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Keywords: Many oceanographic applications require multi resolution representation of gridded data such as for bathymetric
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up approaches accurately preserve the surface morphology of any given region, the top-down method of vertex
placement can fail to match the actual vertex locations of the underlying grid in many instances, resulting in
obscured topology/bathymetry. Finally we describe the use of the bottom-up approach and data thinning in two
applications. The first is to provide thinned, variable resolution bathymetry data for tests of storm surge and
inundation modeling, in particular hurricane Katrina. Secondly we consider the use of the approach for an
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application to an oceanographic data grid of 3-D ocean temperature.

1. Introduction

There exists a variety of motivations for being able to produce more
accurate determinations of the oceans’ seafloors. Concerns can range
from the information needed to guide seabed mining to understanding
fault zones for potential earthquake prediction. Reduced bottom uncer-
tainty is also very important for oceanographic and acoustic modeling
such as the use of storm surge and inundation models. This paper de-
scribes applications of data representations for the irregular, multi-
resolution bathymetric data that are utilized in such models. In partic-
ular two approaches for the creation of RTIN structures from traditionally
structured gridded data termed top-down and bottom-up implementa-
tions are considered and one is applied to oceanographic data. While
both the top-down and bottom-up approaches accurately preserve the
surface morphology of any given region, the top-down method of vertex
placement can fail to match the actual vertex locations of the underlying
grid in many instances, resulting in obscured topology/bathymetry.

Many multi-resolution approaches have been employed for terrain
data (DeFloriani and Puppo, 1995; DeFloriani et al., 2000) by using
triangular irregular networks (TINs). These allow regions of greater or
lesser variability in geomorphology to be represented by increased or
decreased data density respectively. The ocean floor as well exhibits
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similar variable structural detail. For example in order to effectively
model coastal storm inundation (Posey et al., 2008), bathymetry data is
required from offshore to near shore areas with increasing resolution
approaching the shorelines to capture flooding potential.

An important aspect of bathymetric data distinguishing it from terrain
data is the difficulty of obtaining such data. High resolution multi-beam
sonar scans have provided data for less than 10% of the ocean bottoms
(Becker et al., 2009) which overall constitutes some 70% of the Earth’s
surface. The areas between the high resolution sonar swaths may also be
filled in with much lower resolution altimetry information (Smith and
Sandwell, 1994). To effectively make use of data from both types of
sources, multi-resolution capabilities are needed.

However an important requirement here is to maintain compatibility
with many systems and models that use a gridded structure for ba-
thymetry data. Oceanographic models such as the wave models Wave-
Watch3 (Tolman et al., 2000) and SWAN (Simulating Waves Nearshore)
(Booij et al., 1999) are traditionally based on gridded data structures.
This has led us to use right TINs (RTINs) which provide the variable
storage of TINS but maintain a regular structure that is compatible with
gridded approaches and storage systems. Like TINs we can thin an RTIN
to maintain data values only in regions that have greater variability and
obtain datasets that are much smaller in size than the original dataset.
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This is important when there are limitations on data storage and
transmission.

In this paper we first provide a background on bathymetry data, its
collection and use. Also we describe general approaches for representa-
tion of variable resolution data. Next we discuss two approaches for the
creation of an RTIN structure for gridded data termed top-down and
bottom-up implementations. We discuss why the latter is most appro-
priate for gridded data and describe for this technique how the data can
be thinned. We describe the use of the bottom-up approach and data
thinning in two applications. The first is to provide thinned, variable
resolution bathymetry for tests of storm surge and inundation modeling,
in particular the recent hurricane Katrina. Secondly we consider the use
of the approach for an application to a different oceanographic data grid
of 3-D ocean temperature. Finally we provide conclusions and directions
for future research.

2. Background
2.1. Bathymetry

Traditionally bathymetric (or hydrographic) charts have been pro-
duced to support safety of surface and sub-surface navigation and usually
show seafloor relief or terrain as contour lines and selected depths.
Bathymetric maps may also use a Digital Terrain Model (DTM) (Blak,
2007) and artificial illumination techniques to illustrate the depths
being portrayed.

