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ABSTRACT

The difference between the strong and weak constraints four-dimensional variational (4DVAR) analyses is

examined using the representer method formulation, which expresses the analysis as the sum of a first guess

and a finite linear combination of representer functions. The latter are computed analytically for a single

observation under both strong and weak constraints assumptions. Even though the strong constraints rep-

resenter coefficients are different from their weak constraints counterparts, that difference is unable to help

the strong constraints compensate for the loss of information that the weak constraints includes. Numerical

experiments carried out in the Agulhas retroflection for single and multiobservation assimilations clearly

show that the weak constraint 4DVAR produces analyses that fit the observations with significantly higher

accuracy than the strong constraints.

1. Introduction

The majority of applications of the four-dimensional

variational data assimilation (4DVAR) use the strong

constraints approach [e.g., the list of references in Di

Lorenzo et al. (2007)], which assumes that errors are

confined to the initial state of the model. This is true for

purely deterministic problems. In most systems and

applications however, especially in meteorology and

oceanography, errors also arise from empirical pa-

rameterization, unresolved processes, inadequate res-

olution, and forcing. From the initial works of Le

Dimet and Talagrand (1986), strong constraints

4DVAR gained popularity in the 1990s, particularly in

the meteorological data assimilation community [e.g.,

the many applications of the incremental 4DVAR in-

troduced by Courtier et al. (1994)]. One of the reasons

strong constraint 4DVAR gained more popularity than

the weak constraints is the technical difficulty

associated with solving the normal equation for

the minimization of the cost function. The process re-

quires the inversion of all the error covariances involved:

the background and the observations error covariances

for the strong constraints, and the weak constraints also

involves themodel error covariance. It is not only difficult

to prescribe a model error covariance, but also its in-

version poses a significant computational challenge. For-

tunately, the representer method of Bennett (1992)

formulates the 4DVAR problem in such a way that the

solution procedure involves only covariance multipli-

cations, and not their inverses, with variables defined

in the state and observations spaces. Nonetheless,

strong constraints 4DVAR works well in cases where a

relatively short assimilation window is considered so as to

inhibit the growth of initial conditions errors or errors

from other sources.

When compared to the strong constraints method,

the weak constraints assimilation has always yielded

more accurate results. This is due to the higher num-

ber of degrees of freedom in the weak constraints

approach (e.g., Zupanski 1997; Vidard et al. 2004; Di

Lorenzo et al. 2007). Lindskog et al. (2009) also

found a similar result for an atmospheric model, even

with a model error covariance that needed improve-

ments, according to the authors. This paper attempts to
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illustrate the fundamental difference between the two

methods by quantifying the additional correction that

is neglected when the strong constraints approach is

adopted, using the framework of the representer

method, Bennett (1992, 2002). The next section reviews

the formulation of the 4DVAR problem with the rep-

resenter method and derives the analytical solution of a

representer function in both strong and weak con-

straints. Section 3 consists of numerical experiments,

followed by a discussion in section 4, and conclusions in

section 5.

2. The 4DVAR system

Consider a model described by the following equations:

8<
:

›u

›t
5L(u)1F1 f , 0# t#T ,

u(x, 0)5 I(x)1 i(x) ,

(1)

where u(x, t) represents the state of the modeled phe-

nomenon at a given time, L represents the dynamics and

physics that are nonlinear in nature, F(x, t) is a forcing

term and f(x, t) is a model error that can arise from dif-

ferent sources and has a covariance Cf, I is the initial

condition, and i is the error in the initial condition with

covariance Ci,. Let us also consider a vector Y of M ob-

servations in the space–time domain, with the associated

vector of observation errors e (with covariance C«,),

y
m
5H

m
u(x, t

m
)1 e

m
, 1#m#M , (2)

where Hm is the observation operator associated with

the mth observation, which transforms the model

solution into observation equivalents. We have as-

sumed in (2) that the observations are sampled at

some model times, thus Hm acts on the spatial di-

mensions of the solution. One can define a weighted

cost function,

J5

ðT
0

ðT
V

ð
0

ð
V

f(x, t)W
f
(x, t, x0, t0)f(x0, t0) dx0 dt0 dxdt

1

ð
V

ð
V

i(x)W
i
(x, x0)i(x0) dx0 dx1 eTW

e
e , (3)

