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ABSTRACT
Operational prediction systems must balance conflicting considerations involved in representing the

widest possible range of ocean physics, limited by computational constraints. Choices must be made
in prediction systems that exclude particular dynamics to enable feasible solutions within defined
resources. We examine some of the basic ocean dynamics that ocean prediction systems intend to
represent. The two most basic simplifications are the Boussinesq and hydrostatic. Even with these
limitations, ocean models represent a vast range of physical processes, and this enables application
to many problems. We examine a succinct range of basic dynamics and consider how these affect
operational ocean prediction problems.

Keywords: Operational, ocean, prediction, dynamics, internal wave, mesoscale, Rossby wave,
Kelvin wave

1. Introduction

We observe the ocean and find it contains features covering immense ranges of scale
(Figure 1). All these features are subjects of operational ocean predictions, and the under-
lying dynamics determine choices in the development of operational systems. Therefore,
the purpose at hand is to examine some of the fundamental dynamics and considerations
with respect to operational ocean prediction systems.

At the largest scale, in the North Atlantic as heat leaves the ocean, water sinks to the
abyss flowing southward to the Antarctic Circumpolar current to resurface and warm as
it moves to the north again, making a 15,000 km trip spanning nearly half of the Earth’s
circumference. This is one important branch of the global overturning circulation. In the
subtropical region depicted in Figure 1, strong westerly wind stress on the poleward side
of this domain and easterly wind stress to its south drive a basin-wide (6,000 km zonally,
3,500 km meridionally) anticyclonic (clockwise in the Northern Hemisphere) subtropical
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Figure 1. A sea surface temperature image from the moderate-resolution imaging spectroradiometer
(MODIS) on 8 May 2000. An enormous range of scales exists. The Gulf Stream is the red warm
waters entering from the southwest. This western boundary current is part of the North Atlantic
subtropical gyre basin circulation. Instabilities in the Gulf Stream generate large, circular mesoscale
eddies to the north as warm core rings and to the south as cold core rings. Along many of the
temperature fronts are filaments, and in the northern area there are smaller instabilities due to
submesoscale eddies. The continental shelf waters are distinct from the cold water flowing south
from the Labrador Sea. Warmer waters are observed in the Hudson River outlet. Image credit: Earth
Observatory, NASA.

gyre circulation. The most conspicuous feature of this gyre is the western boundary current,
which is the 30–150 Sv Gulf Stream in this basin and the 24 Sv Kuroshio in North Pacific.
Poleward of the subtropical gyres, cyclonic (counter-clockwise in the Northern Hemisphere)
subpolar gyres are the oceanic response to strong westerly winds on their equatorward side
and weaker winds poleward. The colder waters of the subpolar gyre are the cooler colors
within Figure 1. The wind-driven gyres have a subsurface expression that also plays a
role in the overturning circulation. On the 100 km scale, mesoscale eddies are generated
through barotropic and baroclinic instabilities and transport heat and water masses. These
eddies contain most of the kinetic energy in large-scale oceanic motions—even more than
the gyres and meridional overturning. On the 1–10 km scale, submesoscale filaments wrap
around the mesoscale eddies, and submesoscale eddies fill the surface waters forming within
boundary layers or from strong flows over topographic features. Tidal cycles drive a range
of waves that flush waters in bays and estuaries, and these tides interact with topography to
create internal wave energy beams that radiate across the ocean basins—sometimes breaking
and producing turbulence. On the 0.1–100 m scales, turbulence and surface waves fill the
upper ocean, mixing water properties and affecting the exchange of energy, momentum,
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freshwater, and gasses with the atmosphere. Occasionally, seismic activity may trigger a
tsunami that travels at hundreds of meters per second, perturbing the whole 3.7 km deep
ocean as it passes.

All these processes are of importance to operational ocean prediction. A key charac-
teristic of operational ocean predictions is that they are produced on a scheduled basis.
The frequency of predictions varies depending on the application. Storm surge forecasting
across coasts and within estuaries can require several predictions per day depending on the
frequency with which more accurate atmospheric wind forecasts are updated. Ocean general
circulation forecasts are typically updated once per day as observations help constrain the
positions of ocean features such as eddies. Hypoxia forecasts are conducted seasonally to
annually in the process of setting policies that can affect the use of upstream fertilizers. The
Intergovernmental Panel on Climate Change (IPCC) projections are constructed every six
years on average with the intent to define trends and statistical ranges of mean and extreme
events. Although the IPCC projections and purposes are different from operational fore-
casts, the underlying conflict between representation of dynamics and finite computational
capability exist.

The common characteristic amongst these is the need for a forecast as accurate as possible
at a fixed time. That is, there is a deadline at which the forecast must be provided in order
for decisions to be made. The decisions include determination of evacuation from coastal
flooding, where to send fishing fleets on a daily basis, management policies for the upcoming
year, and efforts toward defining long term policies for climate change. The imposed forecast
deadline implies that a fixed computational capability may be applied to the problem.
The accurate forecast implies inclusion of complex physics at all scales, which leads to
a computationally intractable problem. As a simple example, the problem of forecasting
drift for search and rescue or hazard mitigation must take into account wind forcing, the
development of waves, the transfer of momentum into the ocean and its distribution within
the surface, solar radiation that will change stratification and the ability for momentum to
mix into the ocean, the development of surface ageostrophic flows from Langmuir cells,
the transport of submesoscale and mesoscale eddies, and trends in the global circulation.
The ability to directly incorporate all the dynamical processes into a single system that will
provide a forecast is limited by available computers—forecasts featuring full resolution of all
oceanic processes (direct numerical simulation) are still centuries away given present rates
of computational improvement (Fox-Kemper et al. 2014). Thus, the need for an accurate
forecast and the inclusion of as many phenomena as possible, while still arriving at the
imposed deadline, are competing forces.

Researchers developing operational forecast systems must balance these requirements.
Such a balance implies consideration of the relevant dynamical processes at work. The most
influential processes must be directly represented by numerical models, whereas others
may be parameterized (See discussion in Haidvogel et al., in press). Thus, the purpose
within this chapter is to introduce the dynamical processes typically represented in ocean
circulation models, along with their scales and scaling laws, that can be used to estimate
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their importance. This information provides the basis on subsequent decisions in designing
operational forecast systems.

2. The basic governing equations

The starting point for understanding ocean dynamics are the fundamental equations gov-
erning fluid mechanics based on conservation of properties. A common convention, which
is used here, is that the (x, y, z) coordinate describes a local reference frame that is positive
in the eastward, northward, and increasing geopotential (outward from Earth center). How-
ever, note that vectors pointing northward at different points on the surface of the earth are
not parallel, likewise for eastward vectors and vectors that indicate the direction of greatest
geopotential increase. Thus, to make this convenient convention useful, the limit where the
excursions of fluid parcels, L, are restricted to a small fraction of the Earth’s circumference,
L � 2πre, and vertical excursions are restricted to a small fraction of the distance from
the Earth’s center of mass, H � re allows the curvature of the earth to be approximated
simply while retaining Cartesian coordinates. It may be more convenient to use spherical
coordinates when the scales of excursion are large, e.g., the overturning circulation and
gyres. Note that our choice of coordinates does not change the fluid dynamics involved, but
some coordinate systems are considerably more convenient for particular applications or
numerical implementation.

In a Cartesian coordinate we write the conservation equations taking into account non-
conservative terms appearing on the right-hand side of the equations. Using this, the rotating
Navier–Stokes equations for seawater momentum, seawater mass, and salt mass are
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where the deviatoric stress tensor on the right side of the conservation of momentum (equa-
tion 1) assumes an isotropic Newtonian fluid
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These are presented in a compact tensor notation where ui is the velocity in the i direction of
a local (x, y, z) coordinate, S is the absolute salinity, ρ is the fluid density, τij is the stress in
the i direction on a plane with perpendicular in the j direction, p is the pressure, μ is the fluid
viscosity, Ωj is the Earth rotation vector, and Fi is the potential representing gravitation,
Coriolis and centrifugal forces, and tidal potential. Einstein summation is implied, which
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means that any repeated index implies a sum of that term with that index taking each of
the three directions in turn. The form of the equations is referred to as a flux form, because
each term in the equation is written as a divergence of a flux. The horizontal gradient ∂/∂xj

of the terms represents the net flux of momentum, stress, and pressure at a given location.
Many books cover the derivation of equations (1) and (2) (Gill 1982; Pedlosky 2013; Pope
2001; Vallis 2006). These equations describe the evolution of the vast array of processes
observed in the ocean from the global conveyor belt circulation to turbulent dissipation.

The first law of thermodynamics may be written in terms of the enthalpy h following
McDougall et al. (2003).

∂ρh
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+ ∂
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Q
j

∂xj

+ ρε (5)

In the isentropic limit (where irreversible processes are neglected and the greater than
symbol becomes an equality), this is
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Where h is enthalpy, FQ is energy flux by nonadvective processes, ε is kinetic energy
dissipation, and η is entropy. Finally, the equation of state provides sufficient equations for
a closed system

ρ = ρ (h, S, p) or ρ = ρ (η, S, p) (7)

A detailed presentation of seawater dynamics is beyond the present scope, but an excellent
review is provided by Feistel (2008).

