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ABSTRACT
Four-dimensional variational (4D-Var) data assimilation for operational systems requires the
solution of large linear systems that are poorly conditioned in general. In addition to efficient
iterative solvers for linear systems, using a good preconditioner is required to guarantee an
acceptable solution with a small number of iterations. We consider the assimilation of ocean
observations using a weak constraints 4D-Var for the Navy Coastal Ocean Model (NCOM),
based on the representer method. Two methods of preconditioning the linear system are
implemented, namely the scaling of the linear system by the square root of the observations
error variances, and the approximating stabilised representer matrix based on the computation
of some representer functions. We evaluate their convergence using criteria such as the norm
of the residuals and of the gradient of the cost function, the analysis error evaluated at the
observation locations, and finally the convergence of the sequence of analyses. Results from all
criteria show that the fastest convergence is achieved with the rescaling preconditioner when
the conjugate gradient used to solve the linear system is equipped with a suitable inner
product instead of the Euclidean.
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1. Introduction

The four-dimensional variational (4D-Var) data assimi-
lation algorithm seeks to minimise a cost function
defined as a weighted sum of squared discrepancies
between the model and the observations, using the
model dynamics as a constraint, either strong or weak.
Applications of 4D-Var to geophysical models of the
atmosphere or the ocean are usually computationally
expensive, primarily due to the necessity to solve the
adjoint and the nonlinear/linearised models multiple
times, and the size of the model state vector. The latter
arises from a large model domain, or high horizontal
and vertical resolutions, or both. The iterative process
by which the 4D-Var algorithm minimises the cost
function is usually poorly conditioned. Operational
implementation of the 4D-Var necessitates that an accu-
rate analysis be reached within a limited wall clock time
constraint, that is, with the fewest iterations possible.
This requires, at least, a monotonic decrease at every iter-
ation of the cost function itself or the residuals of the lin-
ear system associated with the minimisation of the cost
function. Given the fact that each iteration requires the
integration of the adjoint and either the forward

nonlinear or tangent linear models, the use of a precon-
ditioner becomes imperative in order to mitigate the cost
of the minimisation process and render the 4D-Var com-
putationally affordable for operational use. This paper
investigates the implementation of existing precondi-
tioners and compares their relative performances within
a weak constraints 4D-Var system using a realistic ocean
model.

The minimisation of the cost function is usually car-
ried out either in the control space or in the observations
space. In the control space (usually taken to be the space
of initial conditions in the classic 4D-Var), the iterative
process through which the minimum of the cost function
is obtained can be preconditioned by the square root of
the background error covariance, Lorenc (1988), see
also Courtier (1997), or by strategies such as the one pro-
posed by Robert et al. (2006), that consists of first solving
the 4D-Var problem in a reduced state space and using
the solution as the initial guess for the full problem.

Here we consider the minimisation of the cost func-
tion in the observations space since it is usually much
smaller than the control space, especially when a weak
constraints 4D-Var is adopted. Thanks to the properties
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(symmetric and positive definite) of the matrix of the lin-
ear system (1), the conjugate gradient (CG) algorithm of
Hestenes and Stiefel (1952) is a good candidate for a sol-
ver, even though linear such systems are usually ill con-
ditioned in the context of data assimilation. The
literature on building preconditioners for linear systems
is abundant, see for example Golub and Van Loan (2013,
chapter 11) and Saad (2003, chapter 10). However it
mostly applies to linear systems that have explicit
matrices, which is not the case in data assimilation
where the computation and storage of the matrix of
the linear system (1) is prohibitively expensive in terms
of memory and inefficient to use.

