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This study presents the theoretical framework for variational data assimilation of acoustic pres-

sure observations into an acoustic propagation model, namely, the range dependent acoustic

model (RAM). RAM uses the split-step Pad�e algorithm to solve the parabolic equation. The

assimilation consists of minimizing a weighted least squares cost function that includes dis-

crepancies between the model solution and the observations. The minimization process, which

uses the principle of variations, requires the derivation of the tangent linear and adjoint models

of the RAM. The mathematical derivations are presented here, and, for the sake of brevity, a

companion study presents the numerical implementation and results from the assimilation sim-

ulated acoustic pressure observations. [http://dx.doi.org/10.1121/1.4989541]

[JFL] Pages: 186–194

I. INTRODUCTION

Acoustic predictions are frequently made using esti-

mates of the ocean that are modeled and constrained with

oceanographic measurements (Helber et al., 2008).

Occasionally acoustic measurements are also made and are

compared to such predictions (Colosi et al., 1994; Colosi

et al., 1999). Acoustic models are sensitive to the ocean

medium on scales as short as a fraction of a wavelength of

interest, which is on the order of meters or fractions of

meters (e.g., k� 3 m for 500 Hz; Castor et al., 2004; Lam

et al., 2009). Ocean model output scales are on the order of

kilometers, and it is known that phenomena exist that can

impact the acoustics at scales less than kilometers. For

example, sound speed computed from data collected by a

glider in the Western Pacific Ocean in 2007 (Fabre et al.,
2008) and corresponding sound speed computed from the

Navy Coastal Ocean Model (NCOM; Martin, 2000) are

shown in Fig. 1.

It is evident that there are ocean phenomena occurring

at scales that are not captured by the model (NCOM) esti-

mate. Acoustic transmission paths are determined by refrac-

tive indices, which are directly related to sound speed

gradients. Both environments shown here contain a sonic

layer or duct, which traps acoustic energy at certain frequen-

cies (wavelengths) due to the upward refracting sound speed

profiles near the surface. The duct is evident by the low loss

(high energy) of sound in the top �50 m shown in the

800 Hz range dependent acoustic model (RAM) transmission

loss (TL) estimates in Fig. 2.

The glider data indicate that the duct is stronger than

that estimated from NCOM. This is emphasized in Fig. 3,

which shows TL estimated using the glider sound speed data

at a receiver depth of 15 m. The differences in the structure

of sound speed gradients that define the duct significantly

impact the TL, resulting in a difference of more than 20 dB

in the acoustic estimates.

Note that sound speed is not usually directly measured

in the ocean; it is derived from the modeled or observed tem-

perature and salinity (T/S) through algorithms such as the

Chen-Millero-Li (Chen and Millero, 1977; Millero and Li,

1994) algorithm, see also Leroy et al. (2008). The differ-

ences between the observed and modeled sound speed can

be reduced by assimilating the ocean T/S observations into

the ocean model. However, this process may smooth out the

acoustically significant features, primarily due to the coarse

resolution often used in ocean models. Accurate acoustic

prediction can significantly benefit from the ability to assimi-

late acoustic observations, which may consist of TLs, travel

times, or acoustic pressure. By assimilating acoustic data

into the acoustic model, not only is a more accurate pre-

diction of the TL available, but also, an update to the

oceanography that preserves the acoustically important char-

acteristics of the waveguide can be inferred. In the first part

of this study, we present the theory of acoustic data assimila-

tion using variational analysis for updating an acoustic pres-

sure prediction; the second part of the study presents thea)Electronic mail: Hans.Ngodock@nrlssc.navy.mil
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application of this assimilation technique using simulated

acoustic pressure observations. The ability to update the

associated environment will be the focus of a subsequent

study.

The use of variational methods for solving inverse

problems in ocean acoustic propagation modeled by the

parabolic equation (PE) was investigated in recent years.