3. Boussinesq approximation

To understand the ocean dynamics throughout this chapter, we will introduce simplifi-
cations to the equations. The first of these is the Boussinesq approximation, which relies
on density variations having small impact on inertia but having substantial influence when
multiplied by gravity. This approximation removes seawater compressibility effects, and
therefore the equations moving forward do not represent the propagation of acoustic energy
through the ocean. Retaining these effects would require numerical model time steps that
are exceedingly small or advanced numerics to handle sound waves. For operational acous-
tic applications, ocean forecasts provide temperature and salinity from which sound speed
is determined, and operational centers then produce separate acoustic propagation fore-
casts. Thus, the Boussinesq assumption does not remove significant processes that affect
operational ocean forecasts, and acoustic forecast capability is not lost.
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Density is separated into three components: a global mean value, a global average vertical
variability, and deviations from these. Buoyancy is also separated according to

ρ = ρo + ρ̄ (z) + ρ′ (x, y, z, t) = ρo

(
1 − b̄ (z) + b′ (x, y, z, t)

g

)
, N2 = ∂b̄

∂z
(8)

where density and buoyancy are related by b = −gρ/ρo, and N is the Brunt–Väisälä
frequency, to which we will return shortly. Under this approximation, we can easily relate the
flux form to the material derivative, as conservation of mass (2) reduces to the nondivergence
requirement ∂uj/∂xj ≈ 0, and thus
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Using this relationship, equations (1–3) and (6) provide the closed set of Boussinesq equa-
tions of fluid motion as
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In these, ν = μ/ρo is the kinematic viscosity. Note that absolute temperatures T , Θ are to
be used (i.e., Kelvin not Celsius), which means that setting the temperature ratios to unity
is only an O(0.15%) error.

Working from the enthalpy form of the first law of thermodynamics, the highly accurate
conservative temperature Θ conservation equation results. The conservative temperature
is proportional to the enthalpy that a fluid parcel would take after an adiabatic relocation
to the surface (ho, the potential enthalpy). Conservative temperature is just the potential
enthalpy divided by the surface specific heat capacity (Θ = ho/C0

p). To good accuracy, the
potential temperature based on a nearby reference pressure pr can be used, which may be
derived from conservation of entropy (Dη/Dt = Cp(pr)D ln θ/Dt). Potential temperature
is less accurate than conservative temperature, because it also relies on the assumption
of conserved entropy during the relocation of the fluid parcel to the surface. In the real
world, mixing commonly occurs, which is an irreversible process that increases entropy.
Thus, the additional assumption of isentropic relocations renders the potential temperature
less accurate. The in situ temperature is not conserved following fluid motion because of
compressive heating and expansive cooling, so its use in ocean models is limited.
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These equations describe the motions within the fluid, but the ocean is also connected
to other parts of the earth system. These connections include warming by the sun, heat
exchange with the atmosphere, precipitation, evaporative removal of freshwater leaving
saltier, colder water behind, wind stresses, river flows, freezing into ice with rejection of
brine, etc. These exchanges are included through boundary conditions that are required for
full solutions of the previous equations.

One simplification has already been included. The Earth rotation centrifugal and tidal
forces that were in ∂Fi/∂xi of (1) are included together into an effective gravitational
force gi within (10). This simplification is convenient and accurate when working with
coordinate systems that use geopotential height as a vertical coordinate, which is simple
and accurate under the local Cartesian coordinates or spherical coordinates so long as
deviations in the geoid are smooth (as they always are on Earth). Note that the earth’s
surface is closer to an oblate spheroid than a sphere because of the centrifugal force, but
it is convenient and accurate to use spherical coordinates and approximate the geoid as a
level surface. Vallis (2006) notes that it is critical to approximate the geoid in this way in
spherical coordinates, otherwise everything would just roll down toward the equator under
an unbalanced centrifugal force!

4. Scaling the equations

Under almost every oceanographic problem of interest, these equations are too difficult to
solve directly. To make manipulation of the equations easier, two changes are routine. First,
these equations are scaled to determine which terms may be negligible. If they are deter-
mined to be so small that they are negligible for the problem at hand, then—mathematical
necessity allowing—they can be dropped from the equation set.

McWilliams (1985) presents a scaling for the dimensionless equations of motion for
a Boussinesq fluid. We adapt these equations to the purposes here. As different terms
are neglected in following sections, the reader can refer back to these equations to better
understand what scaling relationships are implied by these assumptions. It is assumed that
the typical scales of variables can be characterized by

x, y ∼ L, z ∼ H, (14)

v ∼ V, t ∼ L/V, (15)

π = p/ρo ∼ max
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VfoL, V 2] = VfoLMR (16)
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Where MR = max [1, Ro], Ro = V/foL, f is the Coriolis parameter with a value of fo at
the central latitude and varies linearly with latitudinal distance with a value of β. With these
scaling definitions, the horizontal momentum, vertical momentum, density or buoyancy,
and mass conservation equations take the dimensionless form:
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By these definitions, the Rossby number is Ro = V/foL, the Froude number is Fr =
V/NoH , and the Reynolds number is Re = ρoV L/μ. These serve for purposes here, though
in many applications other definitions arise based on the choice of scales or dominance of
particular balances. For example, when considering the vorticity equations arising from
(22), another source for estimating the Rossby number is the geostrophic flow vorticity
relative to the reference frame rotating with Earth ζg = ∂vg/∂x − ∂ug/∂y, which is twice
the solid body rotation rate of the material. The ratio of ζg to the Coriolis parameter provides
another form of the Rossby number Ro = ζg/fo that is the ratio of the fluid to Earth rotation
rates.

5. Hydrostatic approximation

The equations of motion (22–25) are the primitive equations and describe the vast range
of processes within the ocean. At this point it is necessary to consider the operational
application and associated dynamical processes. The hydrostatic assumption implies that
the vertical momentum equation (23) reduces to a balance between vertical pressure gradient
and gravitational force,

∂p/∂z = −gρ (26)

This is typically true if Fr2H 2/L2 = V 2/N2
o L2 is small and if the ratio of Rossby number

to Reynolds number is small. This may also be viewed as a requirement that the frequency
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of the flow given by V 2/L2 be much smaller than the Brunt–Väisälä frequency (Marshall
et al. 1997).

Given the decomposition of density in (8), under the hydrostatic assumption we can
define a mean vertical pressure profile that complements the mean density profile so that
pressure is decomposed by p = p̄ (z) + p′ (x, y, z, t) with ∂p̄/∂z = −gρ̄. Be cautious; as
the relation between p̄ and ρ̄ is hydrostatic by the definition, it does not necessarily imply
that p′ and ρ′ are in hydrostatic balance. However, we do expect hydrostatic balance for all
small Froude number, small aspect ratio motions.

Computing pressure in a hydrostatic model is very efficient, as it is a diagnosed value
according to the hydrostatic approximation. Hydrostatic models enable substantial reduc-
tion in operational solution time. Retaining all the terms in (23) requires application of a
nonhydrostatic model. Solving the pressure field of the full momentum equations requires
substantially greater computational resources and thus a longer solution time. Many very
important processes require nonhydrostatic dynamics to resolve. One example is convective
processes generated by ocean surface cooling. The outward flux of heat reduces temper-
ature and increases density. Once the buoyancy is less than surrounding waters, a surface
water parcel experiences a downward acceleration, and the vertical velocity rate of change
is determined by the vertical momentum equation (23). Langmuir cells result from vorticity
tilting due to surface wave Stokes drift. The vertical momentum advection is a critical part
of the process (Craik and Leibovich 1976). Tidal flow across sharp topography displaces
isotherms vertically and results in the generation of internal waves. Large amplitude inter-
nal waves steepen while propagating, which must be captured by including nonhydrostatic
physics in prediction systems (Zhang, Fringer, and Ramp 2011). The hydrostatic approxi-
mation removes these mechanisms, and achieving reasonable results requires representing
the processes through parameterization in turbulence schemes that represent the effects of
mixing (see Haidvogel et al., in press).

Some parameterizations are as simple as elevating the values of the viscosity and dif-
fusivity used—in effect, this treats turbulent eddies as though they behave just like the
molecules in a fluid in terms of diffusing heat and momentum. Under such an approxima-
tion, the normally negligible terms involving the very large Reynolds numbers occurring
in oceanic flows may be preserved with a different coefficient. Because such terms may
be required mathematically, this approach is often useful numerically. Separating resolved
and unresolved scales in the equations of motion leads to Reynolds averaging. Equations
very similar to the primitive equations (22–25) govern the resolved flow, and second order
equations govern the development of the statistics of the unresolved turbulence (Mellor
and Yamada 1982; Kantha and Clayson 1994). Such complex closure schemes evolve the
parameterized turbulence while taking into account stratification and shear of the large-
scale flow. For example, it is easier to mix along density surfaces in the ocean because no
mass must be lifted against gravity in the process (Fox-Kemper and Menemenlis 2008). In
contrast, mixing across density surfaces against gravity requires energy to lift heavier fluid
from below. A simple example parameterization, used here, is to have a different viscosity
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and diffusivity value in the vertical direction than the horizontal, to represent the inhibition
of mixing by stratification, and evaluations of different formulations continue as an active
area of research (Warner et al. 2005, Fox-Kemper, Ferrari, and Hallberg 2008). We also
provide the caveat that operational forecast system resolution continues to increase, and
the line between represented dynamics and what must be parameterized continues to move.
The parameterized representations must evolve as well.

Given limited computer resources and the need to forecast large areas, most operational
ocean forecast systems are based on hydrostatic models. Although nonhydrostatic process
can be of importance, in the operational environment, they are represented through param-
eterization. Therefore, we focus attention on hydrostatic dynamics, which still represent a
majority of problems of interest, from here forward.

6. Fundamental solutions of the dynamical equations

The Boussinesq and hydrostatic momentum equations describe a wide range of processes.
These should explain some of the basic dynamical relations one may diagnose from oper-
ational ocean forecasts. The results from operational ocean predictions have become more
realistic over time, and, in doing so, the results become almost as difficult to understand
as the ocean. It is important to keep in mind some of the fundamental balances and the
assumptions behind them.

One of the most basic is the geostrophic balance obtained by neglecting friction, advection
of momentum, and the time rate of change in (10) or, alternatively, assuming a small
Rossby number in (22) as well as the ratio Ro/Re being small. The result is the balance
between geostrophic velocity and pressure gradient:

(
ug, vg

) = (−∂p/∂y, ∂p/∂x) /f ρo.
The subscripts on

(
ug, vg

)
indicate that these are the geostrophically balanced part of the

total flow. Under what conditions in operational forecasts is the Rossby number small so
that the geostrophic balance is reasonable? Consider the situation of a mesoscale eddy, such
as those observed generated in the Gulf Stream (Figure 1), with L = 105 m. The Coriolis
parameter f is on the order of 10−4 s−1, and u and v are of the order of 0.1 m/s. Under
these conditions, Ro = 0.01, and so the geostrophic balance is reasonable by (22).

