gaussian eddy at x = (70, 35)) superimposed
on the tracer field (contours) at the observation time (¢ = 200). Circles denote observation points.
The errors in approximation of the true perturbation at = 0 are shown in the left corner

a group of 20 distinct locations among those shown in Fig. 1a. SDs s; on the ith
iteration were defined by

i _ -1 T —1 i s
ss=@B'+HH)"q, j=1,.,10 8)

Optimal approximations ¢ to ¢ obtained by 4dVar and a4dVar techniques are
shown in Fig. 1b and Fig. 1c, d respectively). The quality of reconstruction was
assessed by the parameter

e = V(@ -87)/({&) ©)

where angular brackets denote averaging over rectangles enveloping the recon-
structed perturbation in Fig. 1. Comparison of Fig. 1b, c, d suggests that the a4dVar
method is capable of providing a solution of the same quality with 4dVar, and that the
general a4dVar strategy of minimizing J using a sequence of smooth H-orthogonal
SDs may work well with various methods of generating the ensemble members.

In terms of computational expense, the 4dVar method provided approximately
five times faster reduction of the cost function (Fig. 2) due to high efficiency of the
adjoint model. In this simple case, an adjoint model run required the same amount
of time as the direct model run. In real applications, the tangent linear and adjoint
codes are several times more expensive to run and the a4dVar techniques may prove
to be more competitive, as shown in Sect. 3.
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Fig. 2 Reduction of the cost 10° . . .

function against CPU time — 4dVar( x5)
for 4dVar and a4dVar a4dVar-B
techniques. The 4dVar CPU addVar
time is multiplied by five to ~
mimic larger CPU
requirements of the 10 N
state-of-the-art adjoint

models. Inset: Convergence 10
of the a4dVar-B solution

(Fig. 1c) to the exact 10
solution. Dashed line shows
the convergence rate given N

!
W
approximation error

r'4

by (12) -3 - number of searched-directions
10 20 50 100

T, SecC

The well-known structure of B provides an opportunity to assess the convergence
rate of the ad4Var solution exposed in Fig. 1c. Assume that after k a4dVar iterations
m, = km H-orthogonal directions have been already searched and the kth approxi-

mation ¢, to the optimal solution ¢ = A™~'b have been found. Without loss of gener-
ality, the eigenvectors ¢; of B could be normalized to satisfy ¢;B™'¢; = 1, so that
their (Euclidean) norm is equal to the associated eigenvalue o;. The magnitude e,, of
the approximation error e, = ¢ — ¢, with respect to the norm induced by the inverse
covariance can be assessed by projecting ¢ on the unexplored directions:

¢, =e/B'e, < Y "B ¢ (10)

I>m,

Furthermore, since the optimal solution ¢ = |:I_1 b allows representation in the (dual)
form ¢ = Bp (p is the optimal linear combination of the representers), the upper
bound of the terms under summation in (10) can be assessed by

e8¢/l = 10"yl < o/(p"B'p)' "2 an
Plugging (11) into (10) yields the following upper bound on the error magnitude:

€y, < p'B7p Z o; ~ O(mS_z) (12)

[>my

This estimate remains intact if we assess e,, with respect to the norm induced by
the Hessian matrix. In the latter case, the right-hand side of (12) will be additionally
multiplied by a scaling factor || H /1B~ > 1.
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Dependence of the distance between the 4dVar solution (Fig. 1b) and the consec-
utive approximations to the a4dVar solution (Fig. 1d) shown in the inset to Fig. 2,
confirms the above estimate.

Similar experiments with a low-dimensional (M = 1,922) non-linear
quasigeostrophic model were performed by Yaremchuk et al. (2009) who docu-
mented compatible performance of the 4dVar and a4dVar methods in the non-linear
regime and certain advantages of the a4dVar approach in the cases of sparse and/or
noisy observations. In the next sections we present the results of applying a4dVar to
real and simulated data constrained by state-of-the-art numerical models.

3 addVar and 4dVar Assimilation of Real Data
in the Adriatic Sea

3.1 Model and Data

The NCOM is a free-surface primitive-equation hydrostatic ocean model with ¢
coordinates in the upper layers and, optionally, fixed depths below a user-specified
distance from the surface. Algorithms that comprise a NCOM computational kernel
are described in Martin (2000); Barron et al. (2006). The model was configured at
3 km resolution on an 85 X 294 horizontal grid (Fig.3) with 32 levels in the ver-
tical. The top 22 o levels follow the bathymetry, stretching from the surface to a
fixed depth of 291 m, and 10 fixed-depth levels are used below 291 m. Initial and
open boundary conditions for the sea surface height ¢, temperature 7', salinity S, and
horizontal velocities u, v were provided from the regional NCOM simulation (Mar-
tin et al. 2009). The model was forced by the river runoff and atmospheric fluxes
derived from the regional atmospheric model with 8 km horizontal resolution. In the
described assimilation experiments, initial conditions were used as control variables,

250
km

200 |-

150

100 | -

50

500 600 700 800km

Fig. 3 Model domain with CTD stations (circles) and moorings (triangles) of the DART experi-
ment. Gray contours (m) show bottom topography
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i.e., the vector c comprised all the grid point values of {, T, S, u, v at n = 0. With the
given 3-dimensional grid and bathymetry, the inverse problem has M = 1,493,570
unknowns.

The first guess (background) values of ¢ were taken from the NCOM simulation
described by Martin et al. (2009) and then adjusted to suppress temperature and
salinity biases during the assimilation time interval (0.00 UTC on 08/14 to 0.00
UTC on 08/29/2006). After the adjustment, the horizontal-and-time average misfits
between the background solution and 7'S observations did not exceed 0.02 °C and
0.005 psu, respectively.