Some ideas for preconditioning the minimisation of
the cost function in the observations space, are: (i) the
preconditioner proposed by Amodei (1995) that consists
in scaling the linear system by the square root of the of
observations error covariance matrix, see also Courtier
(1997); (ii) the preconditioner of Egbert and Bennett
(1996), see also Egbert (1997), that consists of building
a preconditioning matrix by computing a few representer
functions associated with pre-selected observations; (iii)
the so-called second level preconditioner where a low
rank approximation of the inverse of the matrix of the
linear system is built with the iterations of the CG as
in Giraud and Gratton (2006) and Chua et al. (2009).
Two preconditioners are considered in this study: the
preconditioner proposed by Amodei (1995), and the pre-
conditioner proposed by Egbert and Bennett (1996). The
convergence of these two preconditioners is compared
using the representer based 4D-Var for the Navy Coastal
Ocean model of Ngodock and Carrier (2014) for the
assimilation of real observations of the ocean in the
region around Hawaii. These two preconditioners have
been successfully implemented in individual assimilation
problems. However, our interest lies in their relative per-
formance against each other when implemented within
the same assimilation system. To our knowledge such
comparisons have not been carried with realistic ocean
models, although we note the work of Zaron (2006)
who made similar comparisons using a planetary geos-
trophic model, and Chua et al. (2009) using an atmos-
pheric model.

In the representer method of Bennett (1992, 2002),
also known as the dual space formulation, Courtier
(1997), the analysis equation for the optimal increment
is written in the form

dx = LCLTHT(HLCLTHT + R)−1(y −Hxb). (1)

where C is the background error covariance for the entire
model trajectory, L is the tangent linear model (TLM)
and LT is its adjoint, H is the linearised observation

operator that projects the entire model trajectory onto
the observations space. The solution of (1) is obtained
by first solving the linear system

(HLCLTHT+R)b = (y − Hxb), (2)

and applying the operator LCLTHT (which is a succes-
sion of the adjoint integration, the covariance multipli-
cation and the TLM integration) to the result. The
most computationally intensive and expensive part of
the assimilation consists of the iterative process for the
inversion in (2), where two matrix-vector multiplications
in observation space are needed at every iteration: the
first, Rb is readily available since R is usually considered
diagonal; the second, HLCLTHTb is obtained by solving
the adjoint model with impulse at observation locations
scaled by the components of the vector b, applying the
background and/or model error covariance and passing
that information to the TLM, which in turn is evaluated
at the observation locations. Although both matrices
involved in the inversion in (2) are symmetric (the repre-
senter matrix HLCLTHTand the observation error
covariance matrix R), making the use of efficient iterative
algorithms such as the CG of Hestenes and Stiefel (1952)
attractive, the system itself is usually poorly conditioned,
thus worsening the computational expense of the 4D-
Var algorithm.

The main problem that arises while solving the data
assimilation problem in the observation space is that
the commonly used CG algorithm does not generate iter-
ates that monotonically reduce the quadratic cost func-
tion in the state space, El Akkraoui et al. (2008),
Gratton and Tshimanga (2009) and El Akkraoui and
Gauthier (2010). The First few iterations can lead to a
solution that is worse than the background. To solve
the problem of non-monotonic reduction of the quadra-
tic cost function associated with the algorithm defined in
the observation space, Gratton and Tshimanga (2009)
derived an algorithm known as restricted preconditioned
conjugate gradient (RPCG). The RPCG solves the data
assimilation problem in the observation space and gener-
ates iterates that are mathematically equivalent to the
iterates of the CG applied to the problem in the state
space with the
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preconditioning. The RPCG relies

on the existence of a special matrix (eqn. 8 in Gratton
and Tshimanga (2009)) that is a function of the precon-
ditioner used in the state space.

When the matrix of background error covariance is
used as preconditioner for the primal problem, the
special matrix is equal to the identity. This special case
is known as the Restricted B-preconditioned Conjugate
Gradient (RBCG) in Gürol et al. (2014), who also derived
the Lanczos equivalent of the RBCG and called it
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restricted B-preconditioned Lanczos (RBLanczos), and
established the equivalence between the RBCG and the
CG equipped with a suitable inner product to solve the
dual problem preconditioned by R−1. Examples were
presented in Gürol et al. (2013) showing the benefits of
RBCG in a 3D-VAR system for the global configuration
of the Nucleus for European Modeling of the Ocean
(NEMO) model, Madec (2008), and the benefits of
RBLanczos in a 4D-Var system for a California Current
configuration of the Regional Ocean Modeling System
(ROMS) of Moore et al. (2011).