The vertical variation in the geostrophic currents is obtained by taking the z derivative of
the geostrophic equation and combining it with the x and y derivatives of the hydrostatic
pressure equation. The result is the thermal wind equation

∂ug

∂z
= g

ρof

∂ρ

∂y

∂vg

∂z
= − g

ρof

∂ρ

∂x
(27)

These fundamental relations are useful for diagnosing observations such as maps of sea
surface height observed by satellite altimeter sensors (e.g., Chelton, Schlax, and Samelson
2011) and sea surface temperature as seen from satellite radiometers (e.g., Chavanne and
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Klein 2015). The pressure at z = 0 (the position of the ocean surface under the conditions
of no motion and no forcing) can be approximated as ρogη, where η is the ocean surface
relative to z = 0, because the ocean surface varies only by meters and the density variation
over this thickness is not a significant factor in computing the pressure. The geostrophic
equations immediately provide the surface velocity. From ship transect observations, near
surface velocity may be observed by acoustic Doppler current profiler while measuring
temperature and salinity to much greater depth (e.g., Callies and Ferrari 2013). The thermal
wind equations immediately provide velocity throughout the observed depths (e.g., Pollard
and Regier 1992).

An additional simple dynamical relation may be extracted from the equations of motion.
In this case, assume the flow is horizontally uniform and Ro/Re is small in (22). Also, assume
there is no pressure gradient. The time rate of change is retained to derive the inertial oscil-
lation, which implies a Rossby number of 1. The resulting balance in the inertial oscillation
is (∂u/∂t, ∂v/∂t) = f (v, −u). Solutions are (u, v) = (Re (Uo exp(ift)) , Im (Uo exp(ift))),
where the complex constant Uo provides the magnitude and phase of the currents relative
to time 0, where Re is the real component and Im is the imaginary component of a complex
value, and where i = √−1. The velocity vector traces a circle rotating clockwise through
time over one inertial period, which is 2π/f . For a drifter in the ocean under the influence
of inertial oscillations, the circle transited over one inertial period has a radius of Uo/f . In
this case L = Uo/f and thus Ro = 1, as was assumed initially. Such motions are ubiq-
uitous throughout drifter observations. Inertial oscillations are a natural response mode of
the ocean to any forcing or change such as sudden forcing by surface winds. In prediction
systems outputting results at high frequency, inertial oscillations are a dominant response
to sudden changes in wind forcing and create transients lasting for days.

Ekman transport is the steady-state response to wind forcing. Consider first an ocean
that is stationary far below the surface, with a specified uniform wind stress, and that is
horizontally uniform. Assume in (22) the Rossby number is small, though the ratio Ro/Re

is order 1. Orient the local coordinate system so that the wind stress is in the x coordinate
direction and the wind stress magnitude is τx . Assume that the vertical diffusivity ν is
constant and that the flow is homogeneous horizontally so that the horizontal gradients are
zero. The equations of motion reduce to

f v + ν
∂2u

∂z2
= 0

−f u + ν
∂2v

∂z2
= 0 (28)

The solution is given by (u, v) = τx/
(
ρo

√
νf

)
exp (Lzz) (cos (z/Lz − π/4), sin(z/Lz −

π/4)) with Lz = √
2ν/f being the Ekman layer depth scale. The currents at the surface

are 45◦ to the right of the wind stress direction, decrease in amplitude with depth, and
continually turn clockwise with depth. However, if an eddy viscosity is parameterizing
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the effects of Ekman layer turbulence, it tends not to be constant in the vertical, and this
solution is not exact. The vertically integrated transport due to a wind stress

(
τx, τy

)
is

(1/ (ρof ))
(
τy, −τx

)
, a result that is not dependent on the detailed profile of the viscosity.

This Ekman transport is 90◦ to the right of the wind stress in the Northern Hemisphere
(90◦ to the left in the Southern Hemisphere). The effects of Ekman transport near coasts
in operational predictions are important. Winds blowing parallel to the coast will create a
transport either toward or away from the coast. The result is either a downwelling of warm
surface waters or an upwelling of cold deep waters near the coast. The nutrients and cold
water brought to the surface in upwelling zones cause dramatic blooms of ocean coastal
productivity and foggy coastal weather.

The flow of currents over bathymetry creates a stress on the bottom of the water column,
and this generates a bottom Ekman layer. In the case of a bottom Ekman layer, the Ekman
transport is 90◦ to the left of the ocean current direction (in the Northern Hemisphere). As
ocean currents flow parallel to coasts along continental shelves, the bottom Ekman layer
can move properties on or off the shelf.

In deep water areas, spatial variation in wind stress
(
τx, τy

)
also results in upwelling

or downwelling. By the continuity equation (11), and assuming the sea surface position is
stationary, the vertical velocity at a depth is the integral from the depth to the surface of the
horizontal velocity divergence. If we choose a point a few Ekman layer depth scales below
the surface, with small error the vertical velocity is the divergence of the Ekman transport,

we = (1/ρo) ∇ · (
τy/f, −τx/f

) = (1/ρo) k∇ × (
τx/f, τy/f

)
(29)

where k indicates the vertical component of the curl operator. That is, the vertical velocity
at the base of the Ekman layer is determined by the wind stress curl. Later we will examine
a simplification of the dynamical equations to quasigeostrophic dynamics, and we will find
that these small vertical velocities drive the geostrophically balanced flow.

This vertical velocity due to wind stress curl is a fundamental driver of ocean circulation
first elucidated by Sverdrup. The geostrophic equations may be combined to eliminate
pressure while retaining the fact that the Coriolis parameter varies with latitude (f =
fo + βy). Applying continuity to the result yields

fo

∂w

∂z
= vgβ (30)

Consider the slab of ocean from a level at which velocities are zero to the depth just below
the Ekman layer, and assume this slab is uniform in horizontal velocity. By continuity
this implies that ∂vg/∂z is uniform over depth. If the slab has a thickness H , and the
vertical velocity at the top due to the Ekman layer pumping is we, then, over the slab,
∂w/∂z = we/H . Therefore
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vg = (f/β) (we/H) = ∇ × (
τx, τy

)
/ (ρoβoH) (31)

This is the Sverdrup transport, which is the meridional flow driven by the wind stress curl.
The friction velocity u∗ = √

τ/ρo is often used to scale for near-surface velocities driven
by winds. For example, a rough scaling for the depth of the turbulent Ekman layer is u∗/f .

7. Effects of stratification

The density in the momentum equations plays a key part in forcing ocean circulation,
and in the previous simplified dynamics the density is provided as a specified field. From
the specified density we compute pressure by the hydrostatic balance and compute currents
by geostrophy. We want to understand how all these fields interact and evolve over time.
Understanding these evolutions from the dynamic point of view lends insight to consid-
erations that are of importance in operational prediction systems. We provide some of the
basic dynamical equations that are commonly derived in many texts (Gill 1982, Pedlosky
2013, Cushman-Roisin and Malačič 1997).

Stratification is a basic consideration in ocean predictions, as it strongly controls the
evolution and, thus, forecast results. Small vertical density movements in one location lead
to horizontal pressure gradients and subsequent response. Examples of the importance of
stratification are provided by analytic models of the equatorial current system (McCreary
1981) to fully coupled Earth climate systems (Danabasoglu et al. 2012). Achieving realistic
stratification in global models is very difficult, as the forcing is surface momentum, heat
fluxes, evaporation, precipitation, and freshwater river fluxes. It is entirely incumbent on the
numerical system dynamics to construct proper density structure from only surface forcing
(Dunne et al. 2012). First order evaluations of operational global ocean systems are made
against observed stratification (Metzger et al. 2014). Higher resolution local prediction sys-
tems utilize boundary conditions from global forecasts. Local systems have a much stronger
external control on stratification and are not as dependent on the model representation to
reconstruct the stratification (Rowley and Mask 2014).

Stratification is a controlling force in the generation of internal waves, which are a
response to many types of forcing. One example is the generation as tidal flows oscil-
late across ridges or sharp topography, such as the shelf break, that is simulated in both
global and regional models (Zhang, Fringer, and Ramp 2011, Shriver et al. 2012). Tidal
flows across topography generate perturbations of the stratification that propagate as internal
waves (referred to as internal tides), and the stratification strength determines the propa-
gation speed. In 12 hours, semidiurnal tides propagate approximately 100 km, a particular
fact exploited to observe the ocean surface height expression of the internal tide (Ray and
Cartwright 2001). Wave solutions are a natural starting place to understand dynamics, and
we begin by considering waves and the effect that stratification has on solutions to the
dynamics. Thus, a first step in understanding is to consider the evolution of internal waves,
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given the evolution of density. Ignoring diffusive properties in the thermodynamic equations,
the density is constant following fluid parcels:

Dρ

Dt
= ∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ ∂ρ

∂z
= 0 (32)

Begin with the linearized equations of motion from (10), in which all variables are small
values. Decompose density as previously in (8). Assume that the pressure p is composed of
the hydrostatic pressure ∂p̄/∂z = −ρ̄g and a deviation p′, then, ignoring products between
variables that are smaller than the variables themselves, the linearized forms of (10) and
(32) are as follows:

∂u

∂t
= f v − 1

ρo

∂p′

∂x

∂v

∂t
= −f u − 1

ρo

∂p′

∂y

ρo

∂w

∂t
= −∂p′

∂z
− ρ′g

∂ρ′

∂t
+ w

∂ ρ̄

∂z
= 0 (33)

Recall from (8) that ρ̄ is a function of z only. The horizontal momentum equations in (33)
may be decoupled from one another:

(
∂2

∂t2
+ f 2

)
u = − f

ρo

∂p′

∂y
− 1

ρo

∂2p′

∂x∂t(
∂2

∂t2
+ f 2

)
v = + f

ρo

∂p′

∂x
− 1

ρo

∂2p′

∂y∂t
(34)

Horizontal gradients of (34), along with the time derivative of the continuity equation (11),
result in elimination of the horizontal velocity:

ρo

(
∂2

∂t2
+ f 2

)
∂w

∂z
=

(
∂2

∂x2
+ ∂2

∂y2

)
∂p′

∂t
− ∂f

∂y

∂p′

∂x
(35)

For the moment, ignore the influence of Coriolis parameter f , and ignore the influence of
the latitudinal dependence of the Coriolis parameter ∂f/∂y. We will return to both these.
These equations reduce to provide a governing equation relating vertical velocity and the
perturbation pressure (Gill 1982):

∂2w

∂t2
= − 1

ρo

∂2p′

∂t∂z
− N2w (36)
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where N =
√

− g

ρo

∂ ρ̄
∂z

is the Brunt–Väisälä frequency as defined in equation (8). If there is

no horizontal flow and the flow has time to adjust to a hydrostatic balance, the perturbation
pressure p′ is zero. The solution to (36) is a vertical velocity oscillating sinusoidally with
frequency N . The Brunt–Väisälä frequency is the rate at which material elements oscillate
vertically from an initial displacement in the background density field ρ̄. This frequency
provides a quantitative measure of the stratification strength.