Bathymetric data is typically obtained from multi-beam sonar surveys
(Huff and Noll, 2007) or for shallower areas, by remote sensing LIDAR
(Light detection and Ranging) or LADAR (Laser detection and Ranging)
systems (Guenther, 2007). The amount of time it takes for the sound or
light to travel through the water, bounce off the seafloor, and return to
the sounder is used to determine the distance to the seafloor. LIDAR/-
LADAR surveys are usually conducted by airborne systems. Bathymetry
can also be obtained from satellite radar mapping of deep-sea topography
by detecting the subtle variations in sea level caused by the gravitational
pull of undersea mountains, ridges, and other masses. On average, sea
level is higher over such mountains and ridges than over abyssal plains
and trenches (Sandwell et al., 2014). The overall utilization of bathy-
metric data to produce the useful gridded data is a complex process. The
details of this processing is given in the standard reference the GEBCO
(General Bathymetric Chart of the Oceans) Cook Book (International
Hydrographic Organization, 2015).

Fig. 1 illustrates how complex the seafloor bathymetry can appear.
This image is from the East Pacific showing several different ocean floor
structures in close proximity: a mid-ocean ridge, a fracture zone and
seamounts. The bathymetry of such a seafloor region includes areas
where there is a mixture of features such as ridges, seamounts, transform
faults mixed with areas that are flatter such as abyssal plains and the
continental shelf. The bathymetry is then more complicated as such
features require more grid points to resolve the frequency content of
the features.

2.2. Limitations of rectilinear grids

The typical methodologies for bathymetry data storage, extraction
and fusion are based on rectilinear gridding techniques. Common ap-
proaches to the structure of bathymetric databases are based on tiles of
rectilinear grids at different resolutions, reflective of the data sources and
collection eras (Ryan et al., 2009; GEBCO, 2010).

Rectangular grids, however, can have artifacts at the boundaries of
tiles with different grid resolutions and data uncertainties. Discontinu-
ities at the edges appear as differences in spatial frequencies and un-
certainties of the data. For example, a 2-min tile in the Digital
Bathymetric Data Base — Variable Resolution, DBDBV, (NAVOCEANO,
2012), which is largely derived from inferring the bathymetry from
satellite altimetry data of the gravitational deformation of the ocean
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Fig. 1. Complex geomorphology near Pacific coast of North America. (For interpretation

of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

surface from mean sea level (Smith and Sandwell, 1997), possesses an
uncertainty estimate of 300 m in depth and position. Closer to land,
higher resolution and lower uncertainty data will intersect the 2-min
data. Edge matching when interpolating across the boundary becomes
problematic because a) the edge information of the higher resolution
data is missing due to aliasing in the 2-min data, and b) the higher un-
certainty data can report values discontinuous with the more certain data
(Elmore and Steed, 2008; Elmore et al., 2012).

Further complicating the continued use of rectilinear grids are new
collection techniques. Bathymetry data is now sampled at multiple res-
olutions and by multiple platforms, each with differing error/un-
certainties profiles. Irregular sampling methodologies often are used,
such as along coastlines and riverine areas or areas with sloped bottoms.
In addition, data holdings in deep water commonly are at mixed data
densities as modern surveys can provide very high resolution data, but
can only do so in limited areas. Furthermore, rectilinear techniques also
are too cumbersome for real-time storage and analysis on new collection
platforms such as autonomous underwater vehicles (Eriksen et al., 2001).

To summarize, current methodologies for data storage, extraction,
and merger of data sets are based on rectilinear gridding techniques fixed
in grid size that are unable to produce grids with variable spacing based
on differing depth regimes and underlying geomorphology. Utilizing the
variable grid spacing of bathymetric data is a key need for accurate ocean
modeling; high resolution is typically needed to properly render the
highly variable depths of shallow water regimes as well as large changes
in the bathymetric slope associated with seafloor morphologies so as to
maintain numerical accuracy. Low resolution is desired for regions of the
ocean that exhibit minimal variations in depth, such as deep flat areas,
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e.g. abyssal plains, in order to ease computational overhead (in the case
of unstructured grid models) which can be achieved with TIN based
structures thinned as needed. Meaningful data thinning is especially
important for scenarios of low-bandwidth and transmission of informa-
tion to mobile devices.