Assimilated data were acquired in the course of the field experiment Dynamics
of the Adriatic in Real Time (DART) (Martin et al. 2009; Burrage et al. 2009). In
the present study, CTD and ADCP observations from August 14 to August 29, 2006
are used (Fig. 3). Temperature T and salinity S were measured at 219 CTD stations
occupied in the northern and central parts of the basin. The total number of TS obser-
vations used in the assimilation is 9,650. Current velocities u, v were measured by
19 moored ADCPs in the depth range from 15 to 150 m at locations shown by trian-
gles in Fig. 3. All the velocity data were detided and averaged over 29 twelve-hour
intervals centered at the assimilation times #, of 0 and 12 UTC. With the total num-
ber of the observed velocities 13,856 the dimension of the observation space was
M, =23,506.

3.2 Assimilation Parameters

In the course of the experiments the parameters of the tested 4dVar and a4dVar sys-
tems were kept as close as possible to each other. However, due to the different for-
mulations (observation space for NCOM 4dVar and state space for a4dVar), certain
discrepancies remained in the shape of the background error covariance B. In both
algorithms B is given by the product VCV where V is the diagonal matrix of the
background error rms variances and C is the respective correlation matrix.

In the 4dVar algorithm, the action of C on a state vector is represented by the
operator

Cx~ exp(%bzA), (13)

which is implemented numerically by integrating the heat transfer equation (e.g.,
Weaver and Courtier 2001) with the decorrelation length scale » = 9 km. Since the
matrix C is rank-deficient, the second-order polynomial approximation to the expo-
nent in (13) was used to define C™ in the a4dVar algorithm. Parameter a was set to
1/ 8/7b to preserve the value of the integral decorrelation scale specified in 4dVar
(e.g., Yaremchuk and Smith 2011). The rest of the assimilation parameters were
identical for both the 4dVar and a4dVar assimilation systems.
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The tested a4dVar method is based on Eq. 8 and outlined as follows:

0. Specify the dimension m, of the search subspaces, their number k to be kept in
memory for H-orthogonalization, the maximum number of iterations I, the pertur-
bation magnitude € and the background model trajectory x;. Set the iteration number
i to zero, ¢, = 0, and compute d".

1. Compute x:?, J, Y = I:|1/2cl- and the search directions si,, n=0,...,N (Eq.8).

2. Extract the m leading EOFs p;.", m =1, ..., m, of the search directions to form
the basis in the search subspace.

3. Perturb the initial conditions ¢; — ¢; + epl’." and run (in parallel) the ensemble
of m, perturbed models, computing the respective perturbed values of J!" and Y.
4. H-orthogonalize the search basis {p"} with respect to at most k basis vectors
obtained on the previous iterations and compute optimal corrections dc; (see Appen-
dix 1).

5.Setc;, =¢; +6c;.

6. If i = I exit. Otherwise seti < i + 1, then go to 1.

The stopping criteria for the iterative processes were selected as follows: For the
4dVar system the solution of the system for the representer coefficients was termi-
nated after n, = 7 iterations, when the accuracy of the conjugate gradient (CG) solver
was, as a rule, better than 10~3. With the value of n, =7, 8-10 outer loops were
executed before the values of J started to increase. For the a4dVar system, the min-
imization was terminated when the total CPU time reached the value used by the
respective 4dVar experiment. The number of ensemble members was kept constant
at m; = 9 through all the experiments.

3.3 Comparison with 4dVar

In the reported experiments we varied the length of the assimilation window from
short (4 days, N = 9) to moderate (8 days, N = 17) and long (14 days, N = 29) dura-
tion. Performance of the assimilation algorithms was evaluated in three categories:
the forecast skill at the end of the assimilation window (for N = 9, 17), the rate of
convergence, and by qualitative inspection of the optimal model trajectories.

3.3.1 Convergence Rates and Computational Expense

To assess the rates of convergence, one has to have an ability to compare the reduc-
tion of the cost function with iterations, which is not straightforward for two reasons.

First, in the 4dVar algorithm considered here, the regularization term of the cost
function can be evaluated only within the range of the correlation matrix defined by
(13). To avoid the burden of restricting the a4dVar correlation matrix to the range of
C, we compared only the observational parts of the 4dVar and a4dVar cost functions
(second term in Eq. (3)).
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Second, the number of iterations required for convergence cannot be considered as
an objective criterion because 4dVarV and a4dVar iterations are different in nature.
Due to the non-linearity of the problem, an iteration (either 4dVar or a4dVar) per-
forms minimization in the vicinity of the current (suboptimal) state, but 4dVar does
that in the range of B, whereas a4dVar minimizes in the subspace of a much smaller
dimension spanned by p”. For that reason, iterations require quite different computa-
tional resources and should be compared in terms of CPU time. Figure 4 shows such
a comparison by rescaling the horizontal axis with the total CPU time 7, required by
one a4dVar iteration. The value of 7, was 11 times larger than the CPU time z,, of
a direct NCOM model run for a given experiment, i.e. 7, ~ 117,,. The major contri-
bution to 7z, is given by the ensemble run (97,,, p.3 in the layout of Sect. 3.2), while

the master NCOM run (p.1) and operations listed in pp.2 and 4 require 7,, and 0.87,,,
respectively. Overall, convergence was achieved at an expense of 60—70 iterations
(650-800 NCOM runs).

As may be seen in Fig. 4, a single 4d Var iteration was approximately equivalent to
6—7 ad4dVar iterations, or 70-80 direct model runs. This computational expense arises
because sequential execution of the adjoint and tangent linear codes (inner loops of
the CG solver) required around 117,,, whereas one 4dVar outer loop included seven
inner loops to solve the system of linear equations for the representer coefficients.