Elisseeff et al. (2002) and Hursky et al. (2004) applied

adjoint modeling to an acoustic tomography inversion

problem; Hermand et al. (2006) used an adjoint of a similar

PE in a geoacoustic inversion problem involving uncertain-

ties in the sound speed; Badran et al. (2008) used adjoint

modeling in another geoacoustic inversion for the seabed

characterization; Le Gac et al. (2004) used a variational

approach for geoacoustic inversion using adjoint modeling

of a PE approximation model with nonlocal impedance

boundary conditions; Thode (2004) and Thode and Kim

(2004) used the adjoint model to compute the derivatives

of a waveguide field with respect to several parameters,

including the sound speed, density, and frequency;

Charpentier and Roux (2004) used the adjoint method for

the inversion of mode and wavenumber in shallow waters;

Meyer and Hermand (2005) used the adjoint method

with an optimal control method of nonlocal boundaries

applied to the wide-angle PE for inversion of the acoustic

field and bottom properties; Li et al. (2014) used a varia-

tional method for the inversion of an internal wave-

perturbed sound-speed field via acoustic data assimilation,

in the presence of acoustic pressure and sound-speed

observations.

In most of the studies mentioned previously, the pri-

mary focus was not the correction of the acoustic pressure

field, but rather on the geoacoustic inversion, using obser-

vations that are primarily based on tomography. This study

follows the works of Hursky et al. (2004) and Li et al.
(2014) who assimilated acoustic pressure observation in

very shallow water (90–120 m depth) and rather short

ranges (2–10 km) and a single frequency of 100 Hz. We

describe the theoretical development and application of the

adjoint method for the assimilation of acoustic pressure

observations using the highly accurate RAM (e.g., Collins,

1989, 1994). To our knowledge, this is the first time such

effort is undertaken (i.e., the development of an adjoint

model for RAM and its use to assimilate acoustic pressure

observations). RAM is based on the split-step Pad�e algo-

rithm for solving the PE (Collins 1993, 1994), which allows

large range steps and is the most efficient PE algorithm that

has been developed (Collins et al., 1996). Solving the PE

model using the split-step Pad�e algorithm introduces a

series of differential operator multiplications and inversions

that complicates the derivation of the adjoint model.

Because the adjoint model must correspond to the particular

numerical model under consideration, the adjoint models

derived for the non-Pad�e approximations cannot be applied

for the Pad�e approximation.

II. THE MODEL

RAM is derived from the reduced wave equation in

cylindrical coordinates with a harmonic point source,

FIG. 2. (Color online) TL through

environments shown in Fig. 1.

FIG. 1. (Color online) Glider (left) and

NCOM (right) sound speeds for an

acoustic track.
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removing the factor r�1/2 from the complex pressure p to

handle cylindrical spreading, and assuming azimuthal sym-

metry to obtain (with a complex wavenumber to include

attenuation)

@2p

@r2
þ q

@

@z

1

q
@p

@z

� �
þ k2p ¼ 0; (1)

where k ¼ ð1þ igbÞðx=cðr; zÞÞ is the wavenumber, x is the

angular frequency, cðr; zÞ is the speed of sound in range and

depth, b is the attenuation coefficient, and g ¼ ð40p log10eÞ�1
.

Factoring the operator in Eq. (1) yields

@

@r
þ ik0 I þ Xð Þ1=2

� �
@

@r
� ik0 I þ Xð Þ1=2

� �
p ¼ 0; (2)

with

X ¼ k�2
0 q

@

@z

1

q
@

@z
þ k2 � k2

0

� �
I

� �
; (3)

where k0 ¼ x=c0, and c0 is a representative phase speed.

Assuming that outgoing energy dominates backscattered

energy, Eq. (2) reduces to the outgoing wave equation

@p

@r
¼ ik0 I þ Xð Þ1=2

p: (4)

The formal solution of Eq. (4) is

pðr þ Dr; zÞ ¼ expðik0DrðI þ XÞ1=2Þpðr; zÞ; (5)

where Dr is the range step. By applying an n term rational

function to approximate the exponential, we have the Pad�e
approximation

p r þ Dr; zð Þ ¼ exp ik0Drð Þ
Yn

i¼1

I þ aj;nX

I þ bj;nX

 !
p r; zð Þ; (6)

where I is the identity operator, aj;n and bj;n are pre-

computed coefficients of the split-step Pad�e algorithm for

solving the original wave equation implicitly by separation

of variables. The product form in Eq. (6) can also be

approximated, without loss of accuracy, by the summation

form

p r þ Dr; zð Þ ¼ exp ik0Drð Þ I þ
Xn

j¼1

cj;nX

I þ bj;nX

 !
p r; zð Þ;

(7)

as shown by Collins et al. (1996).