2.3. Variable resolution data representations

Data such as bathymetry or terrain data are often represented by
Digital Elevation Models (DEMs) (Maune, 2007). The term elevation can
refer to altitude above sea level or in the case of bathymetry sea floor
depth. The DEM does not provide a value of all points in the space but a
sample of values from which values at other points can determined by
one of several interpolation procedures such as splines in tension (Smith
and Wessel, 1990), localized regression (Calder, 2006) and kriging
(Davis, 2002)

Surface approximations of gridded DEMs are most often represented
as either a regular sub-grid of the original DEM or a triangular irregular
network (Little and Shi, 2001). A TIN is based on the triangular partition
of the 2D surface with no fixed assumption of the distribution and
location of the triangle vertices (Longley et al., 2001). Each vertex will
contain an elevation data value and for other points on the surface the
elevation is typically determined by a linear interpolation of the three
vertices of the triangle containing that point.

A number of approaches have been developed for representation of
variable resolution data (Samet, 2006). The two most commonly used for
spatial data are quadtrees and triangular irregular networks (TINs). A
quadtree is a spatial data structure which partitions a space recursively
into four equal disjoint quadrants (Pajarola, 2002). By providing an un-
balanced tree structure it allows variable resolution representation of a
data field (Fischer and Bar-Yoseph, 2000). The recursive subdivision is
based on some stopping condition relative to the desired resolution in
varying areas of the data field, but a quadtree on its own offers little
interpolative assistance for points that lie outside of the initial input
values. However, to determine the value of points outside of the initial
input values, a quadtree’s rectangular leaf cells require a bilinear inter-
polative approach in contrast to the simpler linear interpolator we use
with the RTINs.

TIN approximations for a surface begin with choices of points that
are expected to be critical in the final approximation. This is then
improved by iteratively adding points to the initial triangulation. In
each triangle the point that is the worst fit to the surface is found and
the original value added during the iteration (Lischinski, 1994). Then
the minimum angles of the triangles are maximized avoiding “skinny”
triangles (Burrough and McDonnell, 1998). This process will finally
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produce an improved fit to the surface but with far fewer points than the
large number of original source data points. Effectively this produces
larger triangles over regions in which the surface is relatively regular or
uniform and with more, smaller triangles fit to areas for which the
surface has larger variability.

A special case of a TIN is known as the right-triangular irregular
network (RTIN) which is an approximation form that is intermediate
between a regular subgrid and a TIN (Evans et al., 2001). The RTIN is,
like the TIN a triangulated subset of the original data points, consisting of
not just arbitrary triangles but ones constrained to be isosceles right
triangles. An RTIN structure provides a set of points that are inter-
connected by right triangles and can be variably spaced by thinning an
initially dense rectilinear grid of points through various thresholding
criteria. RTINs support the creation of surfaces whose resolution adapts
with seafloor depth and morphology. We note the RTIN can be viewed as
a [4,82] Laves tiling (Velho and Zorin, 2001).

On the left in Fig. 2 is a colour contour of the Katrina testing region
showing onshore topography (positive) and offshore bathymetry (nega-
tive) in meters. New Orleans is located at 30N and 90W, left center in the
figure. The bottom of the Mississippi river delta is visible at the bottom
center. On the right part are the remaining triangles of the resulting RTIN
constructed from the data after thinning using a fixed metric of 10 m.
Before the RTIN process this gridded dataset possessed a uniform 216 m
resolution. The RTIN condensed this representation to approximately
1.3% of the number of points in the original with a RMS error of 2.5 m.
Regions of high inshore and deep water variability remain densely
gridded while flat regions are depicted with very large triangles and very
sparse groups of points.

3. RTIN approaches

When transitioning from a single resolution input data grid to a
multiresolution RTIN, two different approaches are viable. Either a top-
down or a bottom-up approach can be taken, with both arriving at the
same general triangular mesh surface.