whereV denotes the spatial domain, the weightsWf and

Wi are defined as inverses of Cf and Ci in a convolution

sense [e.g.,

ðT
0

ð
V

W
f
(x, t, x0, t0)C

f
(x0, t0, x00, t00) dx0 dt0

5 d(x2 x00)d(t2 t00)

where d denotes the Dirac delta function [see also

Bennett (2002), p. 53], and W« is the matrix inverse of

C«. Boundary condition errors are omitted from (1) and

(3) only for the sake of clarity. It has been shown in

multiple publications related to variational data assim-

ilation (e.g., Bennett 2002), that the solution of the as-

similation problem [i.e., the minimization of the cost

function in (3)], is achieved by solving the following

Euler–Lagrange (EL) system,

8>>>>>>>>><
>>>>>>>>>:

›û

›t
5L(û)1F1C

f
� l , 0# t#T ,

û(x, 0)5 I(x)1C
i
+l(x, 0),

2
›l

›t
5

�
›L

›u
(û)

�T
l1 �

M

m51
�
M

n51

W
«,mn

(y
m
2H

m
û)HT

md(t2 t
m
) ,

l(x,T)5 0,

(4)

where û is the optimal solution, also referred to as the

analysis, l is the adjoint variable defined as the weighted

residual:

l(x, t)5

ðT
0

ð
V

W
f
(x, t, x0, t0)f(x0, t0) dx0 dt0, (5)

and W«,mn are the matrix elements of W«, the super-

script T denotes the transpose, and the covariance

multiplication with the adjoint variable is the

convolution:

C
f � l(x, t)5

ðT
0

ð
V

C
f
(x, t, x0, t0)l(x0, t0) dx0 dt0 , (6)

and

C
i
+l(x, 0)5

ð
V

C
i
(x, x0)l(x0, 0)dx0, (7)

for the model and initial condition errors, respectively.

The convolution involved in (3), (5), (6), and

(7) is written in a general form. However, the
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definition of the covariance functions as in Ngodock and

Carrier (2014a) gives this convolution its more familiar

form.

Many applications of 4DVAR use the strong con-

straints assumption that errors are only present in the

initial condition (i.e., f5 0 orCf). As it is apparent in (4),

the strong constraints assumption automatically ne-

glects the dynamical contribution of the term Cf � l(x, t)
to the correction of the model trajectory within the as-

similation window. It is this contribution that we intend

to substantiate using a linearized model.

a. The representer method

We assume that the dynamical operator L has been

linearized in some way and the model in (1) now takes

the following form:8<
:

›u

›t
5Lu1F1 f , 0# t#T ,

u(x, 0)5 I(x)1 i(x) .

(8)

The latter leads to a new EL system of the following

form:

8>>>>>>>>><
>>>>>>>>>:

›û

›t
5Lû1F1C

f
� l, 0# t#T ,

û(x, 0)5 I(x)1C
i
+l(x, 0),

2
›l

›t
5LTl1 �

M

m51
�
M

n51

W
«,mn

(y
m
2H

m
û)HT

md(t2 t
m
) ,

l(x,T)5 0.

(9)

Without loss of generality, the EL system in (9) can

be solved using the representer method (Bennett

1992, 2002), which expresses the optimal solution as

the sum of a first guess uF and a finite linear combi-

nation of representer functions rm(x, t), one per

datum,

û(x, t)5u
F
(x, t)1 �

M

m51

b
m
r
m
(x, t), (10)

where bm are the representer coefficients. The first guess

uF is the solution of the model in (8) with no errors:8<
:

›u

›t
5Lu1F , 0# t#T ,

u(x, 0)5 I(x) ,

(11)

and the representer function associated with the mth

observation is the solution of the system:

8>>>>>>>>>>><
>>>>>>>>>>>:

›r
m

›t
5Lr

m
1C

f
� a

m
, 0# t#T ,

r
m
(x, 0)5C

i
+a

m
(x, 0),

2
›a

m

›t
5LTa

m
1HT

md(t2 t
m
) ,

a
m
(x,T)5 0.