Figure 4 shows that, in general, the tested a4d Var method is computationally com-
parable to the observation space 4dVar. Although the total CPU time required for
reduction of J by the factor of 0.4 (attained after the first outer loop of the 4dVar)
appears to be similar for the 4dVar and a4dVar methods, the a4dVar minimization
noticeably slows down at subsequent iterations, especially for longer assimilation
windows (r = 8, 14 days).

1 1
0.9 —8&—n(4dVar) || —+&— n(4dVar)
) —e— n(a4dVar) 0.9 : : —e— n(a4dVar)
0.8 r
T =4 days 0.8 T =14 days
0.7
0 )
? 0.6 r ?
= 05 Il = 06
0.4 r 0.5
03 0.4
0.2
0.3
0 1 2 4 10 iterations 50 100 0 1 2 4 10 iterations 50 100

Fig. 4 Relative reduction # of the cost function with iterations (marked by circles) for different
assimilation periods. The horizontal axis is scaled by the CPU time required for the a4dVar iteration.
Squares label the 4dVar outer loops
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Fig. 5 Evolution of the root-mean-square model-data misfits f;, characterizing the background
(BG, thick lines), 4dVar-optimized (4d, thin gray lines) and a4dVar-optimized (a4d) solutions. Thin
black line shows the misfit with the background fields at r = 0 (persistence). The values of f, are
shown on the right axis of each panel. The left axis quantifics the number of the data points for cach
day in thousands (shown by gray shaded rectangles). The ratio of the mean values of f, averaged
over the assimilation window for the 4dVar and a4dVar methods is given

Figure 5 demonstrates the time evolution of the quantities

172
£ = ([tH s = dTH, X = dy/m, ] ) (14)
characterizing the daily averaged () model-data misfits of the various state vector
components before (black lines) and after (gray lines) optimization with a 14-day
assimilation window (i.e., using all the available data). The subscript g takes the
values of the labels in the mid-bottom parts of Fig. 5 which indicate the observed
variables (temperature, salinity and velocity vector) for which the statistics f, were
computed, whereas n, q stands for the total number of respective observations taken at
a given day. The upper left panel in Fig. 5 shows a remarkable similarity in the time
evolution of the combined model-data misfit for the 4dVar- and a4dVar-optimized
NCOM states. The a4dVar algorithm has, however, a noticeable tendency to provide
a better fit at the beginning of the assimilation window, clearly visible in the lower
panels for f; and f,. This can be explained by the above mentioned property of a4dVar
to better retrieve optimal states at shorter integration times.

When separated into different components, behavior of /7', ¢/, and " reveals more
differences. In particular, the 4dVar method provides a much better fit to the tempera-
ture data after August 20 (in the second half of the assimilation window), but appears
to be 10-13% worse than a4dVar with respect to salinity and velocity.
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A large contribution to a better salinity fit is given by the first two days of the
a4dVar model trajectory (lower left panel in Fig. 5). However, certain gains relative
to 4dVar are also observed at the end of the assimilation, which is quite opposite to
the difference in the values of f7.

Compared to f; and f;, the overall improvement of the model-data misfit is the
smallest for velocity (lower right panel in Fig.5), which was characterized by the
observation errors of R'/? ~ 7-10 cm/s in the cost function. Several assimilation runs
were made with significantly smaller (3—-5 cm/s) errors, but they were found to be
inconsistent with a posteriori statistics of the model-data misfits as the optimal cost
function values in these cases were much larger than those obtained in the reported
experiments. The a4dVar-optimized value of f, is persistently smaller (as compared
to 4dVar) during the entire assimilation period providing the 13 % better value in the
14-day average. This advantage could be partly attributed to the fact that the a4ddVar
search directions are derived from the most persistent patterns of the model-data
misfits and therefore tend to be closer to the slowly evolving (geostrophically and
hydrostatically balanced) modes of the flow.

The quality of the assimilated solutions was assessed for 4- and 8-day experiments
using comparison with observations outside the respective assimilation windows.
Evolution of the quantities /" for the background and optimized solutions is shown
in Fig. 6 for the 4-day assimilation experiment.

The general behavior of f is consistent with the one obtained in the 14-day exper-
iment, showing persistently better 4dVar forecasts in temperature and the advantage
of a4dVar in the salinity and velocity forecasts. The upper left panel in Fig. 6 summa-
rizes the forecast skill and indicates that 4dVar slightly outperforms a4dVar, mostly
because of the better temperature forecasts. On the other hand, the 4dVar-optimized
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Fig. 6 Forecast skills f;, f, and f; of the 4dVar and a4dVar-optimized solutions for the 4-day assim-
ilation window. The relative number of the respective data points for each day is shown by gray
shaded rectangles. Vertical dashed line show the time interval of data assimilation. Ratios of the
mean f values averaged over the 3- and 9-days intervals are shown
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salinity is characterized by very low forecast skill (lower left panel in Fig. 6), espe-
cially during August 21-25, when it was even farther away from the observations
than the background forecast.

The 4dVar-optimized velocities show only small improvements compared to the
background solution (lower right panel in Fig. 6). In contrast, the a4dVar-optimized
velocities demonstrate 10-30% reduction of the model-data misfit within the assim-
ilation window, which persists for up to three days (August 18-21) of the free model
run. After August 21, the velocity mismatch of the background, a4dVar and 4dVar-
optimized solutions are nearly identical. Qualitatively similar behavior of the fore-
cast skill and its distribution among the state vector components was observed in the
results of the 8-day assimilation experiment.

In general, the overall forecast skill provided by the a4dVar method appears to
be comparable with that of the 4dVar (upper panel in Fig. 6), and in some aspects
(such as short-term velocity forecast), the a4dVar technique provides noticeably bet-
ter results. It should be noted that available observations could effectively constrain
only a small part M,/M = 23,506/1,493,570 ~ 1.5 % of the model’s degrees of
freedom, so one should expect substantial differences in the small-scale structure of
the optimal solutions obtained by two different methods.