The preconditioners are briefly presented in Section 2,
followed by experimental results in Section 3. The rela-
tive contributions of the observations error precondi-
tioner and the representer matrix-based inner product
are discussed in Section 4, and concluding remarks are
given in Section 5.

2. The preconditioners

2.1. Amodei

Amodei (1995) proposed a preconditioner based on the
observation error covariance matrix that transforms (2)
into:

(R−1/2HLCLTHTR−1/2+I)l = R−1/2(y −Hxb), (3)

and b = R−1/2l. The same CG algorithm used for sol-
ving (2) can be used for (3). Although (3) is technically
just a change of variables from (2), it acts like a precon-
ditioner in practice, allowing the iterative inversion to
converge significantly faster (i.e. with fewer iterations)
as shown below. In (3) the matrix multiplication
R−1/2HLCLTHTR−1/2l follows the same steps described
above, except for the additional scaling of the obser-
vation impulses by R−1/2 both before the adjoint and
after the TLM integrations.

There are two implementations of (3) in this study.
The first, hereafter referred to as A1, is the regular
CG algorithm to solve (3) using the Euclidian inner
product. However, according to Gratton and Tshi-
manga (2009) the convergence of the CG can be further
improved by replacing the Euclidian inner product with
the one defined by the matrix R−1/2HLCLTHTR−1/2, the
latter being symmetric and positive definite, Bennett
(2002). This second implementation of (3) is referred
to as A2.

2.2. Egbert–Bennett

Egbert and Bennett (1996) and Egbert (1997) proposed a
preconditioner P̂ (hereafter referred to as the EB precon-
ditioner) as an approximation of the so-called stabilised

representer matrix

P = HLCLTHT + R, (4)

where a limited number of representer functions is com-
puted and used to approximate the full representer
matrix, and the combination of singular value decompo-
sition and the Sherman–Morrison and Woodbury-for-
mula are used to obtain the multiplication of P̂−1 with
a vector in observation space. Since representer functions
are independent from one another their computation
can be done in parallel, reducing the overhead cost of
the EB preconditioner. However, the pre-selection of
the observation locations for which representer functions
are computed for the EB preconditioner is attractive
mainly for fixed observing platforms, for example, repeat
period satellites, stationary buoys, and coastal high fre-
quency radars. For moving platforms such as gliders,
ships, or drifters (e.g. drifting buoys or Lagrangian drif-
ters), a new selection has to be made in each assimilation
cycle if observation locations from these instruments are
included in the preconditioner. Should one choose not to
include observation locations from moving platforms in
the preconditioner, there would still be the problem of
optimal distribution of the ones to include, as well as
the number. Finally, the fact that representer functions
are computed with linearised dynamics implies that the
EB preconditioner needs to be recomputed in sub-
sequent assimilation cycles because of the nonlinear vari-
ations of the background solution around which the
dynamics are linearised. These portability issues are in
stark contrast with the Amodei (1995) preconditioner
which does not depend on the observation locations or
the background solution, and thus is easily used from
one assimilation cycle to next, regardless of the obser-
vation platforms.

3. The experiments

The model domain covers longitudes 162–153W and
latitudes 17–24N, with a horizontal resolution of 6 km
on a curvilinear grid of 157 × 130 points, while the ver-
tical grid is composed of 35 sigma layers and 15 z-levels
extending from the surface to the maximum depth of
5000 m. The model is forced with atmospheric fluxes
fields (e.g. wind stress, IR radiation flux, etc.) from
the Navy Operational Global Atmospheric Prediction
System (NOGAPS) of Goerss and Phoebus (1992),
and Rosmond et al. (2002) with 0.5o resolution, and
initial and boundary conditions are taken from the glo-
bal NCOM run at 0.125o resolution. The model is initi-
alised on 1 June 2008 and allowed to spin-up until 1
July 2008.
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An assimilation experiment is carried out in the region
around Hawaii. Observations are processed in bins of 6 h
duration, and consist of sea level anomalies (SLA) from
satellite altimetry, sea surface temperature from satellite,
and temperature and salinity profiles from expendable
bathythermographs, Argo floats and a couple of gliders.
One assimilation window of 10 days is chosen to allow a
full cycle of sea surface height (SSH) from altimetry, in
order to consider the SSH observation platform as fixed.
There is a total of 753 SSH, 20,363 surface and subsurface
temperature and salinity (SST), and 2818 combined sub-
surface temperature and salinity observations.