A single equation may be derived from (33) that provides the evolution of vertical velocity
in which the Brunt–Väisälä frequency is a key element:

∂2

∂t2

((
∂2

∂x2
+ ∂2

∂y2

)
ρow + ∂

∂z
ρo

∂w

∂z

)
+

(
∂2

∂x2
+ ∂2

∂y2

)
ρoN

2w = 0 (37)

The reduction of horizontal momentum, continuity, and pressure anomalies to a single equa-
tion is common, as will be seen in subsequent examination where equations (10) continue
to be reduced to illuminate important dynamical relations. What are the unforced waves that
satisfy this system? Assume a solution of the form w = wA exp (i (kx + ly + mz − ωt))

where wA is a complex number expressing the amplitude and phase relative to time 0, and
it is assumed that the solution for w retains only the real part. Substituting into (37), this is
a solution if

ω2 = N2 k2 + l2

k2 + l2 + m2
(38)

The required relation between the frequency ω and wavenumber vector k = (k, l, m)

is the dispersion relation for the system. The wavenumber vector points in a direction
perpendicular to the plane of any constant phase within the wave, and the wavelength is
2π/ |k|. Without providing the derivation, if the Coriolis parameter is retained in (12), the
dispersion relation is

ω2 = N2
(
k2 + l2

) + f 2m2

k2 + l2 + m2
(39)

Thus, the internal wave frequency is bounded between f and N . Depending on the latitude,
and, thus, the Coriolis parameter, internal tide waves can be within this frequency range,
but this is generally a high frequency range that describes other internal waves. Lower
frequencies are considered shortly. As the wavenumber vector is rotated toward the hori-
zontal (k2 + l2 becomes relatively large so that the horizontal wavelength is small relative
to the vertical), it can be seen from the dispersion relation (38 and 39) that the frequency
approaches N . As the wavenumber vector rotates toward the vertical (so that the horizontal
wavelength becomes large relative the vertical), the frequency approaches f .
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With a solution for w, the solutions for ρ′, p′, u and v may be constructed from (35) and
(34) assuming that the form is an oscillating exponential w = wA exp(i(kx + ly + mz −
ωt)) with amplitudes given by

p′
A = −wAρ̄ωm

(
1 − f 2/N2

)
(
k2 + l2 + f 2m2/N2

)
ρ′

A = iwAρ̄N2/ (gω)

uA = 1

ρ̄

(
k/ω − if l/ω2

)
(
1 − f 2/ω2

) p′
A

vA = 1

ρ̄

(
l/ω + if k/ω2

)
(
1 − f 2/ω2

) p′
A (40)

The complex coefficients in (40) vary between the variables and determine the relative phase.
Consider planes perpendicular to the wavenumber vector k = (k, l, m) at the location of
maximum vertical displacement of fluid particles (where w = 0 and ∂2w/∂t2 < 0), which
are the wave crests. Initially assume the Coriolis effects are negligible so that terms with
f in (40) are ignored. Pressure anomalies are maximum at the wave crests, and therefore
pressure gradients are zero. The position of maximum w is ¼ wavelength in the direction
of k from the crest, where fluid is rising to continue the forward progression. The velocity
direction in three dimensions is perpendicular to k, or parallel to the planes of the wave
crests. From (39), the highest frequency is N . If forcing is input to the system at higher
frequency, it does not propagate as freely propagating internal waves and remains local
to the source. Internal wave energy in the ocean is high, with the most apparent being at
locations of higher vertical density gradients, such as in the base of the mixed layer or within
the thermocline.

Tides are one process generating periodic forcing. Another process is flow moving over
periodic bathymetry features that enforce a vertical velocity at the interface. Assume the
stratification is constant with buoyancy frequency N . The preceding analysis now considers
mean flow. To continue to use the preceding derivation, assume that a bottom topography is
moving beneath a stationary ocean. The results may be translated to a coordinate fixed with
topography afterward without loss of the conclusions. Also assume a situation in which all
variables are constant in the y direction with the sinusoidal topography of amplitude hb

moving in the −x direction as time increases with a speed of Ub:

h = hb cos (k (x + Ubt)) (41)

To continue within the linearized equations (33), the amplitude hb must be small. Place the
vertical origin at the mean vertical position of the topography, and the vertical velocity at
z = 0 determined by (41) is w(z = 0) = ∂h/∂t = −hbkUb sin (k (x + Ubt)). In order to
match the bottom boundary condition for w, the solution to (33) must have a form that is
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periodic in x with wavenumber k, and the solution must be periodic in time. The frequency
is determined by the translation velocity and wavelength ω = kUb. The problem is now to
determine the vertical wavenumber m to satisfy (38). This leads to the dispersion relation
m2 = N2/U 2

b − k2. In this situation, the Froude number is defined by Fr = Ubk/N . If
Fr < 1, the flow speed is less than required to move one topographic wavelength during one
period of the Brunt–Väisälä buoyancy period. The solution for m is real, the solution for w is
oscillatory, and the direction of m is upward (a result of energy required to propagate away
from the bathymetry, which is a level of complexity omitted here). Lines of constant phase
tilt toward −x with increasing height as the vertical velocity disturbances propagate upward
from the topographic forcing. In the coordinate frame fixed with the bathymetry, the lines
of constant phase tilt toward +x. If Fr > 1, or if the velocity is larger than required to pass
one bathymetric wavelength during a buoyancy cycle, the solution for m is imaginary. The

vertical velocity is of the form w = −hbkUb sin (k (x + Ubt)) exp

(
−

√
k2 − N2/U 2

b z

)
,

in which case planes of constant phase are fixed with the topography moving underneath,
and the amplitude decreases exponentially with height.

In this situation, the Froude number provides a measure of the importance of the time
scale of the stratification relative to the time scale of the forcing acting on the flow. If the
Froude number is less than 1, then stratification effects are important. For typical values of
the Brunt–Väisälä frequency of 0.01 radians/s, flows of 0.1 m/s, and wavelengths of ~10
km (k = 6x10−4 radians/m), Fr � 0.01.

An example of the effects of Froude number on the flow over a corrugated topography
is provided by MacCready and Pawlak (2001). In this case, rather than just a sinusoidal
bathymetry on a flat bottom according to (41), the corrugations are added to a sloping
bottom. The Froude number must be less than 1 to generate internal waves, and the sloping
bottom imposes a lower bound on the Froude number as well. In Figure 2, the flow over
the topography shows strong internal wave generation when the Froude number is larger
than the critical value. When currents are reduced below the lower bound, the internal wave
generation ends.

Internal wave generation represents a process of energy transfer from one form to another.
In the case of tides, energy transforms from the barotropic or external tide into internal tide
energy (Egbert and Ray 2000). Around sharp topography, the large-scale flow transforms
energy into internal waves and turbulence. These mechanisms typically extract energy from
flows resolved by numerical prediction systems into processes that are not resolved, and
such processes must be parameterized (Simmons, Hallberg, and Arbic 2004; Jayne and St
Laurent 2001; Nikurashin and Ferrari 2010). Even if a numerical system may resolve the
energy transfer and subsequent evolution mechanisms, we must consider if predictions are
deterministic. In the case of interaction with bottom topography, if bathymetry is well known
and a numerical model is sufficiently accurate, a significant portion of the internal wave field
may be predictable near the generation region. However, after propagating some distance,
the field becomes nondeterministic in that the position of features in the real world do not
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Figure 2. An example of stratified flow over topography on a sloping bottom is provided by Mac-
Cready and Pawlak (2001). In both cases the Froude number is less than 1. On the left, internal
waves are generated as shown by the model layer interfaces in the green vertical plane. On the right,
the velocity is reduced below the lower limit for internal wave generation, and the model interface
displacements show minimal perturbations. Image provided courtesy of P MacCready.

match the positions in the model prediction. Such is the case as internal tides propagate
through spatially varying stratification that changes propagation speed and eventually leads
to significant nonstationary energy (Ray and Zaron 2011).

8. Vertical modes

The previous section began with the assumption of a constant Brunt–Väisälä frequency
over the water column. This may be a reasonable approximation in local situations; however,
it is typically not. The stratification strength changes significantly over depth, and this affects
how energy is distributed vertically. Accurate ocean predictions must begin with accurate
stratification.