3.3.2 Comparison of the Optimal Solutions

Temperature and velocity increments for the optimal states of the 14-day assimilation
experiment are shown in Fig. 7. A certain coherence between the larger scale correc-
tions to the background temperature field are clearly seen in the northern part of the
model domain that is well covered by observations (cf. Fig. 1). The time-mean cor-
relation coefficients p between the low-pass filtered temperature and salinity incre-
ments of the 4dVar and a4dVar solutions are 0.61 and 0.45, respectively if averaging
is performed in the upper 200 m over the northern part of the domain. In the data-free
region south of the 340 km mark, the correlations are substantially lower (respec-
tively, 0.26 and 0.32) and lie below the 95 % confidence level of nonzero correlation
(0.36). Similar values of p (0.59 and 0.32 in the northern and southern subregions,
respectively) were obtained for the sea surface height field.

Velocity increments appear to have the lowest correlations among the model fields
with time-averaged values of p, = 0.36, 0.27 for the northern and southern subre-
gions respectively. The lowest correlations (p, = 0.09, p; =0.21, and pg = 0.12)
were observed in the data-free southern subregion during the first 4 days (8/14-8/18)
of the assimilation. Such incoherence between the increments is caused by excessive
ageostrophic activity (lower panel in Fig. 7) of the 4dVar solution at the beginning
of the assimilation window. The ageostrophic mode disappears at the later times and
does not affect the cost function because the southern subregion is virtually data-
free, whereas smoothness constraints are imposed on the model fields only at the
initial time.

The problem could be apparently solved by introducing balance constraints (e.g.,
Weaver et al. 2005) into the BEC definition at n = 0, which may not be necessary if

max.yaremchuk@nrlssc.navy.mil



Adjoint-Free 4D Variational Data Assimilation into Regional Models 99

250
km

200

150

100

sob

0 Aug15:03:00
1

250

km

200

150

100

50 20 m
0 14 day opt
0 100 200 300 400 500 600 700 800 km

Fig.7 Temperature and velocity differences between the background and optimized NCOM states
at 20m on August 15 03 UTC. Results of 4dVar and a4dVar optimizations are shown on the left
and right panels respectively

the NCOM 4dVar were run in the weakly constrained mode, i.e., if model errors were
prescribed throughout the entire assimilation window. For the purpose of comparison
with a4dVar we ran the 4dVar system in the strongly constrained mode and the effect
became visible after several 4dVar outer loops. It is remarkable that the a4dVar algo-
rithm appears to be much less susceptible to excitation of the ageostrophic modes
(upper panel in Fig. 7), possibly because the EOF-derived descent directions span
subspaces characterized by slower time variation of the model trajectory and, there-
fore, tend to be closer to geostrophic and hydrostatic balance. It is quite likely that
introduction of the balance constraints into B will certainly improve the performance
of both algorithms with a potentially larger benefit for the 4dVar case.

4 a4dVar Analysis of Simulated Wave Data
in the Chukchi Sea

Spectral models simulating surface gravity waves in the ocean are challenging for
application of 4dVar due to complexity of their numerics and non-local nature of
the observational operators. Since only a few wave models have been supplied with
(incompletely) linearized codes and their adjoints, operational forecasts are still per-
formed using sequential techniques, mostly based on optimal interpolation (OI) of
the significant wave height (SWH) data from satellites. In this section, we test the
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performance of a4dVar technique under the dynamical constraints imposed by a
spectral wave model (WAM 1988; Monbaliu et al. 2000) and compare the results
of assimilation with a sequential method.

4.1 The WAM Model and Simulated Data

The WAM model performs time integration of the balance equation describing spec-
tral density F'(x, k, r) for the wave component with the wavenumber k = (k,, k,) at the
location x = (x,y):

da_l;—‘-'-v'(VF):y(F,x,k’t)’ (15)

where . is the sum of source functions, composed primarily of wind-forced gener-
ation, dissipation and redistribution of the wave spectrum by non-linear wave-wave
interactions (WAM 1988), V = {V, V, } stands for the gradient in the horizontal and
wavenumber coordinates and v is the 4-component vector of the respective wave-
propagation velocities depending on the ambient current and constrained by the dis-
persion relationship for linear surface waves 6 = g|k|tanh|k|h, where o is the wave
angular frequency and A(x) is the water depth. Given the appropriate initial/boundary
conditions, ambient current and wind forcing, Eq. (15) is integrated numerically to
produce evolution of the wave spectrum.

The model was configured in the domain shown in Fig. 8 with the spatial res-
olution of ox = 9 km. There were m, = 4412 active grid points in horizontal and
my, = 600 grid points (24 directions at 15° resolution and 25 logarithmically spaced
frequencies between 0.0314 and 0.3091 Hz) in the wavenumber space. The total
length of the state vector was M = m, X m, = 2,647, 200.

Distance between the model states were assessed in terms of the correlation coef-
ficient C and the normalized rms difference S between the spectra:

172

F'F' Y
CFy = —t2 gy =[S0 F=F—(F) (16

(FEXF) \(FPXER)

where angular brackets denote averaging in space, time, and over the wavenum-
bers. Similar coefficients were calculated to assess the differences between the scalar
(SWH) and vector (wind speed) fields, with averaging performed just in space and
time.