III. THE ASSIMILATION SYSTEM

The assimilation system described in detail in Ngodock

and Carrier (2014) for an ocean circulation model is adapted

here for the acoustic propagation model. First, the model is

cast in the following continuous form:

@p

@r
¼ F pð Þ þ f ;

p r ¼ 0; zð Þ ¼ I zð Þ þ i zð Þ;

8<
: (8)

where p is the acoustic pressure field, F includes the opera-

tors on the right-hand side of Eq. (6) or (7), f is the model

error with covariance Cf , I(z) is the prior initial condition

(initial profile), i(z) is the initial condition error with covari-

ance Ci, and z and r represent the position in a finite two-

dimensional depth-range plane where 0 � z � Z and

0 � r � R. Consider a vector Y of M observations in the

depth-range domain, with the associated vector of observa-

tion errors e (with covariance Ce),

ym ¼ Hmpþ em; 1 � m � M; (9)

where Hm is the observation operator associated with

the mth observation. The operator H transforms the

model variables into observation equivalents. For the

sake of simplicity, we assume that observations consist

of direct measurements of the acoustic pressure,

thus Eq. (9) takes the form ym ¼ pðrm; zmÞ þ em, where

ðrm; zmÞ denotes the position of the mth observation in

the depth-range domain, and some spatial interpolation

may have taken place. A weighted cost function is

defined as

J ¼
ðR

0

ðZ

0

ðR

0

ðZ

0

f ðr; zÞWf ðr; z; r0; z0Þf ðr0; z0Þ dr0 dz0 dr dz

þ
ðZ

0

ðZ

0

iðzÞWiðz; z0Þiðz0Þ dz0 dzþ eTWee; (10)

where the weights Wf and Wi are defined as inverses of Cf

and Ci in a convolution sense, and We is the matrix inverse

of Ce. Boundary condition errors are omitted from Eqs. (8)

and (10) only for the sake of clarity. The extrema of the

cost function (10) can be found (Appendix A; see also

Bennett, 2002) by solving the associated Euler-Lagrange

(EL) system

FIG. 3. (Color online) TLs at a receiver depth of 15 m for the glider (green)

and NCOM (blue) data shown in Fig. 1.
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@p

@r
¼ F pð Þ þ Cf � k;

p r ¼ 0ð Þ ¼ I zð Þ þ Ci � k 0; zð Þ;

� @k
@r
¼ @F

@p
pð Þ

� �T

k�
XM

m¼1

XM

n¼1

We;mn p rm; zmð Þ � ymð Þ

� d r � rnð Þd z� znð Þ;
k R; zð Þ ¼ 0;

8>>>>>>>>>>><
>>>>>>>>>>>:

(11)

where d denotes the Dirac delta function, We;mn are the

matrix elements of We, the superscript T denotes the transpo-

sition, and k is the adjoint variable defined as the weighted

residual

kðr; zÞ ¼
ðR

0

ðZ

0

Wf ðr; z; r0; z0Þf ðr0; z0Þdr0dz0: (12)

The third and fourth equations in Eq. (11) are commonly

called the adjoint model, and the multiplication of the

covariance and the adjoint variable is the convolution

Cf � kðr; zÞ ¼
ðR

0

ðZ

0

Cf ðr; z; r0; z0Þkðr0; z0Þ dr0 dz0; (13)

and

Ci � kð0; zÞ ¼
ðZ

0

Ciðz; z0Þkð0; z0Þ dz0; (14)

for the model and initial condition errors, respectively. The

convolution involved in Eqs. (10)–(14) is written in a general

form. However, the definition of the covariance functions as

in Ngodock and Carrier (2014) gives this convolution its

more familiar form. Also, the open and closed bullets repre-

sent the fact that the covariances are defined in the space of

initial conditions (r¼ 0) and the entire range-depth space,

respectively.

A. The representer method

Allowing model errors and initial condition errors

increases the dimension of the control space, the computa-

tional cost of the assimilation, and usually results in a poorly

conditioned minimization process. This difficulty can be

avoided if the minimization is done in the data space, which

does not depend on, and is usually smaller than, the control

space. That is possible through the representer algorithm,

which is even more attractive in this case because of the

scarcity of acoustic pressure observations (i.e., small obser-

vation space) and the linearity of Eqs. (4), (6), and (7) in

terms of the acoustic pressure field. The representer method

expresses the solution of the EL system (11) as the sum of a

first guess and a finite linear combination of representer

functions, one per datum. Thus, the representer method is

the ideal choice for minimization of the cost function if

acoustic pressure observations are available and one desires

to correct only the acoustic pressure field, because the EL

system (11) is linear in the acoustic pressure.