In addition, the previous section provided examples of variability mainly at high fre-
quencies. Insight to dynamics at larger scales can be provided by accounting for vertical
structure in the Brunt–Väisälä frequency, which leads to the concept of vertical modes. The
first step is to show that the ocean may be treated as a superposition of solutions that are all
similar in the horizontal with different vertical structure. This allows us to understand the
common horizontal variations for any vertical mode. The implication of large horizontal
scales can be discerned from the relation between pressure and density using the solutions
in (40)

∂p′

∂z
= −g

1 − f 2/N2

1 + (
k2 + l2

)
/m2

ρ′ (42)

as
(
k2 + l2

)
/m2 → 0 and as f < N , the hydrostatic balance returns. A scaling analysis

of terms in (33) under the assumption that horizontal lengths are much greater than vertical
also reaches the same result.
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In this case, the governing equation equivalent to (37) for w becomes

∂2

∂t2

(
∂

∂z
ρ̄
∂w

∂z

)
+

(
∂2

∂x2
+ ∂2

∂y2

)
ρ̄N2w = 0 (43)

If ρ̄ varies over vertical scales much larger than w, the dispersion relation is ω2 =
N2

(
k2 + l2

)
/m2. However, the intent is to examine larger scales on the order of m = π/H ,

where H is the total water depth. Because we are considering scales of the entire water col-
umn, w and ρ̄ can vary over equal distances. Therefore, we must pursue a different solution
by returning to (35) and (36). Equation (35) remains unaltered, and, if we assume hydro-
static balance in the long horizontal scale limit, the term ∂2w/∂t2 in (36) becomes zero. A
method widely used in fluid dynamics is the separation of variables, in which the pressure
and vertical velocity are separated into the product of two functions each. One is a function
only of z and the other a function of only (x, y, t)

p′ = pv (z) ph (x, y, t)

w′ = wv (z) wh (x, y, t) (44)

where the subscripts denote vertical and horizontal functions. We must retain the vertical
variation in density as appropriate in the equations (35) and (36), and we use the mean
vertical density structure represented by ρ̄(z). Using these forms in (35) and (36), the four
resulting equations provide the solutions for the vertical and horizontal components:

1

ρo

pv = C2 ∂wv

∂z
(45)

1

ρo

∂pv

∂z
= −N2wv (46)

(
∂2

∂t2
+ f 2

)
wh = C2

((
∂2

∂x2
+ ∂2

∂y2

)
∂

∂t
− ∂f

∂y

∂

∂x

)
ph (47)

wh = ∂ph

∂t
(48)

where the Coriolis parameter terms are retained in the horizontal equations. The vertical
equations (45, 46) can be reduced to a single variable that results in the Sturm–Louisville
problem for either the vertical structure wv or pv:

∂

∂z
ρ̄
∂wv

∂z
= − 1

C2
ρoN

2wv

∂

∂z

1

ρ̄N2

∂pv

∂z
= − 1

C2

1

ρ̄
pv (49)
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For an observed density profile ρ̄ and corresponding Brunt–Väisälä frequency N , multiple
solutions to (49) are possible with discrete and decreasing values of C2 identified as C2

n .
If the separation of variables for u and v is conducted similarly to p′, it is apparent that the

vertical structure of the horizontal velocity field is the same as p′. According to the theory
of the Sturm– Louisville problem, the nth mode contains n zero crossings or reversals in
current direction. The 0th mode has unidirectional currents throughout the water column,
and the 1st mode has one zero crossing in currents so that surface and deep currents are
oppositely directed.

Ignoring the Coriolis parameter terms in the horizontal equations (47), these are the same
as the equations governing the development of a thin fluid with uniform properties over
depth and a propagation speed of C. Thus, the ocean can be treated as a superposition of
modes with vertical structure provided by the solutions to (49) corresponding to Cn, and
the horizontal dynamics associated with each are very similar. The main difference is the
underlying speed at which waves propagate according to solutions to (49). An example
of the vertical structure is provided in Figure 3. Two observed profiles of temperature and
salinity are used. One is north of the Gulf Stream and one is south in order to highlight the
difference in stratification and its effects. The Brunt–Väisälä frequency is computed from
each profile, and the associated modes are provided for w and p′, which is the same as the
vertical structure for (u, v). The profile north of the Gulf Stream has higher stratification
in the range of 100–500 m depth, whereas the profile south of the Gulf Stream has weaker
stratification over the deeper range 500–1000 m depth. This changes the depth of pressure
and velocity variability between the areas north and south of the Gulf Stream.

In a thin fluid with uniform properties over depth H , the propagation speed is the
barotropic wave speed

√
gH . The propagation speeds in a stratified fluid are much less. One

example is made by representing the ocean as a two layer fluid with less dense water over
more dense water and the assumption that the lower layer is infinitely deep with no velocity.
This is a very simple representation of the thermocline variability and is referred to as a
reduced gravity model. Waves that are a result of the interface displacement between the
upper and lower layer propagate at a speed of

√
g′Hu where Hu is the thickness of the upper

layer at rest and the reduced gravity is defined as g′ = g (ρu − ρl ) /ρl . This typically has
a very small value as the density difference between the upper and lower layers (ρu − ρl )

is much smaller than the lower layer density ρl . Thus, typically, Cn << C0 for n > 0. An
example in the next section based on observations of propagating waves indicates a typical
value of g′ = 0.001.

Reduced gravity models are very efficient to run but the represented processes are
restricted. Therefore, these systems useful for long experiments when particular processes
are of interest (Qiu and Chen 2012). For operational applications, the range of ocean pro-
cesses that must be represented is much larger than what a reduced gravity model may
represent. A much more complex model should still retain the ability to forecast reduced
gravity physics, and thus it is useful to understand these dynamics when diagnosing a
complex system.
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Figure 3. Vertical modes north (68.05W, 39.00N, left column) and south (67.83W, 34.15N, right
column) of the Gulf Stream. The top row is the observed temperature and salinity, and the cor-
responding Brunt–Väisälä frequency is the second row. The computed vertical models of w are
shown in the third row, and the modes of p′ are the bottom row. Image provided courtesy of B
Linzell.
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The terms in (47) related to the Coriolis parameter and its variation with latitude lead to
interestingly different solutions from the usual shallow water wave solutions. We now turn
attention to these terms and their influence on the large scale horizontal dynamics.

9. Large scale horizontal waves

Observation of ocean features such as the Gulf Stream and mesoscale eddies in Figure 1
show that spatial scales are large and time scales are longer than the planet rotation period.
These scales are the primary targets for most global to regional forecast systems (Tonani
et al. 2015). Forecasts of these scales provide information for problems such as disasters
(Tsumune et al. 2012) and for planning marine operations (Smith et al. 2010).

Building on the concept that the ocean variations can be decomposed into vertical modes,
and that each mode has similar horizontal dynamics differentiated by propagation speed,
we now examine dynamics relevant for large scale waves. Again, large scale implies that
the horizontal scales are much larger than the vertical so that the hydrostatic balance is
appropriate (42). First, we examine unforced wave solutions to the linearized equations
(33) and initially ignore the latitudinal variation in Coriolis parameter. In which case, (47)
leads to the equation governing the horizontal pressure field

(
∂2

∂t2
+ f 2

)
ph = C2

n

(
∂2

∂x2
+ ∂2

∂y2

)
ph (50)

where the speed Cn is dependent on the particular vertical mode being considered. We seek
solutions of the form ph = phA exp (i (kx + ly − ωt)), and this is a solution of equation
(50) if

ω2 = f 2 + C2
n

(
k2 + l2) (51)

Note the similarity to (39), assuming the long wave limit
(
k2 + l2

)
/m2 → 0, in which case

the phase speed of (39), N2/m2, is replaced by C2
n . The velocity field provided in the form

(uh, vh) = (uhA, vhA) exp (i (kx + ly − ωt)) from (34) is then

uhA = 1

ρo

−kω − if l

ω2 − f 2
phA

vhA = 1

ρo

lω + if k

ω2 − f 2
phA (52)

These solutions are Poincare waves. The dispersion relation (51) indicates that the frequency
is always greater than f , and, according to (52), the velocity field is not in geostrophic
balance.

The unforced solutions to the linearized equations of motion (33) indicate the natu-
ral ocean dynamical means to respond to an input forcing. One example of semidiurnal
Poincare waves in response to external forcing is provided in the Santa Cruz basin using
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Figure 4. An example of a Poincare wave generated in a realistic geometry through forcing within
an enclosed basin provided. (a) Pressure, (b) phase of pressure, (c) horizontal kinetic energy and
energy flux vectors, (d) potential energy due to buoyancy displacement. Image provided courtesy
of M Buijsman.

the ROMS model (Figure 4; Buijsman et al. 2012). In this case, regular tidal current forcing
inputs energy to a local enclosed small-scale basin. The response is a vertical and horizon-
tal first-mode wave that is progressive along the azimuthal direction and standing along
the radial axis of the enclosed basin. The pressure field within the model experiment indi-
cates consistency with phase increasing in a clockwise direction. The implication is that
the Poincare wave and its energy flux propagates clockwise within the basin. The largest
potential energy due to displacements of buoyancy surfaces occurs on the outer edge of the
domain with a minimum potential energy variation in the domain center. Kinetic energy
has the largest magnitudes in the domain center.

The Kelvin wave is another large-scale solution to the linearized dynamical equations
(33) when bounded on one side. Consider the situation where a solid vertical wall exists at
y = 0, vertical and horizontal solutions are separated so that (50) describes the horizontal
evolution, and the horizontal solution is expressed as ph = phy (y) exp (i (kx − ωt)). Then
the horizontal dynamics from (50) provide

∂2phy

∂y2
+

(
1

C2
n

(
ω2 − f 2) − k2

)
phy = 0 (53)



664 The Sea: The Science of Ocean Prediction [75, 6

The boundary condition for v (y = 0) = 0 when used with (34) implies(
f k + ω

∂

∂y

)
phy

∣∣∣∣
y=0

= 0 (54)

First note that Poincare waves still are solutions to the bounded problem described by
equations (53) and (54). If phy = Re

(
iphyA exp (ily)

)
where phyA is a real valued amplitude,

the solution satisfies the boundary condition (54) and the dynamical relation (53) if ω2 =
C2

n

(
k2 + l2

) + f 2, which is the dispersion relation for Poincare waves given in (51). The
main change from Poincare waves in a laterally unbounded medium is that the phase is
determined by the boundary condition. This situation is highlighted in Figure 4 as the
Poincare wave propagates around the edges of the basin. The boundary condition also
enables the Kelvin wave.