The general form of the cost function used in the data assimilation experiments
was identical to (3) with the M-dimensional vector ¢ = N(t,) — N,(f,) describing
the difference between the gridded model state F'(x, k, ;) and the background (first
guess) state F,(x, k, 1,,) at the start of model integration ¢,. The first term in (3) was
specified by
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Fig.8 Wind speed (white arrows) and significant wave height (contours, m) of the reference model
solution at 0.00 UTC 09/20/2011 (¢ = 0). Mooring positions are shown by black squares. HFR
location and coverage area are given by the black circle with a sector. SWH data are acquired along
the radar beams shown by dotted lines within the sector. Dashed lines are the tested tracks of the
Envisat satellite

¢'B™'c =W ) [(1 - a’42)QcT? A7)

where A, stands for the Laplacian in horizontal coordinates and the operator Qrelates
squared SWH with the spectral density through the following linear relationship:

Q*(x,1) = OF =16 ) F(x,k, 1)dk. (18)
k

Here dk denotes the grid cell area in the wavenumber space and summation is done
over the entire spectral grid. In Eq. (17), the regularization weight W was chosen to be
inversely proportional to the squared mean of SWH in the background solution with
the proportionality coefficient €, = 0.01. By setting a = 26x throughout the experi-
ments, SWH variability at spatial scales below two horizontal grid steps (18 km) was
heavily penalized. In the spectral subspace, Eq. (17) defines the inverse error covari-
ance to have only one linearly independent column (specified by the components
of Q). As a consequence, spectral correlations at a given point are represented by
my, X my, correlation matrix whose elements are equal to 1 (thus implying 100 % cor-
relation between all the spectral components). This assumption is routinely used in
the sequential algorithms assimilating SWH (e.g., Wittmann and Cummings 2004).

To perform the a4dVar experiments, the reference wave field was generated by
integrating WAM from the state of rest for ten days under realistic forcing by the
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winds taken for the period 11-20 of September, 2011. The reference initial state
F.(x,k, ) shown in Fig. 8 was taken at the beginning of the last 9 h of the model run
(0.00 t0 9.00 on 09/20/2011). Synthetic data were picked from the reference solution
and then used for its reconstruction by the a4dVar method.

In this study two types of simulated data are considered: moored observations of
the wave spectra and SWH measurements from coastal HF radars and satellites.

Two tested mooring sites are shown in Fig. 8. Simulated data from the moorings
were generated by multiplying the reference spectrum at any moment by the ran-
dom factor 1 + €, where 7 is the white noise with unit variance and €, = 0.01. The
observational error covariance matrices R for both moorings were diagonal with
time-independent diagonal elements equal to (¢F,)?. The respective observational
operators H picked the time varying WAM spectra every 15 min from the grid point
nearest to the buoy location, providing 4m, = 2,400 observations per hour.

SWH observations were simulated by integrating the true spectrum (Eq. 18) in
the apexes of the grid cell containing an HFR observation point followed by linear
interpolation onto that point. After that, the SWH value was contaminated by random
noise with the rms variance of 30 cm. HF radar observation points were located along
the beams of the radar shown in Fig. 8. The above described HFR observation oper-
ator computed SWH values along the 25 beams every 15 min, providing information
to 535 model grid points within the sector shown in Fig. 8 (2,140 observations per
hour).

Synthetic satellite observations of sea surface roughness provided SWH data
along the Envisat tracks shown in Fig. 8 with 9 km discretization (55 and 73 points
for track A and B respectively). These data were assumed instantaneous and satel-
lite passage occurred for both tracks after 2 h of model integration. The respective
observation operator was similar to the one used for HFR, except for it picked SWH
values at the sequence of WAM grid points closest to the sampling points along
the tracks (i.e. no spatial interpolation was used). Satellite SWH observations were
contaminated similarly to HFRs with the rms error variance of 30 cm.

The background model trajectory was obtained as follows: The reference solution
was averaged in time and space and the resulting spatially homogeneous spectrum
was used as initial condition for the background run. The run was forced by the winds
which were different from those forcing the true solution. First, the true winds were
horizontally smoothed to mimic the errors typical for reanalysis winds from meteo-
rological centers that are usually available at a coarser (0.25—1°) resolution and have
to be interpolated on the fine resolution grid of a regional wave model. In the case
considered, the smoothing was done by the isotropic Gaussian filter with the half-
width of 25 km. After smoothing, the winds were rotated 35° counterclockwise to
increase their distance from the reference vectors to S,,;,;, = 0.67. The larger distance
from the true forcing was needed for better assessment of the observation impact on
the reconstruction of initial conditions, whose signature usually persists for 3-5 h in
a typical wave model integration.

Synthetic observations of SWH and wave spectra were assimilated into WAM
using the a4dVar technique described in Sect. 3. The WAM model was constrained
by data during the first three hours of model integration and then integrated for six
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hours to assess the improvement of the forecast skill. Performance of the method was
quantified by calculating correlation coefficients C and normalized rms deviation S
(Eq. 16) between the optimized and true solutions. These quantities were computed
with time averaging over three time intervals: 0-3 h (assimilation period), and two
forecast periods of 3—6, and 6-9 h.

On each a4dVar iteration five SDs were extracted from the EOF analysis of the
3 h model run constrained by the data. The ensemble model runs (p. 3 in the layout
of Sect.3.2) were executed in parallel and required 62 s of wall time per a4dVar
iteration on five processors of the 2.3 GHz cluster.

4.2 Comparison with Sequential Method

To compare the a4dVar results with the traditional OI method, we used the 2d OI
approach (Wittmann and Cummings 2004; Waters et al. 2013) in application to the
SWH data: at the observation times the WAM model state was sequentially updated
by the OI analysis of the SWH field, which was projected on the spectral compo-
nents by multiplying the spectrum at a grid point by the ratio of the updated to pre-
dicted SWH values. The OI algorithm was configured with the same background
error covariance B, R, H, and using the same reference and background solutions
as the a4dVar method.