If, on the other hand, corrections to the sound speed

and/or the attenuation coefficient are desired, then the EL

system (11) becomes nonlinear, and the representer method

cannot be applied to Eq. (11) directly. However, following

Ngodock et al. (2000) and Bennett (2002), the representer

algorithm can be applied to a linearized form of Eq. (11),

obtained by either linearizing Eq. (11) directly or by lineariz-

ing the forward model Eqs. (4), (6), or (7) and deriving an

EL associated with the cost function based on the linearized

forward model. The iterative process by which the solution

of the linearized EL becomes the background for the next

linearization until formal convergence is known as the “outer

loop,” whereas the “inner loop” consists of solving the linear

EL system. In either case, given a background model solu-

tion p0 around which the model is linearized, one can write a

linear EL system in the form

@pl

@r
¼ F pl�1

� �
þ @F

@p
pl�1
� �� �

pl� pl�1
� �

þCf � k;

pl r¼ 0ð Þ ¼ I zð ÞþCi � k 0; zð Þ;

�@k
@r
¼ @F

@p
pl�1
� �� �T

k�
XM

m¼1

XM

n¼1

We;mnðplðrm; zmÞ� ymÞ

�d r� rnð Þd z� znð Þ;
k R; zð Þ ¼ 0;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(15)

where l denotes the outer loop index, pl is the EL solution

after the lth outer loop. The EL system (15) is a linear cou-

pled system between the adjoint and state variables. The rep-

resenter method uncouples the system by expanding the

solution as

plðr; zÞ ¼ pl
bðr; zÞ þ

XM

m¼1

cl
mql

mðr; zÞ; (16)

where pl
b is a first guess solution, cl

m are the coefficients and

ql
mðx; tÞ; 1 � m � M; are the representer functions defined by

� @l
l
m

@r
¼ @F

@p
pl�1
� �� �T

ll
m � HTd r � rmð Þd z� zmð Þ;

ll
m Rð Þ ¼ 0;

@ql
m

@r
¼ F pl�1

� �
þ @F

@p
pl�1
� �� �

ql
m þ Cf � ll

m;

ql
m r ¼ 0ð Þ ¼ Ci � ll

m 0; zð Þ:

8>>>>>>>>><
>>>>>>>>>:

(17)

Note that the equations in Eq. (17) are only weakly coupled,

since the ll
m, also known as the adjoint representer functions,

depend only on the observation locations, and can be com-

puted independently of the ql
m. The adjoint equations in Eq.

(16) or (17) are integrated backwards in range as indicated

by the final conditions, and the first guess in Eq. (16) can be

chosen as the previous outer loop solution pl-1, or the tangent

linear solution around pl-1. It may be shown (e.g., Bennett,

2002) that the representer coefficients ck
m are computed by

J. Acoust. Soc. Am. 142 (1), July 2017 Ngodock et al. 189



solving a linear system in data space involving the repre-

senter matrix, the data error covariance matrix, and the inno-

vation vector

ðQl þ CeÞcl ¼ Y � Hpl
b; (18)

where Ql is the representer matrix with elements Qk
mn

¼ ql
mðrn; znÞ, i.e., the mth representer function evaluated at

the nth observation location ðrn; znÞ. The detailed derivation

of Eq. (18) from Eqs. (16) and (17) is given in Appendix B.

The entire representer matrix need not be computed explic-

itly since the linear system (18) can be solved using an

iterative algorithm (e.g., the conjugate gradient), by taking

advantage of the symmetry of each matrix. The representer

coefficients constitute the right-hand side of the adjoint

equation in the EL system. Thus, once the representer coeffi-

cients are computed, they are substituted into the adjoint

equation, which is then solved and substituted in the forward

linear equation to obtain the final solution. A background

solution around which the model is linearized is required.

Usually it is the solution of the nonlinear model. For the first

guess solution, one may consider either the background or

the tangent linear solution around the background. The new

optimal solution may replace the background for another

minimization process (i.e., outer loops) until formal conver-

gence, as in Bennett et al. (1996, 1998, 2000) and Ngodock

et al. (2000, 2007, 2009).