In an infinite horizontal domain, solutions growing exponentially are not allowed as
amplitude becomes unrealistically unbounded. With a lateral boundary, the unbounded
portion of the solution may be suppressed. Specify phy = phyA exp (∓ly) with convention
that the upper sign (negative in this case) applies for y > 0 and the lower sign (positive)
applies for y < 0. The result is that the solution decreases in amplitude with distance from
y = 0. With this horizontal form, the dynamical relation (53) produces ω2 = C2

n

(
k2 − l2

)+
f 2, and the boundary condition (54) results in (f k ± ωl)|y=0 = 0. The boundary condition
implies ω = ∓f k/l. In the Northern Hemisphere, if the wall is not on the equator, then
waves north of the wall propagate to the east and waves south of the wall propagate to the
west regardless of the sign of k. These are Kelvin waves. An interesting situation exists
on the equator where Coriolis changes sign on opposite sides of the wall so that the waves
on both sides of a wall on the equator propagate to the east. From the perspective of the
wave, in the Northern Hemisphere the boundary is on the right-hand side when facing in
the direction of propagation and on the left-hand side in the Southern Hemisphere.

Kelvin and Poincare waves play a critical role in the propagation of tides. The moon
and sun cause the tides by gravitational attraction. A simple, static tidal forcing response
suggests that high tides occur on the near side of the earth toward a gravitationally attracting
body, and high tides also occur on the far side of the earth due to the decreased gravitational
attraction and increased centrifugal force as the earth and other body orbit the center of
mass of the two. However, the sun and moon are not statically located, so the tidal bulges
must propagate to keep up. The tidal bulge cannot propagate freely as the Earth rotates
underneath because of the interaction with land boundaries. These waves are the primary
mechanism by which the basin scale propagation of tides occurs, and much of the science
of tides and tidal prediction is involved in studying these waves.

With the dynamical relation and boundary condition, it is possible to show l must satisfy

Rn = 1/l = Cn/f (55)

Rn is the Rossby radius of deformation, and it is different for each vertical mode cor-
responding to Cn. A global examination of the first mode Rossby radius is provided by
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Figure 5. An example of Kelvin wave propagation along the equatorial Pacific from May through
April 2004. The Tropical Atmosphere Ocean (TAO) data analysis shows the upper 300 m heat
content as anomalies from the 1992–2003 mean. As the Kelvin waves propagate, the thermocline
moves vertically. The upper ocean total heat content changes as a result. The downward thermocline
movement at the wave front is referred to as downwelling, and the upward thermocline movement
in the wave lee is referred to as upwelling. From the 5 May 2005 Climate Prediction Center El
Niño–Southern Oscillation (ENSO) diagnostic discussion.

Chelton et al. (1998). It is the distance an unforced wave propagates during one pendulum
day. With the definition (55), the dispersion relation becomes ω2 = C2

nk
2. With the relation

ω = ±f k/l determined by the boundary condition, according to (34), v = 0 everywhere.
The geostrophic balance is then satisfied by u according to (33). Also notice that the fre-
quency can be much less than f if k � l, that is, according to (55) if the wavelength in the
direction along the wall is greater than the Rossby radius of deformation.

Observations of Kelvin wave propagation are shown in Figure 5. Note the propagation
speed to the east is approximately 2 m/s. This is far less than the zero-mode propagation
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speed of
√

gH = 200 m/s using H = 4000 m. For 2 m/s propagation, the reduced gravity
g′ = 0.001.

Wave solutions in the simplified dynamics are natural responses to changes in ocean
forcing, and Kelvin waves are a response during the El-Niño process. Typically, winds
from the east blow across the tropical Pacific Ocean. Because of Ekman transport and
the change in sign of Coriolis across the equator, a divergence and associated upwelling
occurs along the equator that brings cooler waters to the surface. A steady-state balance
is established, and when the winds weaken the system must produce a transient response.
The response is in the form of a pair of Kelvin waves propagating from west to east on
opposite sides of the equator (Kug et al. 2010). The two waves balance one another across
the equator. This creates the equivalent of a no-flow boundary along the equator for each
wave. As the waves propagate toward the east, the stratification changes, and warm water
appears on the ocean surface as the Kelvin waves pass. The Kelvin wave pressure field
results in a high sea surface height that propagates to the east with the waves. These are
observed as shown in Figure 5.

Upon reaching the eastern Pacific boundary, the Kelvin wave continues propagation both
northward and southward along the American continents with the coastlines serving as a
solid wall to support them (Hermann et al. 2009). The associated temperature and salinity
fluctuations impact fisheries (Williams and Terawasi 2011). Predicting the El-Niño onset
effects requires accurately representing the propagation of Kelvin waves, which in turn
requires the accurate representation of vertical stratification distribution.

10. Rossby wave dynamics

So far, the Kelvin wave is one solution that has a frequency much less than f at large
spatial scales. As Kelvin waves propagate poleward along the American continents during
the El-Niño process, perturbations remain in their wake. The ocean response to these per-
turbations is provided by Rossby waves (Fu and Qiu 2002; White 1985). The dynamics
are due to one term in equation (35) that has yet to be addressed, which is ∂f/∂y ∂p′/∂x.
Assume the latitudinal variation of the Coriolis parameter is locally linear, as in equation
(21). The term in equation (35) involving the gradient of Coriolis becomes β∂p′/∂x. If
the flow is geostrophic, this term can be recognized as being proportional to βvg , and the
question becomes, how does the meridional velocity interaction with Coriolis variation
affect ocean dynamics? It should also be noted that the Sverdrup balance (30) contains this
term.

We must explicitly bring out the larger scale and lower frequency variations in (33). From
many observations in the ocean, the geostrophic balance holds with high accuracy. However,
the geostrophic balance does not indicate how the flow evolves. It simply diagnoses the
velocity from the pressure. Deviations from geostrophy interact to create a time evolving
flow field. Thus, we seek solutions that possess several properties: 1) the flow field contains
small deviations from geostrophy, 2) horizontal scales are large on the order of 100 km,
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and 3) time periods are long relative to 1/f . The result will be the equations that are not
geostrophic but quasigeostrophic.

These considerations select a subset of the time and space scale domain as well as the
relative importance of variable relations within the dynamical equations. We can exploit the
nondimensional dynamical equations (22–25) along with the nondimensional constants of
the Rossby, Froude, and Reynolds numbers. Consider length scales of 105 m, time scales
of 106 s, midlatitudes so that f = 10−4s−1, water depths of 103 m, and a stratification with
N = 10−2 s−1, the nondimensional parameters result in Ro = 10−2, Fr = 10−2, β = 10−2,
and assume Ro/Re is smaller than 10−2 so that frictional processes are ignored.

The following analysis would certainly change if the choices for scales did not produce
nondimensional parameters that were so conveniently the same. Fortuitously, this allows an
expansion of each variable in a power series of a parameter such as u = u0 +εu1+ε2u2 +...,
where the parameter ε is a small number such as 10−2 and each ui is order 1. The numerical
subscripts on the variables indicate the order of the small parameter multiplying them. These
choices allow all the nondimensional parameters in (22–25) to be replaced by ε. When
substituting the power expansion in for each variable, it allows variables of like powers
in ε to balance one another. For example, the horizontal momentum equations of (22–25)
provide a balance in zero-order terms of in ε of (u0, v0) = (−∂p0/∂y, ∂p0/∂x) (subscripts
note the order ε). When redimensionalized, this is the geostrophic balance, which is a result
of the assumed scales. With the definition of ∇H π0 = −k × VH0, by continuity of (25),
∂w0/∂z = 0. Over a flat bottom where w = 0 the implication is that w0 is 0 throughout
the water column. The vertical momentum equation (23) in the 0 order balance leads to
the hydrostatic relation. Finally, the evolution of buoyancy or density (24) leads to the time
rate of change of ρ′

0 is 0. The 0 order balance of the equations of motion leads to the usual
situation in which a specified pressure field allows diagnosis of geostrophic velocity, though
there is no time evolution.

Now we can examine the balances involved in the terms related to the first order ε. The
order 1 balance remains hydrostatic and nondivergent, and also results in

Ro

(
∂VH0

∂t
+ VH0 · ∇VH0

)
+ ∇H π1 + k × VH1 + βy

fo

k × VH0 = 0 (56)

∂b1

∂t
+ VH0 · ∇b1 + w1

N2

N2
o

= 0 (57)

The order 1 horizontal momentum equations (56) are combined by continuity. Given that
the 0 order flow is geostrophically balanced, the 0 order velocities in (56) are replaced by
gradients of the 0 order pressure field.

(
Ro

(
∂

∂t
− ∂π′

0

∂y

∂

∂x
+ ∂π′

0

∂x

∂

∂y

) (
∂2

∂y2
+ ∂2

∂x2

)
+ β

∂

∂x

)
π′

0 = −∂w1

∂z
(58)
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Similarly, the hydrostatic relation and the buoyancy evolution (57) result in

∂w1

∂z
=

(
∂

∂t
− ∂π′

0

∂y

∂

∂x
+ ∂π′

0

∂x

∂

∂y

) (
∂

∂z

(
1

N2

∂π′
0

∂z

))
(59)

Equations (58) and (59) are the quasigeostrophic counterparts to the results from the linear
equations (35) and (36). Note the vertical velocity gradient driving the 0 order pressure π′

0
in (58). It was noted earlier that wind stress curl drives the vertical velocity at the base of
the Ekman layer (29). The order one vertical velocity gradient on the right-hand side of
(58) drives the zero-order pressure evolution of π′

0. The combination of (58) and (59) then
provides the equation for the evolution of π′

0 that applies to large-scale, long-time-period
geostrophic flows. The governing equation is redimensionalized, and the results expressed
in terms of the 0 order pressure field p′

0.
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∂p′
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p′

0 = 0

(60)

Because the zero-order balance is geostrophic, horizontal pressure gradients can be inter-

preted as the geostrophic flow
(
ug

∂
∂x

, vg
∂
∂x

) = 1/ρofo

(
− ∂p′

0
∂y

∂
∂x

,
∂p′

0
∂x

∂
∂x

)
. The first set of

operators in (60) is the total derivative with advection by geostrophic velocity rather than
the total velocity. The second set of operators includes

(
∂2/∂x2 + ∂2/∂y2

)
p′

0, which is
proportional to the vorticity of the geostrophic flow. The term β∂/∂x is proportional to
the meridional velocity times the latitudinal variation in Coriolis. When ignoring the ver-
tical variability (assuming constant N), (60) states a conservation of vorticity and βvg . As
vorticity increases, βvg must decrease and vice versa. Thus, an initial perturbation in vor-
ticity has a restoring force by meridional movement changing the latitude and changing the
local Coriolis parameter. Obviously, wave solutions should be examined. Assuming small
amplitude values of all variables, the advective terms are not significant. We are seeking
solutions of the form p′

0 = p′
0A exp (i (kx + ly + mz − ωt)). This form with (60) leads to

the dispersion relation

ω = −βok

l2 + k2 + f 2
o

N2 m2
(61)

This results in a unique character. Regardless of the sign of the eastward wavenumber k,
the phase propagation direction is westward. These waves are natural mode of the ocean
that are initiated in response to changes in forcing.