A series of OI and a4dVar experiments were conducted, involving assimilation of
the data from five sources and their combinations: high-frequency radar (hereinafter
denoted by HF), two moorings (a4dVar analyses only, locations shown in Fig. 8) and
two Envisat tracks (A and B, Fig. 8). For comparison purposes, we conducted simi-
lar experiments with OI method assimilating only SWH data from satellites and/or
HF radar. In the description below, these experiments are abbreviated by oHFA(B)
and oHF respectively. With the exception of satellite tracks, all a4dVar assimila-
tion experiments demonstrated significant improvement of the model state in terms
of its proximity to the reference solution. The stopping criterion for optimization
was reduction of the cost function gradient 1000 times, which usually occurred after
80-100 iterations. By that time the cost function was typically reduced 2—3 times.

Maps of deviations from the reference solution of the spatially averaged back-
ground and optimized spectra at ¢ = 0 are shown in Fig.9. In most of the a4dVar
experiments, the initial error has been reduced to the values compatible with the wind
forcing errors. The only exceptions were the results of optimal interpolation (Fig. 9b)
and of the a4dVar assimilation of SWH data from a single satellite track (not shown):
in these cases the optimized spectrum was only slightly different from the one pro-
duced by the background solution. For the OI case such a small correction can be
explained by the fact that SWH data are weakly constrained by dynamics and can
barely affect the shape and location of the spectra because they provide information
only on their mean magnitude at a geographical position. Small spectral improve-
ment of the a4dVar experiments with a single satellite track could be attributed to
the small amount of data (55 SWH observations). As a consequence, the cost func-
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Fig. 9 Absolute difference between the horizontally averaged reference spectrum at =0 and
a background spectrum, b oHFA-optimized, ¢ M1A-optimized, and d HFA-optimized spectra

tion is dominated by the regularization term, which implies 100 % correlations in
spectral space and is therefore capable of adjusting only the spectral magnitude.

These properties of the above mentioned assimilated solutions translate into their
lower spectral forecast skill shown in Table 1, which also includes spectral errors
from the other assimilation experiments. Abbreviations in the header of the Table
correspond to the types of data used in the experiment (e.g., HFA corresponds to
assimilation of the HF data and SWH data from the Envisat track A).

Direct measurement of the spectra by a single mooring (7,200 observation points,
columns M1,M2) also provide only a moderate increase of the correlation coeffi-
cients Cpy; to 0.52 and decrease of Sy; to 0.86 as compared to the background (BG)
solution. This can be partly explained by the fact that assimilated spectra occupy a
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Table 1 Normalized rms distances S and correlations C between the optimized and true solu-
tions for the experiments with various types of data. Subscripts 03, 36 and 69 correspond to time
averaging between 0-3, 3—6, and 6-9 h of model integration

BG |HF |HFA |HFB | oHFA (Ml |MIA|MIB|M2 |M2A| M2B|MI2 |A B

Copz |04710.77 |0.75 |0.76 | 048 |0.53 |10.70 |0.71 |0.52 | 0.65 [ 0.69 |0.71 |0.47 |0.48
Sp3 1089 10.65 [0.66 |0.64 | 0.87 [0.85 |0.71 |0.70 |0.87 |0.76 |0.75 | 0.73 | 0.89 |0.88
Cys 1048 |0.72 |0.72 |0.76 | 0.49 |0.47 |0.70 |0.70 |0.50 | 0.69 |0.69 |0.67 |0.48 |0.48
Sy [0.87 10.69 |0.68 |0.65 | 0.86 [0.87 [0.71 [0.71 |0.87 |0.72 |0.72 |0.75 | 0.88 | 0.87
Ceo |0.59 |10.71 |0.70 | 0.75 | 0.59 |0.50 |0.68 |0.69 |0.57 |0.67 |0.68 |0.68 |0.57 |0.58
Sg9 |1 0.80 |0.70 {0.70 [ 0.67 | 0.79 |0.86 |0.73 |0.72 |0.86 [0.73 |0.73 |0.73 | 0.79 | 0.78

small part of spectral domain (at most 15-20 %, Fig. 9). As a consequence, the effec-
tive number of observations with useful (non-zero) information on the state of the
wave field should be reduced 5-7 times down to ~1,500 data points on the total,
which is compatible, by the way, to assimilating 3—7 spectral moments. Besides,
mooring data do not provide any information on the spatial variability of the spec-
tra, which appears to be crucial for the successful recovery of the reference state.

In that respect, it is remarkable that adding much less numerous satellite data
to moored spectral observations improves the performance of the assimilation sys-
tem considerably. Combining moored and satellite data provides 3040 % growth of
the correlation coefficients and 20-25 % drop of the normalized standard deviations
from the reference spectrum (compare columns M1 and M2 with columns M1A(B)
and M2A(B)). At the same time, Satellite SWH data do not add much new informa-
tion to that containing in HFR observations (cf. columns HF and HFA(B)), which
monitor the same integral quantity for the whole assimilation period (3 h) and cover
a significant part of the model domain (Fig. 8).

Importance of the spatial coverage by observations is confirmed by the result of
the experiment with assimilation of the spectra from two moorings: The values of C
and S in this case demonstrate a considerable improvement and become compatible
(column M12 in Table 1) with those achieved with the joint assimilation of spectra
from the single mooring and satellite SWH data (columns M1A(B) and M2A(B)).

Inspection of Table 1 also shows that information from track A increases the effi-
ciency of assimilating spectra from moorings, but to somewhat lesser extent than
track B. This phenomenon can be partly explained by the fact that track A does not
cover the region of the highest SWH and, therefore, provides less information on the
magnitude of spatial variability of the wave field. Similarly, assimilation of the M2
data appears to be slightly less efficient than M1, which can be partly attributed to
M2 position at the periphery of the domain.