B. Linearization

Although Eq. (4) is linear in the acoustic pressure p, it is

nonlinear in the differential operator X, which depends nonli-

nearly on the wavenumber k. The latter is also a function of

both the sound speed and the attenuation coefficient. This

exacerbates the nonlinearity of both Eqs. (6) and (7). The

following linearization is based on the first order Taylor’s

expansion. Small perturbations ~c and ~b on both the sound

speed and the attenuation coefficient, respectively, result in a

perturbation of the wavenumber that is given by

~k ¼ ig~b
x

c r; zð Þ
� 1þ igbð Þ

~c r; zð Þ
c2 r; zð Þ

; (19)

which, in turn, generates a perturbation ~X of the differential

operator X in Eq. (3) given by

~X ¼ 2k�2
0 k ~kI: (20)

The linearization of the product form of the solution (6)

becomes

~p r þ Dr; zð Þ ¼ exp ik0Drð Þ
Yn

j¼1

I þ aj;nX

I þ bj;nX

 !
~p r; zð Þ

þ exp ik0Drð Þ
Xn

j¼1

Yn

l ¼ 1
l 6¼ j

I þ al;nX

I þ bl;nX

 !0
B@

1
CA

�
bj;n � aj;n

I þ bj;nX
� �2

 !
~Xp r; zð Þ (21)

and the linearization of the summation form of the solution

(7) is given by

~p rþDr; zð Þ ¼ exp ik0Drð Þ Iþ
Xn

j¼1

cj;nX

Iþ bj;nX
� �

 !
~p r; zð Þ

þ exp ik0Drð Þ
Xn

j¼1

cj;n

Iþ bj;nX
� �2

 !
~Xp r; zð Þ:

(22)

Both Eqs. (21) and (22) describe the evolution of small per-

turbations ~pðr; zÞ of the acoustic pressure field as the result

of the small perturbations applied to the sound speed and the

attenuation coefficient, given a prior or background pressure

field p(r,z) around which the model is linearized.

C. The adjoint

We now derive the adjoint of both Eqs. (6) and (7). Note

that the adjoint model in Eq. (15) is only different from the

adjoint representer model in Eq. (17) by the forcing term: The

former is forced by the weighted differences between the

model and the observations (also called the innovations) at

the observation locations, and the latter is only forced by

Dirac delta functions centered at the observation locations.

So, the forcing term of the adjoint in Eq. (15) is a linear com-

bination of the forcing term of the adjoint in Eq. (17). Thus,

due to the linearity of the adjoint model, it can be seen that

the solution to the adjoint model in Eq. (15) is a linear combi-

nation of the adjoint representer solutions in Eq. (17), with

coefficients that depend on the optimal solution pl, which is

yet to be determined. We can therefore derive the adjoint in

Eq. (17) for the mth observation as it will carry less cumber-

some terms on the right-hand side. We drop the superscripts k
(of the outer loops) and subscripts m (except for the observa-

tion location) for brevity. Note that in addition to the adjoint

variable lp, associated with the acoustic pressure variable,

there are also adjoint variables lX, lk, lc, and lb, associated

with the differential operator X, the wavenumber k, the sound

speed c and the attenuation coefficient b, respectively.

The adjoint model in Eq. (17) is initialized at r¼R by

lpðR; zÞ ¼ HT
mdðR� rmÞdðz� zmÞ: (23)

Following Eq. (21), the adjoint of the product form (6) is

lp r;zð Þ¼ exp ik0Drð Þ
Yn

j¼1

Iþaj;nX

Iþbj;nX

 !
lp rþDr;zð Þ

þHT
md r� rmð Þd z� zmð Þ; (24)

lX ¼ exp ik0Drð Þ
Xn

j¼1

Yn

l ¼ 1
l 6¼ j

I þ al;nX

I þ bl;nX

 !0
B@

1
CA

�
bj;n � aj;n

I þ bj;nX
� �2

 !
p r; zð Þlp r þ Dr; zð Þ: (25)

Similarly, following Eq. (22) the adjoint of the summation

form (7) is

190 J. Acoust. Soc. Am. 142 (1), July 2017 Ngodock et al.



lp r; zð Þ ¼ exp ik0Drð Þ
Xn

j¼1

aj;nX

I þ bj;nX
� �

 !
lp r; zþ Drð Þ

þHT
md r � rmð Þd z� zmð Þ; (26)

lX r; zð Þ ¼ exp ik0Drð Þ
Xn

j¼1

aj;n

I þ bj;nX
� �2

 !