Observations coverage for the 10-day assimilation
window is shown in Figure 1 for SSH, SST(SSS, profile
T and profile S). Also shown in Figure 1 is the location
of 100 observations selected for the EB preconditioner.

3.1. Residuals norm

The convergence of the CG algorithm is usually evalu-
ated by the norm of the residual term relative to its initial
value, that is, at iteration 0. This ratio is often used to
stop the algorithm when it reached a pre-defined stop-
ping criterion. Figure 2 shows the evolution of the
norm of the residual in the CG algorithm. The relative
residuals norm initially increases in the first few iter-
ations with the EB preconditioning before it begins to
slowly decrease, becoming smaller than its initial value
after the 20th iteration. With A1, the relative residuals
norm also increases initially for three iterations (in
accordance with El-Akkraoui et al. (2008)), before it
begins to decrease monotonically at a much faster rate
than with the EB preconditioner. The A2 implemen-
tation has relative residuals norm that monotonically
decrease from the first iteration and at a rate that is
even faster than the A1. As an example, it can be seen
from Figure 2 that it takes A2 14 iterations to reach
the value 0.1; A1 reaches the same value in 17 iterations,
and EB has not reached it in 90 iterations (not shown).

3.2. Sequence of analyses

After (2) or (3) is solved for the representer coefficients
b, the optimal analysis increments are computed as

dx = LCLTHTb, (5)

which is obtained by solving the adjoint model forced by
Dirac impulses centred at the observations and scaled by
the representer coefficient, convolving the adjoint sol-
ution with the background error covariance and using
the convolved adjoint solution to force the TLM. The
increments in (5) are then added to the background xb

to form the analysis. Thus, the analysis can be computed
at each iteration of (3) to monitor the convergence of the
algorithm not only at the observation locations, but also
all over the domain, although the accuracy of the analysis
can only be assessed at the observation locations. We will
therefore evaluate the convergence of the CG algorithm
with the preconditioners above in terms of the accuracy
of the analysis per iteration, and the convergence of the
analyses sequence.

3.2.1. Accuracy at the observation locations
The analysis error is defined here by a fit to the obser-
vations metric for each iteration as

JkFIT = 1
M

∑M

m=1

|ym − Hmxk|
sm

, (6)

where ym is themth observation,M is the total number of
observations, Hm is the observation operator, xk is the
assimilated solution or analysis after the kth iteration,
and σm is the observation error or standard deviation.

The sequence defined by JFIT in (6) is a good tool to
monitor both the accuracy of the analysis at the obser-
vation locations and the convergence of the CG algor-
ithm, because the analysis is expected to improve with
the iterations. Figure 3 shows the evolution of the JFIT
sequence. With the EB preconditioning, the sequence
shows a slightly chaotic pattern with a general decreasing
tendency, and no apparent convergence after 30 iter-
ations. With A1 there is an increase in the first iteration
and a monotonic decrease from the second and sub-
sequent iterations, becoming almost constant after 20
iterations. With A2 the sequence decreases monotoni-
cally from the first iteration and becomes almost con-
stant after 12 iterations.

3.2.2. Accuracy everywhere
We consider the sequence of analyses (one per iteration)
and examine the convergence through the sequence of
differences between consecutive analyses normalised by
the difference between the first analysis and the back-
ground solution.

ek = ‖xk − xk−1‖
‖x1 − xb‖ , k ≥ 2, (7)

where xk is the entire analysis trajectory after the kth CG
iteration, and xb is the background. The sequence ek

should reveal the convergence of the analyses from one
iteration to the next, even in regions that are distant
from the observation locations.