(12)

This system is fully uncoupled, since am, also referred

to as the adjoint representer function, depends solely

on the observation location and the dynamics of the

adjoint model. Since the overall correction to the

model solution is a linear combination of representer

functions according to (10), it is thus sufficient to

examine a single representer function in order to il-

lustrate the difference between weak and strong con-

straints approaches.

b. Single observation

The analytical solution for the adjoint representer in

(12) is given by

a
m
(t)5 e

2
Ð t

tm
LT(s)ds

Q(t
m
2 t)HT

m, 0# t#T , (13)

where the space-independent variable x is omitted for

the sake of clarity and Q is the Heaviside step

function:

Q(t)5

�
1, if 0# t ,

0 , if t, 0.
(14)

Substituting (13) into (12) gives

r
m
(t)5 e

Ð t

0
L(s) ds

2
664
ðt
0

C
f
+e

2
Ð t0

tm
LT(s)ds

e2
Ð t0

0
L(s) dsQ(t

m
2 t0)HT

m dt0 1C
i
+HT

me
2
Ð 0

tm
LT(s) ds

3
775, 0# t#T . (15)
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It is clear from (15) that the difference between the

strong and the weak constraints corrections is

e
m
(t)5 e

Ð t

0
L(s) ds

ðt
0

C
f
�e2

Ð t0

tm
LT(s)ds

e2
Ð t0

0
L(s) dsQ(t

m
2 t0)HT

m dt0,

0# t#T .

(16)

This is the additional correction that can be extracted

from the observation (and applied to the solution at

times t . 0) but that is unfortunately thrown away with

the strong constraints approach. We argue that (16) can

be nonnegligible.

In general, the operator L can be decomposed into

L 5 LG 1 LNG, where LG and LNG represent the

projections ofL onto the two subspaces of its growing and

nongrowing modes, respectively. The term e

Ð t

0
L(s) ds in

(16) can be expanded into e

Ð t

0
LG(s)dse

Ð t

0
LNG(s)ds, where the

first part grows with time and the second part decreases

with time. Also, e2
Ð t0

0
L(s)ds 5 e2

Ð t0

0
LG(s) dse2

Ð t0

0
LNG(s)ds has a

growing part associated with the nongrowing modes

and a decreasing part associatedwith the growingmodes,

because of the negative sign of the exponent. This is

also the case for e2
Ð t0

0
LT(s)ds 5 e2

Ð t0

0
LT
G(s) dse2

Ð t0

0
LT
NG(s)ds.

Thus, regardless of the stability of the operator L, (16)

will still grow with time. The presence of the operators L

and LT ensures that the observation influence is propa-

gated back and forth in space and time according to the

dynamics of the tangent linear and adjoint models. This

enables theweak constraints to allowmore complex time

dependence of the increment.

Note that in an actual assimilation the increments

also depend on the representer coefficients, which in

turn depend on the representer functions. Thus, the

strong constraints representer coefficients will be dif-

ferent from their weak constraints counterpart. How-

ever, we argue that this difference in the magnitude of

the coefficients is unable to help the strong constraint

assimilation compensate for the loss of dynamical in-

formation contained in (16).

To examine whether the difference in (16) makes the

weak constraints a better system than the strong con-

straints in terms of accuracy of the analysis, we carry out

two comparison experiments: one using two single-

observation assimilations, and the other involving all

available observations in the selected domain and time

window. Before delving into the experiments, it is im-

portant to note that in the absence of the model error

term, the EL system in (4) becomes

8>>>>>>>>><
>>>>>>>>>:

›û

›t
5L(û)1F, 0# t#T ,

û(x, 0)5 I(x)1C
i
+l(x, 0),

2
›l

›t
5

�
›L

›u
(û)

�T
l1 �

M

m51
�
M

n51

W
«,mn

(y
m
2H

m
û)HT

md(t2 t
m
) ,

l(x,T)5 0,

(17)

which is usually solved iteratively, starting from a first-

guess solution from which the model–data discrepancies

are computed and used to solve that adjoint model. The

latter is used to adjust the initial condition of the forward

model that yields a new solution. The process is then

repeated until formal convergence. It can be seen that

for the choice of the first guess according to (11) the

evolution of the correction to themodel solution is given

by the tangent linear model (TLM), just as with repre-

senter method. Thus, both the classic 4DVAR and the

representer method would yield the same solution for

the strong constraints approach as long as the TLM is

stable and valid (i.e., the TLM propagates small initial

perturbations linearly in time), and its solution closely

matches the difference between two solutions of the

nonlinear model with initial conditions that differ only

by the initial perturbation (see also Errico et al. 1993).