Kelvin waves and Rossby waves play a joint role in the El-Niño process. As the Kelvin
waves reach the American continents, the high sea surface height builds along the continents
and begins to propagate to the north and south. The pressure anomaly along the American
continental coasts results in the generation of Rossby waves that propagate to the west.
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Figure 6. An example of Rossby wave propagation generated by equatorial wind variations shows the
response to Kelvin waves in the form of Rossby waves propagating westward from the American
continental coasts. The waves refract toward the poles due to changes in phase speed with latitude.
Image provided courtesy of B Qiu.

Figure 6 from Qiu, Miao, and Müller (1997) provides an example from a reduced gravity
numerical model. The equatorial wind forcing is an analytical seasonal zonal forcing that
results in annually generated Rossby waves. The Rossby wave propagation speed at lower
latitudes is faster than at high latitudes because of latitudinal variations in f . The waves
refract toward the poles over time. Spatial stratification changes are not represented in the
model result of Figure 6, though these do add to the latitudinal changes in propagation
speed. At higher latitudes the time to cross the Pacific Ocean can be many years. The
response times are very important because they indicate the time over which the ocean
adjusts to perturbations. Determining if an ocean model is correctly representing dynamical
processes can require integration over several times the system response period to allow
initial condition transients to damp out and to produce the evolving response to events.

Predictions of El-Niño influence decisions on time scales of months as preparations are
made in fisheries and agriculture for expected changing conditions. There is forecast skill
at this time scale, and the predictive capability for these problems has continued to improve
over time (Barnston et al. 2012).

Rossby waves are closely related with their more nonlinear cousins: mesoscale eddies.
In fact, a famous paper featuring the first satellite observations of “Rossby waves” (Chelton
et al. 1998) caused quite a stir when the waves did everything right, except propagate at the
right speed. Theories to explain why multiplied, but, in the end, revisiting the problem with
better data from multiple, simultaneous satellite perspectives revealed that these were not
waves at all, but eddies (Chelton, Schlax, and Samelson 2011). Since eddies are dynamically
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similar to Rossby waves, they shared the westward propagation and length and time scales,
but their nonlinearity slows their propagation relative to the linear wave solutions. Both
Rossby waves and mesoscale eddies can be formed by baroclinic instability, the topic of
the next section.

11. Mesoscale eddies

Returning to Figure 1, the Gulf Stream flow is part of the large-scale gyre circulation,
and mesoscale eddies are generated by meanders in the stream. Eddies, such as those
with 300 km scales in Figure 1, have significant impact on many ocean applications. The
mesoscale features associated with the Gulf Stream are not unique. Such processes are
observed throughout the oceans including within the interior of the large-scale gyres. Eddies
have been the focus of ocean forecasts on predictive scales of 3 to 30 days. The dynamics
involved in mesoscale eddy evaluation are nonlinear (Early, Samelson, and Chelton 2011).
Thus, it is not possible to analytically provide solutions over long time periods. However,
we can understand the initiation process, determine the nonlinear growth rate, and estimate
expected length scales.

By the geostrophic balance, pressure is higher on the south side of the Gulf Stream.
Observations show deep currents are weaker, and the thermal wind equation (27) indicates
there are vertical gradients of density associated with the Gulf Stream flow. On the south
side of the Gulf Stream, warm light waters exist in the upper ocean that are adjacent to
the cold heavy waters on the north side, and this is reflected by the in situ profiles of
Figure 3. The sea surface height on the south side is also higher than on the north side
(Niiler, Maximenko, and McWilliams 2003). This provides a canonical situation of an
eastward current in which pressure drives geostrophic flow that weakens over depth. Now
we can examine how perturbations about this current develop over time. The result is that
under the right circumstances, perturbations grow over time. The perturbations lead to north
and south meandering of the Gulf Stream that grow. The perturbations eventually lead to
isolated rings pinching off. Thus, there is a fundamental mechanism by which the large
scale circulation generates smaller scale features. The mesoscale eddy field is fundamental
as it drives significant variations in density and thus temperature and salinity, which in turn
leads to variation in biological properties and interactions with the atmosphere.

The energy driving mesoscale eddies is from the large scale circulation. Potential energy
is stored in the Gulf Stream in the form of vertical displacement of pressure surfaces. The
ocean mesoscale eddy generation is a mechanism that converts the available potential energy
into kinetic energy in the eddy field. The theory was initially developed by Eady (1949) and
additional dynamics were included by Charney (1947). Further observations and analyses
were extensively provided by the MODE Group and others (MODE Group 1978, Richman,
Wunsch, and Hogg 1977, Robinson and McWilliams 1974, Smith 2007, Spall 2000).

Begin by defining the flow of a canonical Gulf Stream containing a uniform surface
velocity U0 in the x direction that is geostrophically balanced, and speed decreases with
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depth to form a vertical shear U = U0 (1 + z/H). The surface flow U0 requires a pressure
gradient by the geostrophic balance, and the pressure at the surface is provided by the
sea surface height so that η = −U0gy/fo. At depth, the pressure field according to the
geostrophic balance is

p′ (x, y, z) = −foρoU0y (1 + z/H) (62)

By the hydrostatic relation, the density field is ρ′ (x, y, z) = foρoU0y/gH . There is ini-
tially no variation of the field in the x direction. At a given depth, waters south of y = 0 are
lower density (warmer) and waters to the north are higher density (colder) in agreement with
in situ observations of Figure 3. The analysis is restricted to examining small departures
from the mean field in equation (62). These processes are long time period, large-scale,
have small deviations from geostrophy, and are small deviations from the Gulf Stream
flow. Therefore, quasigeostrophic dynamics (60) are appropriate. In the simple examina-
tion provided here, the effects of β are not considered, and stratification measured by the
Brunt–Väisälä frequency N is assumed to be a constant value. The total state is a contri-
bution of three parts. Pressure is composed of the mean variation over depth of p̄ (z), the
canonical Gulf Stream p′ from equation (62), and the perturbations to the Gulf Stream flow
p′′. Since we are searching for perturbations that initially grow, we can assume that the per-
turbations about the Gulf Stream flow are small, and the dynamics are linearized around the
background state (62). Under these considerations the quasigeostrophic governing equation
from equation (60) is then

(
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) (
∂2

∂x2
+ ∂2

∂y2
+ f 2

o

N2

∂2

∂z2

)
p′′ = 0 (63)

The equation indicates that wave solutions are appropriate in the y direction, propa-
gating waves are appropriate in the x direction, and a separate solution must be con-
structed in the vertical z direction. Thus, solutions can be sought of the form p′′ =
p′′

V (z) exp (i (kx + ly − ωt)). Solutions that grow in time have a value of ω that is imagi-
nary and positive.

Although we are assuming an infinite and uniform horizontal domain, the vertical
structure of p′′

V must satisfy the upper and lower boundary conditions. Assuming a sim-
ple flat bottom ocean, at the bottom and surface the boundary condition is w = 0.
The solutions are composed of hyperbolic sines and cosines in the vertical of the form
p′′

V (z) = a sinh (cz) + b cosh (cz) where c2 = (
k2 + l2

)
N2/f 2

o . The relative amplitudes
a and b are determined from the vertical boundary condition, and a second condition is
derived for which the frequency is an imaginary number. This occurs when

1

4
H 2c2 − Hc coth (Hc) + 1 < 0 (64)

When Hc < 2.4, the flow is unstable and perturbations grow in time. The wavelength that
leads to the most unstable perturbation or the fastest growing perturbation will dominate
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Figure 7. The eddy kinetic energy from a 1/25◦ numerical model (top) and from historical drifter
observations (bottom). Local maxima in energy are associated with the western boundary currents
such as the Gulf Stream. High energy also occurs along the equator. Though the energy outside
these areas is lower, eddies are a persistent feature throughout the globe. Image courtesy P Thoppil.

over time. For values of U0 = 0.1 m/s, H = 1000 m, f0 =10−4 1/s, the wavelength
of the most rapidly growing instability is 391 km. The scale is comparable to the size of
mesoscale eddies in Figure 1, though the eddies are smaller for many reasons. This simple
linear analysis only describes the beginning of the process through which perturbations
grow in amplitude and lead to formation of ocean eddies. The vertical structure of the
perturbations is very important. The perturbation analysis shows that features in the deep
ocean are shifted to the east relative to features in the surface. This sets up the flow necessary
to lead to the instability.

The initial formation moves the warm southern waters to the north and cold northern
waters to the south, which reduces the slope of the isotherm planes. The effect is to transfer
the available potential energy stored in the thermocline into kinetic energy of the eddy field.
As the process proceeds, the linear assumptions in the derivation here are no longer valid,
otherwise the perturbation would grow unbounded. Instead, meanders in the currents form
into closed circulations that leave the relatively cold core eddies south of the Gulf Stream
and warm core eddies north of the Gulf Stream as seen in Figure 1.