Table 1 also indicates that instantaneous Envisat observations on a regional scale
cannot provide a significant improvement to the background state, if they are not
accompanied by continuous in situ measurements. At the same time, satellite data
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become quite valuable in complementing observations if the wave conditions are
measured by a single mooring.

The forecast errors provided by the HFA data assimilation using OI and a4dVar
techniques and averaged over the period 3-9 h are compared in Fig. 10 in terms of
the horizontal distributions of the SWH, peak period and wave direction errors. It
is seen, that a4dVar technique provides 30-50 % better forecast skill in terms of the
SWH (0.28 vs 0.37 m) and peak period (0.63 vs 0.91 s). Although discrepancies in
the peak period near the southern and eastern boundaries are comparable in both
solutions, the a4dVar method demonstrates a significant advantage over OI in the
northern Chukchi Sea and south of Cape Hope resulting in approximately 10 cm
smaller SWH errors throughout the entire domain. A local maximum in the a4dVar
peak period errors is also observed southwest of Cape Hope (Fig. 10b), that can be
partly explained by a sharper gradient in the peak period field of the true solution
(Fig. 10a).
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The OI solution demonstrates a slightly better skill in forecasting the wave direc-
tion (the mean difference of 13.1° vs 16.9°). However, in the OI assimilation exper-
iments with other types of SWH data this number varied within 13—13.3° and was
quite close to the respective characteristic (13.2°) of the background solution.

In general, our experiments have shown that the OI method tends to improve the
amplitude of the spectrum, and has only a slight impact on its shape and position
in the frequency-direction coordinates. In contrast, a4dVar technique is capable of
improving these characteristics as well, since it performs optimization along the most
persistent dynamical modes of the governing equation (15). This important property
of the a4dVar algorithm provides a significantly better approximation of the reference
solution and improved forecast skill.

5 Summary and Discussion

In this chapter we have shown feasibility of the a4dVar technique (Yaremchuk et al.
2009) in realistic applications and compared its performance with the observation
space 4dVar and OI methods. It was shown that the a4dVar approach is capable of
producing optimized solutions of similar quality to 4dVar with comparable compu-
tational expense. It was also found that the a4dVar technique is less susceptible to
excitation of ageostrophic modes in the data-free regions if balance constraints are
not imposed on the background error covariances.

The a4dVar technique employs square root factorization the inverse BEC and the

possibility of inexpensive evaluation of the product A's5c during the integration
of the ensemble of perturbed model trajectories. The technique of Hessian factor-
ization was first proposed by Zupanski (2005) in the framework of minimizing the
cost function within the subspace spanned by the ensemble members. It was later
extended in Yaremchuk et al. (2009) to heuristic BEC models coupled with iterative
ensemble updates produced by projections of the model-data misfits on a suitable
“smooth” manifold generated by the low-pass filtering operators M" or B.

Our experience shows that there exists a considerable freedom in generating the
SDs as long as they are kept being spatially smooth and H-orthogonal. In partic-
ular, selecting the ensembles as eigenvectors of B in the decreasing order of their
eigenvalues proves to be equally efficient, at least in the simple linear setting consid-
ered in Sect. 2. In that respect, there is a considerable similarity between the a4dVar
and the adjoint-free 4dEnVar method (Liu et al. 2008), which explicitly looks for
optimized solution in the range of the localized approximation to the background
error covariance. However, the 4dEnVar uses the ensemble to approximate the cost
function gradient which is then used in the iterative optimization, whereas a4dVar
directly employs the ensemble members to minimize the cost function in the respec-
tive subspace.
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The ultimate goal of a search algorithm is to rapidly gain information on the

Hessian structure, which helps to find the SD s = I:|_l b towards the cost function
minimum (note that s is often nearly orthogonal to the local gradient). In that respect,
ensemble methods can offer a significant advantage in their ability to perform paral-
lel searches in multiple SDs, which can be competitive with the adjoint-based meth-
ods even in some cases where individual SDs may not appear to be as efficient as
steepest descent or conjugate gradient directions.

Regarding linearization issues, a state-of-the-art GCM code is never fully differ-
entiable and its (always approximate) adjoint usually requires several times more
CPU/memory resources than the direct model run. This observation indicates that
addVar approach could be even competitive with 4dVar even in terms of the total
CPU time at small ensemble sizes. The present chapter demonstrates this compati-
bility in both a real-life scenario and a simplified linear application.

The a4dVar technique can be developed further by introducing flow-dependent
covariances and better restricting the SDs to the slow-evolving (geostrophically and
hydrostatically balanced) manifold. In application to atmospheric and oceanic mod-
eling, the BEC matrix is can easily incorporate these balance constraints by repre-
senting the state vector in the form

I, 0] |x
X = 19
[L L] [, (19)
where L is the balance operator (Weaver et al. 2005), x, , are the unbalanced com-
ponents of the state vector, and |, , are the identity matrices of the respective sizes.

Under these constraints, B™! = (xx")~! in the a4dVar formulation will take the form
o B +LBY'L LB
I
B = [ ! _B;1L2 B;ﬁ , (20)

where Bl'1 and B;l are the inverse covariances of x; and x,. Further improvements
can be made by replacing the Laplacian in Eq. (7) with a more general expression
(e.g., Weaver and Mirouze 2012; Yaremchuk and Nechaev 2013) introducing flow
dependent structure into B]_é while keeping them square root factorisable. Note that
spectral analysis of the background error covariance could be efficiently performed
prior to the assimilation.