3. Experiments and results

A comparison of how the strong and weak constraints

approaches fit the observations is examined in two ex-

periments: a single-observation assimilation for both

SST and SSH, and the assimilation of all available ob-

servation within the model domain and the time interval

selected. The assimilation system used for these exper-

iments is the Navy Coastal Ocean Model (NCOM-

4DVAR) described in Ngodock and Carrier (2014a). It

is used here with a model setup for the Agulhas Current,

in a domain that covers latitudes 258–458S and longi-

tudes 08–458E. The model has a horizontal resolution of

10 km and a hybrid vertical coordinate that uses 25

sigma layers in the upper 125m, and 25 z levels from

below the lowest sigma layer to the seafloor. Initial and

lateral boundary conditions are taken from the global
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solution of the NCOM (Barron et al. 2006), and atmo-

spheric forcing fields are provided by the Navy Opera-

tional Global Atmospheric Prediction System

(NOGAPS) of Rosmond et al. (2002) with a horizontal

resolution of 0.58. The NCOM-4DVAR system is run

with the same covariances that were described in

Ngodock and Carrier (2014b) for the errors in the ob-

servations, the initial conditions, and the model.

Two single-observation assimilation experiments are

carried out separately for SST and SSH, respectively,

in a 10-day window from 1 February to 11 February

2010. Both observations are located at 388S, 248E and

day 5 of the 10-day window, and yield the respective

positive innovations of 18C and 1m. The outcome of

assimilating these single observations is examined

through their respective increments, which should have

the magnitude and sign of the innovations at the ob-

servation location.

a. Single SST observation

Increments from the assimilation of the single SST ob-

servation are shown in Fig. 1 for both the strong and weak

constraints, at the beginning (1 February), the middle

(5 February), and the end (11February) of the assimilation

window. It can be seen that both strong and weak con-

straints have the same very small increment at the initial

time. By day 5, the increments have grown yet remain

similar in shape and magnitude. It should be noted that in

the strong constraints, the growth of the increments is

solely due to the propagation, through the tangent linear

model, of the initial increment given by the adjoint model

at the initial time. The weak constraints has the additional

forcing from the adjoint model that, at least by day 5, does

not seem to play a significant role. However, by day 10 the

strong constraints SST increment has a lower magnitude

than its weak constraint counterpart, although they both

remain similar in shape. It is possible that the diffusion that

is present in the model is affecting the strong constraint

increment, while the weak constraint increment is able to

maintain its magnitude due to the forcing from the adjoint.

b. Single SSH observation

Similar to the assimilation of a single SST observation,

increments from the assimilation of the single SSH

FIG. 1. Analysis increments from assimilating a single SST observation (8C) using (left) strong and (right) weak

constraints at (top) day 0, the initial time, (middle) day 5, and (bottom) day 10.
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observation are shown in Fig. 2 for both the strong and

weak constraints, at the beginning (1 February), the

middle (5 February), and the end (11 February) of the

assimilation window. It can be seen that both strong and

weak constraints have the same very small increment at

the initial time. However, contrary to the single SST

observation case, the strong constraint increment for

SSH does not grow with time compared to its weak

constraint counterpart; it actually decays. This is pri-

marily due to the way SSH observations are assimilated

in NCOM-4DVAR (see Ngodock et al. 2016), in addi-

tion to the adjoint forcing in the weak constraint.