Although the available energy is large in the Gulf Stream and the associated eddies are
very strong, this process is by no means restricted to only the strong currents across which
large slopes in isotherms exist. One example from Thoppil, Richman, and Hogan (2011)
is shown in Figure 7. Eddy kinetic energy is the time average of the kinetic energy after
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removing the mean velocity field. We see areas of strong western boundary currents contain
very high variability in the kinetic energy, and the ocean interior is still affected by the
influence of eddies. Mesoscale eddies form throughout the global oceans, and the ocean
variability at 100 km scales is typically dominated by the mesoscale eddy field.

The growth of instabilities in the ocean currents leads to a difficult ocean prediction
problem. The ocean mesoscale field prediction problem is similar to the prediction of
atmospheric weather. Small perturbations grow in time. Given an accurate initial condition
that reflects the position of mesoscale eddies, small errors result in a numerical forecast
diverging from reality at some point in time at which the forecast has no skill in predicting
the actual locations of eddies. The implication is that continual observations are required to
correct the initial condition on a regular basis, and the vast majority of information for the
ocean mesoscale is provided by satellite altimeters. Predictive skill has been demonstrated
out to 30 days (Metzger et al. 2014). Achieving this skill requires accuracy in the numerical
model as well as low latency access to global data sets and appropriate methods to correct
initial conditions for forecasts. Because nonlinear processes are required in the development
of mesoscale eddies, numerical model resolution must also be relatively high (Hurlburt
et al. 2011).

12. Frontogenesis

Eddies shed from the Gulf Stream contain water masses that are quite different from
the surrounding waters. Even eddies forming away from strong currents contain water
masses that differ from their surroundings. Thus, strong buoyancy gradients exist across the
periphery of eddies. The thermal wind equation (27) indicates that there must be horizontal
density gradients to balance the vertical velocity gradients. In addition, the eddy currents
continually drive waters of different buoyancy into confluence. The resulting effect is seen
in Figure 1 as thin filaments of different temperature water wrapping around the mesoscale
features and, also, along the Gulf Stream. The mesoscale field drives confluence of water
that then leads to a secondary circulation in the vertical referred to as frontogenesis. This
is a process in the atmosphere that leads to sharpening of fronts, and, in the ocean, it serves
as a mechanism for upwelling and downwelling around eddies. This process is predictable
to an extent if the ocean eddy locations and water masses are accurately predicted.

Consider how a 2D flow would change the density gradients of a material element. This
can be done by taking the x and y derivatives of the conservation equation for density (32).
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As an example, consider a 2D flow of (u, v) = (−x, y), which is nondivergent, having a
zonal velocity moving toward the x = 0 line and a meridional velocity moving away from
the y = 0 line. Material along the x = 0 line is being stretched in the y direction while
being compressed in the x direction without changing area. If the initial buoyancy field is a
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simply ρ = x, we see that the confluence along x = 0 is increasing the horizontal buoyancy
gradient. The rate at which this is occurring is given by the vector Q.

Returning to the nondimensional equations (56), ignoring the effects of β and ignoring
the order 1 pressure gradient, the order 1 velocity can be diagnosed from the total derivative
of the order 0 geostrophic velocity field:
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)
v0 − fou1 = 0 (66)

The order 1 quasigeostrophic conservation of density equation is
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g
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These two are combined through the thermal wind equation (27) relating horizontal
density gradients to vertical velocity gradients to provide the relation between the vertical
and horizontal order 1 velocities:
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A similar equation may be constructed for Qy . For the case at hand, consider simple 2D
confluence described by (u0, v0) = (−x, y) and density ρ′ = x so that Q = (1, 0). By
introducing the stream function in the vertical x, z plane so that
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(69)

It is evident that (69) becomes the Poisson equation ∂2ψ/∂z2 + ∂2ψ/∂x2 = 2Qx . Con-
sider a view in the x, z plane. The confluence front is oriented in the y direction, and the
confluence creates increasing density gradients. This produces a positive Qx , which in turn
drives a circulation in the plane perpendicular to the front. The circulation has upward
motion on the less dense (warm) side of the front and downward motion on the more
dense (cold) side of the front. This overturning circulation occurs along the periphery of
the mesoscale eddies. It is in these areas where eddies drive confluence of different density
water masses together. The vertical circulation within the frontogenesis brings deeper colder
waters near the surface and produces many of the fine filament features seen in Figure 1.
The surface mixed layer becomes thinner on the upwelling side of the front (Figure 8). The
frontogenesis mechanism shown here is only one of many generation mechanisms leading
to vertical circulation near the surface. These features become important in operational
applications where biological productivity is strongly affected by the upwelling of nutrient
rich deep waters. Fishing fleets work to minimize operational costs and direct efforts to
areas of greatest expected return. Prediction of these areas leads to reduced costs.



2017] Jacobs and Fox-Kemper: Ocean dynamics 675

Figure 8. The colored background is the Q vector magnitude computed from a numerical model.
The colored dots indicate a mixed layer observed on 12 July 2013 by aircraft-dropped, expendable
bathythermograph instruments. In the northeastern domain, the thin mixed layer dominates. South
of the Gulf Stream, deeper mixed layers dominate. On the edge of the Gulf Stream, in areas of high
Q, very thin mixed layers are consistently observed. Data courtesy of J Richman.

13. The zoo of surface phenomena

Although many of the processes at the ocean surface are parameterized, some of the largest
features—those that occupy the submesoscale—are beginning to be resolved in operational
models. This requires resolutions of 1 km or higher (Capet et al. 2008), which are being
reached in regional operational systems (Rowley and Mask 2014). The submesoscale is
distinguished in the previous equations by order unity Rossby and Froude numbers, which
means that few of the approximations made here can be made generally on these length
scales. As such, a diverse set of phenomena occupy these scales, as reviewed by Thomas,
Tandon, and Mahadevan (2008) and McWilliams (2016). Because waves, winds, and con-
vection mix the upper ocean, the stratification is low, which allows for significantly smaller
baroclinic instability and eddies than elsewhere (Boccaletti, Ferrari, and Fox-Kemper 2007).

On smaller scales, geostrophy, stratification, and even hydrostasy give way to active waves
and turbulence. In modeling many of these boundary layers, individual features are rarely
resolved. Instead, budgets of energy, temperature, and salinity can be used to constrain
processes (Kraus and Turner 1967), or similarity theories for turbulence can be applied
(Large, McWilliams, and Doney 1994). Scaling laws and balances, such as those for the
turbulent Ekman depth or the Monin–Obukhov depth balancing shear and convection, are
used in devising these schemes. Recent work has emphasized the role of waves in driving
turbulence (McWilliams, Sullivan, and Moeng 1997; Belcher et al. 2012; Harcourt 2013)
and improved air-sea fluxes (e.g., Liang et al. 2011; Fairall et al. 2011). Reviews (Burchard
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et al. 2008; Sullivan and McWilliams 2009) and texts (Thorpe 2005; Baumert 2005) offer
more depth than is possible here.

Finally, because they coexist in the boundary layer, submesoscale fronts and eddies,
waves, phytoplankton, and turbulence may interact with one another. Understanding of these
interactions is just beginning, but simulations (Hamlington et al. 2014; Smith, Hamlington,
and Fox-Kemper 2015; Suzuki and Fox-Kemper 2016; Taylor and Ferrari 2010), theory
(Haney et al. 2015; McWilliams et al. 2012), observations (D’Asaro et al. 2011; Mahadevan
et al. 2012), and new parameterizations (Fox-Kemper, Ferrari, and Hallberg 2008) are
contributing in this rapidly developing area.

14. Application of dynamical insights to operational oceanography

We began this chapter with a single image of the Gulf Stream region and many local
ocean features. It should be recognized that this single image in and of itself is a tremen-
dous achievement in the field of oceanography requiring years of development of satellite
programs and many years of development of the ability to process and analyze such observa-
tions. The considerations in this chapter are enabled by several decades of effort to observe
the ocean in innovative ways. Finally, the great insight from many creative and critical
thinkers have provided dynamical relations to the features we see in many observations
acquired within the ocean. We build operational ocean predictions on all this prior insight
provided by a vast range of researchers and practitioners. In this chapter we have provided an
examination of some of the ocean processes involved in the features we observe in Figure 1.
There are several considerations the reader should keep in mind moving forward from this
point.

The operational oceanography practitioner should realize that our dynamical understand-
ing is insufficient. Enormous strides in understanding have brought the science and oper-
ational communities to the point at which they have enabled operational forecasts of the
ocean. Global operational ocean predictions began in earnest just before 2000, and thus this
is a relatively new area. Our forecasts continually fall short. This is demonstrated in several
ways. Misforecast positions of ocean features are commonplace. A small error in position-
ing a mesoscale feature drastically changes the forecast pathways of transport for material
contaminants, and evaluations of system performance show that predicting velocities and
implied trajectories is difficult (Blockley, Martin, and Hyder 2012; Barron et al. 2007).
Equally concerning is the operational ability to provide future decision information. The
inability to forecast conditions prevents many endeavors requiring high-level societal pol-
icy decisions, including harvesting clean energy from the oceans, establishing sustainable
aquaculture, determining hypoxic areas affected by agricultural utilization, and preparing
ourselves for future possible changes in the Earth environment. The lack of present ability
to predict the ocean limits decisions within these areas.

To address these shortfalls requires continued understanding of the ocean dynamics and
exploitation in operational systems. A significant obstacle is that these activities often occur
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in different groups or departments, or even agencies, of a government. Interaction is neces-
sary between the operational center providing predictions and the researchers developing
the next system. The operational centers receive regular feedback on performance for many
applications. The researchers develop the knowledge of potential shortfalls necessary to
meet required performance. These interactions form the basis of operations-to-research and
research-to-operations efforts. The components of research and operations too easily drift
into their own spheres of consideration, and constant effort is required to align the two
(Bernardet et al. 2015)

Application of ocean dynamics affects the future of our society. Understanding of ocean
dynamics continues to evolve. New scientific results continue to be published that must
be considered to build future prediction capabilities. It is incumbent on the operational
oceanography practitioner to remain abreast of developments in ocean dynamics. The oper-
ational practitioner must continually maintain current knowledge and apply new dynamical
understanding to meet existing and future prediction requirements.
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