� p r; zð Þlp r; zþ Drð Þ: (27)

Having computed lX from either Eq. (25) or (27), we relate

the adjoint acoustic information to the adjoint of the environ-

mental variables using Eqs. (20) and (19),

lk ¼
2k

k2
0

IlX; (28)

lb ¼ ig
w

c
lk; (29)

lc ¼ �
w

c2
lk: (30)

If the correction to the ocean environment is desired, then

one would exploit the connection of the sound speed to

the ocean temperature (T) and salinity (S) through the sound

speed equation [e.g., Chen-Millero-Li (Chen and Millero,

1977; Millero and Li, 1994) algorithm]

c ¼ FðT; SÞ; (31)

where F is usually a polynomial. The linearization of Eq. (31)

is written as

~c ¼ @F

@T
~T þ @F

@S
~S: (32)

From Eqs. (31) and (32), the correction to the ocean T/S is

obtained by

lT ¼
@F

@T

� �T

lc; (33)

and

lS ¼
@F

@S

� �T

lc: (34)

IV. SUMMARY

The theoretical framework for the development of a var-

iational data assimilation system for the highly accurate

RAM acoustic propagation model is presented. This devel-

opment is adapted from methods developed for ocean circu-

lation models (Ngodock and Carrier, 2014) using the

representer method, and is applied to both the product and

sum forms of the split-step Pad�e algorithm in RAM. Both

tangent linear and adjoint models of RAM have been devel-

oped to allow acoustic pressure to be assimilated into RAM.

The companion study consists of implementation and dem-

onstration of these theoretical derivations, followed by

numerical results that show the usefulness of the system.
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APPENDIX A: DERIVATION OF THE EL SYSTEM

In this first part of the appendix we present the detailed

derivation of the EL system (11) associated with the minimi-

zation of the cost function (10),

J ¼
ðR

0

ðZ

0

ðR

0

ðZ

0

f ðr; zÞWf ðr; z; r0; z0Þf ðr0; z0Þ dr0 dz0 dr dz

þ
ðZ

0

ðZ

0

iðzÞWiðz; z0Þiðz0Þ dz0 dzþ eTWee: (A1)

The cost function (A1) can be rewritten as

J ¼
ðR

0

ðZ

0

ðR

0

ðZ

0

@p r; zð Þ
@r

� F p r; zð Þð Þ
� �

Wf r; z; r0z0ð Þ

� @p r0; z0ð Þ
@r

� F p r0; z0ð Þ
� �� �

dr0 dz0 dr dz

þ
ðZ

0

ðZ

0

p 0; zð Þ � I zð Þ
� �

Wi z; z0ð Þ

� p 0; z0ð Þ � I z0ð Þ
� �

dz0dzþ
XM

m¼1

XM

n¼1

p rm; zmð Þ � ymð Þ

�We;mn p xn; tnð Þ � ynð Þ (A2)

to make the dependence of J upon p explicit. The calculus of

variations indicates that for p to be a local extremum of J we

must have

dJ ¼ J pþ dp½ � � J p½ � ¼ OðdpÞ2; (A3)

for any small perturbation dp,

dJ ¼ J pþ dp½ �� J p½ �

¼ 2

ðR

0

ðZ

0

ðR

0

ðZ

0

@dp r; zð Þ
@r

� @F

@p
pð Þ

� �
dp r;zð Þ

" #

�Wf r; z; r0; z0ð Þ @p r0; z0ð Þ
@r

�F p r0; z0ð Þ
� �� �

dr0 dz0 dr dz

þ2

ðZ

0

ðZ

0

dp 0; zð Þð ÞWi z; z0ð Þ p 0; z0ð Þ� I z0ð Þ
� �

dz0 dz

þ 2
XM

m¼1

XM

n¼1

dp rm; zmð Þ
� �

We;mn p xn; tnð Þ� ynð Þ:

(A4)