Figure 2 illustrates the contribution of (16) above in

helping the weak constraint to produce a meaningful

increment, especially when the observation is distant

from the initial time.

c. Multiobservations

The third experiment consists of assimilating a set of

real observations from GOES and AVHRR for SST,

Jason-2 altimeter (interleaved) for SSH, and temperature

and salinity profiles from theArgo floats. The summation

involved in (10) suggests that for a full set of observations

there will be an aggregation of the differences in (16)

(illustrated with the assimilation of single observation),

even though all representer coefficients in (10) may not

be positive or have the same magnitude. The significant

difference seen in the case of the assimilation of a single

SSH observation indicated that the weak constraint is

better suited for fitting SSH observations. Along-track

SSH analysis residuals are shown in Fig. 3, in a compar-

ison of the free run (no assimilation), the strong and the

weak constraints at three different 10-day windows: 21

February–3 March, 22 April–2 May, and 21 June–1 July.

The free-run solution is included in this comparison to

highlight the marked improvements (reduction of prior

observations–model discrepancies–misfits) of the strong

constraints, especially in the Benguela, the Agulhas

leakage, retroflection, and return current regions. The

analysis residuals are significantly lower in the weak

than in the strong constraints. This result illustrates

that (16) contributes to better fitting the observations.

d. Fit to the observations

Ametric that defines the fit to the observations in the

whole assimilation window is given by

FIG. 2. As in Fig. 1, but for assimilating a single SSH observation.
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J5
1

M
�
M

m51

jy
m
2H

m
uj

s
m

, (18)

where ym is themth observation,M is the total number

of observations, Hm is themth observation operator, u

is the model solution, and sm is the observation error

or standard deviation. The right-hand side of (18) can

be computed as a time series, for the analysis û (JFIT),

the free-run solution uF (JFREE), and the first-guess

uFG (JFG). The first guess is a series of 10-day forecast

solutions that is initialized by the analysis at the end of

every assimilation cycle. Since both the free run and

the first guess are predicted solutions, JFREE and JFG
are also collectively referred to as JPRED. The values

of JFIT, JFREE, and JFG represent the number of ob-

servation error standard deviation by which the re-

spective solutions depart from the observations. They

are shown in Fig. 4 (as a time series) for surface and

subsurface temperature (left panels), and SSH (right

panels). For the sake of clarity JFIT (top) and JPRED

(bottom) are shown in separate panels, where JFIT
comprises both the strong and weak constraints ana-

lyses. Since the assimilation is expected to fit the ob-

servations to within the observation at the observation

locations, the metric JFIT in (18) is expected to be less

or equal to 1 for the analysis. There is no such ex-

pectation for JPRED as a result of fitting the observa-

tions in previous cycles. However, it is assumed that

since the forecast is started from a better initial con-

dition (the analysis at the end of the previous assimi-

lation cycle), it should yield a solution that is closer to

the observations than the free run (i.e., JFG should

have lower values than JFREE).

It can be seen in Fig. 4 that the free run does not agree

with the observations at all, having values that generally

fluctuate between 3 and 4 for SSH, and between 2 and 3

for temperature. The first guess has lower JPRED values

than the free run, withmore noticeable improvements in

temperature than SSH. Also, the first guess from the

weak constraint generally has lower JPRED values than

the first guess from the strong constraint. For tempera-

ture, the JPRED values for the first guess are around

1.5 (2) for the weak (strong) constraints, and for SSH the

values fluctuate between 2 and 2.5 (2 and 3.5) for the

weak (strong) constraints. Thus, there is not much im-

provement in SSH from the free run to the strong con-

straint first guess. It is the JFIT values for the assimilated

solutions that show the superior ability of the weak

constraint to fit the observations compared to the strong

constraint; they are around 1 (1 to 1.5) for temperature

FIG. 3. Along-track SSH (m) analysis residuals from the (left) free run, and the (middle) strong and (right) weak constraints assimilations

for three 10-day windows: (top) 21 Feb–3 Mar, (middle) 22 Apr–2 May, and (bottom) 21 Jun–1 Jul.
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(SSH) in the weak constraint, and around 1.5 (2 to 2.5)

for temperature (SSH) in the strong constraint, over the

entire 5-month assimilation period.

The assimilation process is a generalized inversion

that can be used as a significance test of the hypothesized

prior statistics for the errors. It has been shown (e.g.,

Bennett 1992) that if the initial conditions, model, and

observations errors are unbiased and not mutually cor-

related, and are Gaussian with the prescribed co-

variances for a linear problem, then the minimized cost

function (JMIN) is a chi-squared random variable withM

degrees of freedom (i.e., its mean isM and its variance is

2M, M being the number of assimilated observations).