From the evolution of the sequence ek in Figure 4 it
can be seen that there is no discernible pattern of conver-
gence from the EB preconditioner after 30 iterations, that
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is, the consecutive analyses are quite different from one
another. With A1, the amplitude of the correction
shows an increasing tendency in the first six iterations
followed by a general decreasing tendency. The increas-
ing tendency in the first six iterations suggests that the
correction is more important from one iteration to the
next. This is not the case with A2, where the sequence

decreases monotonically from the first iteration. Com-
pared to Figures 2 and 3, Figure 4 shows that while con-
vergence may be reached in 12–14 iterations for A2 (17–
20 iterations for A1) in the observations space as
measured by either the residual norm or the fit to the
observations, the sequence of analysis differences in the
state space converges at a slower rate.

Figure 1. Observation distribution in the model domain during the 10-day assimilation window: SST (a), SST (b), temperature profiles
(c), salinity profiles (d), SSH (e), and the observations selected for the construction of the EB preconditioner (f).

Figure 2. Evolution of the relative norm of the residuals with the
CG iterations using the EB preconditioner (dash-dotted line), and
the A1 (dotted line) and A2 (solid line) implementations of the
Amodei preconditioner.

Figure 3. The convergence of the analysis error with CG iter-
ations from the BE (dash-dotted line) and the A1 (dotted line)
and A2 (solid line).
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3.3. Gradient of the cost function

The convergence of the analysis (i.e. the entire model
trajectory) cannot be tested at each iteration because of
the computational burden of extracting the analysis,
which requires the integrations of the adjoint and
TLM. However, the behaviour of the analysis conver-
gence is assessed through the behaviour of the gradient
of the cost function in the state space. The norm of the
gradient of the cost function in the state space can be
computed at no additional cost thanks to the re-organis-
ation of the computations in the CG algorithms as
shown by Gratton and Tshimanga (2009). Figure 5
shows the evolution of the gradient of the cost function
in the state space. The behaviour matches that of the
evolution of the solution in the state space, Figure 3.
In the case of the Euclidean inner product, the gradient
is larger than the initial gradient for the first six iter-
ations, it then decreases monotonically. In the case of
the modified inner product, there is a monotonic
decrease from the first iteration.

4. Preconditioner or inner product?

Results from the experiments above clearly indicate
that the best performance of the CG in the minimisation
of the cost function is achieved with the combination of
the Amodei preconditioner and the inner product
defined by the representer matrix. In an attempt to elu-
cidate the relative contribution of each of these two fac-
tors, that is, the Amodei preconditioner and the inner
product, two additional experiments are carried out
with the non-preconditioned CG: one uses the Eucli-
dian inner product (hereafter referred to as N1) and
the other uses the inner product defined by the repre-
senter matrix (hereafter referred to as N2). The results
of these experiments are compared to those from A1
and A2 experiments, using all four convergence criteria
above.

Figure 6 shows that common conclusions can be
drawn from all four metrics. For the often used criteria
such as the residual and gradient norms there is no
apparent convergence pattern for N1. Although its
JFIT values decrease and seem to be reaching an asymp-
tote, they still show some variability from one iteration
to another as seen with the sequence of analysis
differences ek.

However, the same cannot be said of N2. The latter
shows a decrease in the gradient norm that is similar
to A2 for all iterations. For the residual norm the
decrease in N2 is similar to A2 in the first nine iterations,
after which N2 continues to decrease at a slower rate
than A2, but still faster than A1 until the 16th iteration.
Also, N2 shows a better decrease in the JFIT and ek

metrics to the 9th and 17th iterations respectively.
Finally, except for the gradient norm, all other three
metrics show that A1 has lower values than N2 in later
iterations. It can thus be said that the inner product
defined by the representer matrix plays a significant
role in the early iterations of the CG, but that inner pro-
duct alone is not sufficient to achieve the desired conver-
gence. The Amodei preconditioner helps the CG
algorithm converge even further in the later iterations.
Overall, the inner product defined by the representer
matrix has a strong effect for the first range of iterations
(10–15 for this experiment) and the preconditioning
effect is predominant after that. However, only their
combined effect ensures the monotonic decrease of all
the studied convergence criteria.

It should be noted that the implementation of the
modified inner product with the Amodei preconditioner
involves only one additional application of the matrix-
vector product, to initialise to iterative process. This is
a rather marginal cost, equivalent to one additional iter-
ation in the process, that significantly impacts the

Figure 4. Evolution of the sequence ek with the iterations of the
CG algorithm using the EB (dash-dotted line), the A1 (dotted line)
and the A2 (solid line) preconditioners.