Alternatively, flow-dependence and cross-correlations could be introduced into
BEC through its representation by the localized external ensembles, as it is done in
4dEnVar. This will require B-preconditioning of the control variables, which will
bring the method closer to the observation space 4dVar. In that respect, it is interest-
ing to note a certain similarity between the a4dVar and observation space 4dVar:
The latter method explicitly computes the Hessian projection on the observation
space (representer matrix), whose computation is efficiently parallelized between
M, processors, making the method competitive with a4dVar in terms of scalabil-
ity on massively parallel computers. This property brings observation space 4dVar
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closer to the family of optimization algorithms capable of taking the advantage of
massive parallelism. In our vision, such algorithms are getting higher priority under
the current “parallelization trend” in the development of computer technologies. In
a sense, the present situation is somewhat similar to the situation 30 years ago when
the adjoint methods started coming into practice in response to the rapid increase of
computer speed and memory.

In terms of the computational expense, the tested a4dVar technique appears com-
parable to 4dVar, mostly because of the excessive computational cost of tangent
linear and adjoint codes that were, on average, several times more expensive than a
direct run of the parent nonlinear model (which is a typical situation with state-of-
the-art OGCMs, e.g., Oldenborgh et al. 1999). On massively parallel machines, the
advantage of a4dVar will be more noticeable due to the limited parallel scalability
of an OGCM code, be it original, adjoint, or tangent linear.

An important issue with the a4dVar technique is its extension to optimization of
other sets of variables that may control the model trajectory, such as surface forc-
ing fields. One of the possible solutions in this case augments the search subspaces
(ocean model states) by the leading EOFs of the surface forcing error fields. This
will require a better knowledge of error statistics of the atmospheric model used to
force the ocean in a particular application. In view of recent rapid development of the
observational systems and data acquisition techniques in the atmosphere, the issue
of accessibility to the above mentioned statistics seems likely to be resolvable in the
near term. Moreover, the a4dVar technique appears to be even more suitable for cou-
pled ocean-atmosphere systems, where external forcing errors tend to play a lesser
role at the time scale of a typical assimilation window.

A much larger computational advantage is evident when considering the wall
time in a massively parallel environment, which formally allows a4dVar to search
over multiple directions at a fraction of the wall time used by 4dVar to generate a
steepest descent direction. In fact, in the experiments reported in Sect. 3, one a4dVar
run was executed almost five times faster if all the ensemble members were run on
separate nodes. This property of the a4dVar approach gives good prospects for its fur-
ther development in sync with other types of ensemble data assimilation techniques
that are based on relaxed communication requirements between processors. In our
vision, rapidly decreasing prices of the massively parallel computers make finite dif-
ferentiation in functional spaces more affordable, favoring development of ensemble
methods of data assimilation, while investment in the development and maintenance
of linearized codes and their adjoints may gradually become less practical.
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Appendix

The a4dVar method utilizes the technique employed by Zupanski (2005) in the Max-
imum Likelihood Ensemble Filter, which is based on the explicit inversion of the
Hessian matrix in the subspace spanned by the model perturbations. In view of the
definition (7), B™/2 can be explicitly represented using the expression for the square
root of the inverse error covariance:

B~'/2=v'(1- %24) 1)

which allows a symmetric Hessian factorization

A=A"A"" (22)

where
/2 _ (p-1/2 1 N
H' ™ = [B H, HM . HyM ] (23)

is the Hessian square root.
For sufficiently small perturbations éc,, = €p,,, perturbations of the the auxiliary
vector

5Y, =R'"sc (24)

m
are linear in 6c,,, so that computation of the dot products between the vectors 6Y,,
provides the inner product in the control space associated with the Hessian matrix

8Y[8Y, = 6c[Héc, = (5¢, 6¢y), (25)

which can be used for H-orthogonalization of the search subspaces of the a4dVar
algorithm.

We seek the optimal correction of the control variable c in the search subspace S
spanned by p,,:

mg

c—c+ ) sp.
=1

where the coefficients s, satisfy form =1,2,...,m

§°

p! <Fl(c + 2 sp;) — b> =0. (26)
=1
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This constitutes a Ritz-Galerkin projection of the normal system (4) to the search
subspace, S. Rearranging, we obtain the linear system of m, equations in the m;
unknowns sy, S,, ..., §

m-
m.T
Z p,Hp;s, =p](b—-Hc). 27)
=1

Substituting p,, = §c,, /¢ into (27), multiplying by €2, using (22) and (24) yields

nyg
Y 8Y)8Y s, = edc] (b — He). (28)
=1

The right-hand side of (A.7) cannot be computed directly because evaluation of
b - Hc requires the adjoint code (Eq. 5). Nonetheless, for each m, 6c;(b —Hc) can
be calculated directly from the variations of the cost function 6J,, = J(c + éc,,) —
J(c) induced by oc,,:

8J,, = %5c;ﬂ5cm +6c] (Hc—b)
1 _
= 55\r;5vm —6c! (b—Hc). (29)

Thus, the coefficients for the optimal correction of the control variable ¢ within the
search subspace S are given as the solution to a linear system posed in terms of the
quantities 6J,, and 6Y,, computed by the a4dVar algorithm:

Z YT5Y,s = ¢ (%(W;éYm ~61,). (30)
=1

In the H-orthonormal coordinate system 5Y;5Ym = £2, and Eq. (30) are simpli-
fied to

oJ,
Slzzalm(%_ (‘51), (31)
n

where a;,, are the matrix elements of the linear transformation of the original basis
oc,, that are obtained in the orthogonalization process.

For a differentiable numerical model and sufficiently small €, the quadratic term
in the right hand side of (30) is negligible. In the experiments resported in Sect. 3
we kept it in place since the value of € was close to 0.01 and could not be reduced
any further without affecting the rate of convergence. The relatively large limit on
the value of € was caused by a number of factors deteriorating the linear depen-
dence between the magnitude of the model perturbations and e. These factors
include rounding errors (especially for temperature and salinity in the upper layers),
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non-differentiable operators in the model code, particularly at the open boundary,
and small-scale instabilities of the flow, especially prominent in the experiments
with the 14-day assimilation window.
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