After conveniently introducing the weighted residual (12)

and using some integration by parts, the first integral term in

Eq. (A4) is
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2

ðR

0

ðZ

0

k
@dp

@r
� @F

@p
pð Þ

� �
dp r; zð Þ

� �
dz dr

¼ 2

ðR

0

ðZ

0

� @k
@r
� @F

@p
pð Þ

� �T

k

" #
dp r; zð Þ dz dr

þ2

ðZ

0

k R; zð Þdp R; zð Þ dz� 2

ðZ

0

k 0; zð Þdp 0; zð Þ dz:

(A5)

Also, the last term in Eq. (A4) can be rewritten as

2
XM

m¼1

XM

n¼1

dpðrm; zmÞWe;mnðpðrn; znÞ � ynÞ

¼ 2

ðR

0

ðZ

0

XM

m¼1

XM

n¼1

dpðx; tÞWe;mnðpðxn; tnÞ � ynÞ

� dðz� zmÞdðr � rmÞ dz dr; (A6)

where the second and third deltas in the right-hand side are Dirac

delta functions. In the case of uncorrelated observation errors, i.e.,

We;mn ¼
r�2

m ; if m ¼ n

0; if m 6¼ n;

(
(A7)

as is often assumed in practice, where rm is the observation

error standard deviation, Eq. (A6) becomes

2
XM

m¼1

XM

n¼1

dpðrm; zmÞWe;mnðpðrn; znÞ � ynÞ

¼ 2

ðR

0

ðZ

0

dpðx; tÞ
XM

m¼1

We;mmðpðxm; tmÞ � ymÞ

� dðz� zmÞdðr � rmÞ dz dr: (A8)

With this last rewriting, all terms in Eq. (A4) now depend

explicitly and linearly on dp. Thus, for the local extremum

condition (A3) to be satisfied, all the coefficients of dpðr; zÞ,
dpð0; zÞ, and dpðR; zÞ must vanish, i.e.,

� @k
@t
� @F

@p
pð Þ

� �T

kþ
XM

m¼1

r�2
m p rm; zmð Þ � ymð Þ

�d r � rmð Þd z� zmð Þ ¼ 0;

k R; zð Þ ¼ 0;

�k 0; zð Þ þWi p 0; zð Þ � I zð Þ
� 	

¼ 0:

8>>>>>>><
>>>>>>>:

(A9)

The equations in Eq. (A9) constitute the EL conditions for

local extrema of the cost function. Recalling the definition of

the weighted residual (12) and the inverse of the covariances,

e.g.,
Ð R

0

Ð Z
0

Wf ðr; z; r0; z0ÞCf ðr0; z0; r00; z00Þ dz0 dr0 ¼ dðr � r00Þdðz
�z00Þ, we can combine Eq. (A9) with the model (8) to get the

EL system (11)

@p

@t
¼ F pð Þ þ Cf � k r; zð Þ;

p 0; zð Þ ¼ I zð Þ þ Ci � k 0; zð Þ;

� @k
@t
� @F

@p
pð Þ

� �T

k ¼ �
XM

m¼1

r�2
m p rm; zmð Þ � ymð Þ

�d r � rmð Þd z� zmð Þ;
k R; zð Þ ¼ 0:

8>>>>>>>>>><
>>>>>>>>>>:

APPENDIX B: THE REPRESENTER METHOD

As stated in the manuscript, the linear expansion (16)

can only be applied to a linearized form of the EL system.

We describe below the detailed derivations that lead to the

linear system (18) by first adopting the following lineariza-

tion for Eq. (16):

@~p

@r
¼ F~p þ Gþ Cf � k;

~p r ¼ 0ð Þ ¼ I zð Þ þ Ci � k 0; zð Þ;

� @k
@r
¼ FTk�

XM

m¼1

We;mm ~p rm; zmð Þ � ym
� �

�d r � rmð Þd z� zmð Þ;
k R; zð Þ ¼ 0;

8>>>>>>>>>>><
>>>>>>>>>>>:

(B1)

where F ¼ ½ð@F=@pÞðpÞ�, and G contains the terms in the

first-order Taylor’s expansion of F that do not depend on ~p.