Figure 5. Evolution of the norm of the gradient of the cost func-
tion with iterations of the CG algorithm using the EB (dash-
dotted line), the A1 (dotted line) and the A2 (solid line)
preconditioners.
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minimisation as seen above: it was shown to stabilise and
speed the convergence by many iterations depending on
the convergence criterion.

5. Discussion and conclusions

Minimising the 4D-Var cost function in the observations
space requires the solution of a linear system that is
poorly conditioned, usually with iterative algorithms.
When symmetric matrices are involved, as is the case
with the representer method, CG methods prove to be
very efficient. The assimilation of ocean observations
using the representer based 4D-Var for NCOM was con-
sidered, along with two methods of preconditioning the
linear system: the scaling of the linear system by the
square root of the observation error variances from
Amodei (1995), and the approximated inverse of the
stabilised representer matrix based on the computation
of some representer functions by Egbert and Bennett
(1996). The former had two implementations of the
CG, one with the Euclidian inner product, and the
other with the inner product defined by the scaled repre-
senter matrix.

The three implementations of the CG were compared
in a 10-day assimilation experiment in the region around
Hawaii, involving almost 25,000 observations. The com-
parison was based on four criteria: the norm of the
residuals in the linear system, the analysis error evalu-
ated at the observation locations, the convergence of
the sequence of analyses, and the norm of the gradient
of the cost function. All four criteria show that in the

first 30 iterations of the CG the A2 implementation pro-
vided the fastest convergence, followed by A1. There was
a general monotonic decrease in every criterion for A2;
in A1 the criteria tended to increase in the first few iter-
ations before they began a general decrease, whereas EB
did not show a discernible pattern of convergence. Con-
vergence was reached with A2 (A1) in as few as 14(17–
20) iterations for the residuals norm and the analysis
errors, and 21(28) and 25(29) iterations for the gradient
norm and the sequence of analyses respectively. Note
that each iteration of the CG has a computational cost
that is equivalent to that of one representer function.
Thus the convergence numbers above for both A2 and
A1 show significant savings in computational costs com-
pared to the computation of the 100 representer func-
tions used in the EB implementation, especially given
that the latter did not converge after 30 iterations.

The relatively inferior performance of the EB precondi-
tioner may be attributed to a few factors. The first is line-
arity: we are dealing with a 50-layer nonlinear hydrostatic
model while the original EB preconditioner was applied to
a quasi-linear two-dimensional tide model. Second, a
rather small number of representer functions (100 out of
25,200 observations), compared to a significantly large
number of representer functions were computed (104

out of 105 observations in Egbert et al. (1994) or 1200
out of 6000 observations in Egbert (1997)). Finally, the
observing network had a quasi-uniform coverage of the
global tide model domain in Egbert et al. (1994), a cover-
age that is nearly impossible to achieve with the obser-
vations at hand, especially in the ocean subsurface.

Figure 6. A comparison of A1 (dotted line), A2 (solid line), N1 (dashed line) and N2 (dash-dotted line) using the residual norm (top left),
the fit to the observations (top right), the sequence of analysis differences (bottom left) and the norm of the gradient (bottom right)
metrics.
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In the absence of an appropriate inner product, the
first few iterations can deteriorate the initial approxi-
mation and the algorithm can require more iterations,
even with the implementation of a preconditioner. It
was found that the inner product defined by the repre-
senter matrix played a significant role in the earlier iter-
ations, evidenced by a rapid decrease in all four
convergence metrics. However, with that inner product
alone the CG algorithm converged towards a solution
that was less accurate than the solution obtained from
the CG equipped with the Amodei preconditioner,
according to the fit to the observations metric. Thus,
for the minimisation of the data assimilation cost func-
tion in the observations space, the implementation of
the appropriate inner product in the CG algorithm
should be done in conjunction with the Amodei precon-
ditioner. Neglecting the latter would yield a misleading
sense of convergence, especially if a small number of iter-
ations are required.
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