The value of the JMIN is computed after each assimila-

tion cycle and normalized by M, then used to evaluate

both strong and weak constraints assimilations. Note

that because M can vary from one assimilation cycle to

another, the normalization of JMIN byM ensures that the

mean and variance of the normalized JMIN should be 1

and 2/M regardless of M.

It can be seen in Fig. 5 that both the strong and weak

constraints assimilations fail the significance test: the

weak and strong constraints values fluctuate around 2

and 3 times their expected mean, respectively. It is

arguably a difficult task to prescribe error statistics for

which the assimilation system satisfies that significance

test. However, although having values that are signifi-

cantly higher that its expected mean, the weak con-

straints JMIN is still significantly closer to 1 than its strong

constraints counterpart. Thus, the added degrees of

freedom through the model error in the weak con-

straints enable it to be more likely to satisfy the signifi-

cance test than the strong constraints.

4. Discussion

There is a tendency in these years to abandon the

variational approach in favor of ensemble-based as-

similation methods for the main reasons that the adjoint

model is tedious to develop, and both the TLM and

adjoint may not be stable, and they have to be main-

tained if the model is modified (Kalnay et al. 2007;

Gustafsson 2007; Yaremchuk et al. 2009; Zheng et al.

2016). More and more hybrid approaches are being

proposed, as well as adjoint-free methods (Zheng

et al. 2016).

FIG. 5. Time series of normalized JMIN values for each assimi-

lation cycle. The strong and weak constraints assimilations are in

black and red, respectively.

FIG. 4. Time series of the fit to the observations metric for (top) the analysis and (bottom) the forecast, computed

for (left) temperature and (right) SSH. The free-run solution is in black and the strong and weak constraints

assimilations are in blue and red, respectively.
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In general, these considerations are based on the

conclusions drawn from strong constraints 4DVAR

applications (see Skachko et al. 2014).We argue that the

weak constraints formulation is a viable 4DVAR option

that provides superior results compared to the strong

constraints. In addition, with the modular approach

adopted in contemporary numerical models, the adjoint

model is no longer difficult to maintain: changes and

upgrades to models are typically implemented within a

few modules, and thus only the adjoint of those modules

need to be upgraded. Also, there exist tools for auto-

matic generation of computer codes for tangent linear

and adjoint of numerical models (e.g., Giering and

Kaminski 2003; Vlasenko et al. 2016). Furthermore, the

computational cost of the weak constraints 4DVAR,

which is usually touted as another drawback, can be

significantly reduced by using the representer method

equipped with 1) a suitable preconditioner (e.g., Gratton

and Tshimanga 2009), and 2) an efficient implementation

of the model error covariance multiplication (Ngodock

2005). With these two implementations the weak con-

straints 4DVAR uses only a fewmore iterations (one to

three) than the strong constraints 4DVAR, and each

iteration of the weak constraints is only slightly more

computationally expensive than a strong constraints

iteration.

5. Conclusions

The difference between the strong and weak con-

straints 4DVAR analyses is examined using the repre-

senter method formulation, which expresses the analysis

as the sum of a first guess and a finite linear combination

of representer functions. The latter are computed ana-

lytically for a single observation in both strong and weak

constraints assumptions. It is argued that although the

final increments depend on both the representer func-

tions and the representer coefficients, the latter also

depend on the representer functions. Thus, even though

the strong constraints representer coefficients are dif-

ferent from their weak constraints counterpart (due to

the difference in the respective representer functions),

that difference is unable to help the strong constraints

compensate the loss of information expressed in (16).

Numerical experiments were carried out in the Agulhas

retroflection for a single SST, a single SSH observation,

and multiobservations assimilations, using the NCOM-

4DVAR system. Results clearly show that the weak

constraint 4DVAR produces analyses that fit the ob-

servations with significantly higher accuracy than the

strong constraints. The superior accuracy is also seen in

the resulting forecasts, although not as significant as in

the analyses. The representer formulation allows us to

solve the weak constraint 4DVAR problem at just a

slightly higher computational cost than the strong

constraints.
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