The optimal solution, also called best estimate, is obtained

by solving the coupled system

Bð Þ
� @k
@r
¼ FTk�

XM

m¼1

We;mm ~p rm; zmð Þ � ym
� �

�d r � rmð Þd z� zmð Þ;
k R; zð Þ ¼ 0;

8>>>><
>>>>:

(B2)

Að Þ
@~p

@r
¼ F~p þ Gþ Cf � k;

~p r ¼ 0ð Þ ¼ I zð Þ þ Ci � k 0; zð Þ:

8><
>: (B3)

The representer method attempts to uncouple this system

by introducing representer functions qmðr; zÞ; 1 � m � M,

and expressing the solution of the linearized EL system as

~pðr; zÞ ¼ pbðr; zÞ þ
XM

m¼1

cmqmðr; zÞ; (B4)

where pbðr; zÞ is the solution of the error-free model

@pb

@r
¼ Fpb þ G;

pb r ¼ 0ð Þ ¼ I zð Þ;

8><
>: (B5)

cm are the representer coefficients, and the representer func-

tions qmðr; zÞ [and their associated adjoint representer func-

tions lmðr; zÞ] are the solutions of

Bmð Þ �
@lm

@r
¼ FTll

m � d r � rmð Þd z� zmð Þ;

lm Rð Þ ¼ 0;

8<
: (B6)

and

@qm

@r
¼ Fqm þ Cf � lm;

qm r ¼ 0ð Þ ¼ Ci � lm 0; zð Þ:

8><
>: (B7)
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Let us denote the differential operator D ¼ @=@r � F, and

omit the dependence on (r,z) for the sake of clarity. It

may be shown that the transpose of D is the operator DT

¼ �@=@r � FT. From Eqs. (B4), (B5), and (B7) we get

D~p ¼ Dpb þ
XM

m¼1

cmDqm ¼ Gþ Cf

XM

m¼1

cmlm: (B8)

By the definition of the weighted residual (12) we have

k ¼ Wf � ðD~p � GÞ ¼
XM

m¼1

cmlm: (B9)

Applying the operator DT on Eq. (B9) and using the first

equation of Eq. (B2),

DTk ¼
XM

m¼1

cmDTlm ¼ �
XM

m¼1

cmdðr � rmÞdðz� zmÞ

¼ �
XM

m¼1

We;mmð~pðrm; zmÞ � ymÞ

� dðr � rmÞdðz� zmÞ: (B10)

Equating the coefficients of the Dirac functions in Eq. (B10)

yields the optimal choice of the representer coefficients

cm ¼ We;mmð~pðrm; zmÞ � ymÞ; 1 � m � M: (B11)

Substituting Eq. (B4) into Eq. (B11) gives

cm ¼We;mm pbðrm; zmÞ þ
XM

l¼1

clqlðrm; zmÞ � ym

 !

¼We;mm pbmþ
XM

l¼1

clqlm� ym

 !
; (B12)

and through some rearranging of Eq. (B12) we obtain the

linear system

XM

l¼1

ðqm
l þW�1

e;mmdlmÞbl ¼ ym � pm
b ; 1 � m �M; (B13)

where dlm is the Kronecker delta. In matrix notation, the M
equations in Eq. (B13) for the representer coefficients cm are

ðQþ CeÞc ¼ y� Hpb; (B14)

where H is the operator that transforms the solution pb into

the vector of components pbm ¼ pbðrm; zmÞ; 1 � m � M;
and We had been defined as the inverse of Ce. Note the simi-

larity between Eq. (B14) and the same linear system (18).

The optimal solution is therefore obtained as

~pðr; zÞ ¼ ppðr;zÞþ ðy�HpbÞTðQþCeÞ�1qðr; zÞ: (B15)

However, Eq. (B15) is only feasible if one can afford the

computation and storage of all the representer functions. It is

referred to as the direct representer method. In practice it is

not necessary to compute and store all the representer func-

tions. Remember that the adjoint and the forward models in

Eq. (B1) are coupled by M values ~pm¼ ~pðrm;zmÞ; 1�m�M:
The coupling vector appearing in the right-hand side of the

adjoint is actually Eq. (B11). Thus, as long as the linear sys-

tem (B14) can be solved, the resulting vector or representer

coefficients can be substituted in the right-hand side of the

adjoint model in Eq. (B2), and the adjoint solution will in

turn be substituted in the forward model in Eq. (B3) to obtain

the optimal solution. This approach, also called the indirect

representer method, avoids the computation and storage of

all the representer functions.
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