Our initial effort was to utilize the first approach as it had been
extensively considered for visualization applications. However while
both the top-down and bottom-up approaches accurately preserve the
surface morphology of any given region within a given tolerance, the top-
down method of vertex placement can fail to match the actual vertex
locations of the original grid in many instances, due to the constraints of
the RTIN structure. All RTINs produced via the top-down method will
possess a dimensionality of 2"+1 by 2"+1 for some whole integer n.
Input data sets that do not match this dimensionality will not have their
original data points preserved, and while sets where the dimensionality is
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Fig. 2. Thinned RTIN bathymetry. The dark blue of the colour bar on the left indicates bathymetry depths of — 100 m or deeper. The colours above 0 on the bar indicate on-shore
topography. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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matched can retain their original points in theory, in practice floating
point arithmetic will mean that many original point locations will still be
lost. Incorrect topography details in near shore areas could easily lead to
errors in the modeling of flow and surge propagation for the storm and so
the top-down approach was not further pursued.

3.1. Bottom-Up RTIN approach

Because of the issues with the above top-down approach, we turned
our attention to a second approach — the bottom-up. Starting with a dense
grid, points are removed while maintaining an RTIN structure. This
approach begins with a fully populated RTIN structure of uniformly sized
partitions matching exactly the initial input grid and a user criteria
providing the basis for thinning the dense grid. Non-contributive points
are located and removed from within the grid and the surrounding tri-
angles are then merged into larger triangles, coarsening the grid (Bour-
geois et al., 2015; Marks et al., 2015, 2016). As long as only two triangles
are being merged together at a time, the point being removed will exist
on the interior of the triangles being merged and therefore poses no
danger of violating the grids core geometric properties or of needing to
propagate the merge outwards into other triangles. On the other hand,
however, this approach requires that the points which are removed be
bordered by either two or, in most cases, four triangles and invalidates
many points from being removed unless some neighboring triangles are
merged first.

Since it begins with the grid at the original resolution and performs a
triangulation upon it, every point retained within the thinned RTIN is an
actual point present within the original data grid as well. In addition to
the advantage of retaining solely original points, this approach also al-
lows for rectangular datasets to be used as there is no imposition that the
end result is a square bisected by two triangles.

3.2. Thinning approaches

One of our major goals is to provide approaches for the efficient
storage of the large volume of bathymetric data. To change a dense RTIN
into a variable resolution grid, the data is reduced or thinned based on
threshold criteria provided by the user. Each point is analyzed for the
effect its removal has on inducing error in the thinned surface when
compared to the initial dense grid. If the error is below the threshold with
respect to neighboring points it is removed.

Specifically we have considered two criteria to control point removal
on the RTINs. The first reduction technique uses a threshold criterion
from Suarez and Plaza (2009), that evaluates a point by comparing the
point’s value with the interpolation of the value at the point’s location. If
the difference between the actual value of the point and the interpolated
value is within a specified threshold, the point is removed. For example
with bathymetry data, using a depth threshold of 10 m, if the difference
between the interpolation and the actual value is less than 10 m, the
point is removed. This type of reduction allows for deep sea morphol-
ogies to be maintained, but causes sparseness in the shallow
water regions.

The second reduction criteria is a percentage criteria that evaluates a
point by comparing the difference between the point’s value and the
interpolation of the value at that point with a specified percentage of
the point’s original value. Intuitively this criterion can be viewed as a
protective criterion for lower valued points (e.g. shallow) and thus is
typically used in combination with the threshold criteria. Used alone,
the criteria might remove higher valued points (e.g. deeper) while
maintaining lower valued ones. This type of reduction maintains a
denser grid in shallow water, but results in loss of detail for deeper sea
morphologies.

To balance these two behaviors in thinning, a combined threshold
approach can be used where both criteria have to be maintained before
point removal. This approach maintains an acceptable point density for
both shallow water and deep sea morphological regions.
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4. Experiments with RTIN usage in modeling

A number of oceanographic experiments using RTIN representations
have been carried out involving both bathymetry and 3-D ocean tem-
perature data. The standard experimental approach used was to apply the
bottom-up algorithm to the test data and then resample the resulting
thinned RTIN to the resolution of the original test grid. This permits
comparisons of the final values of the resampled grid with the original for
RMS error computation purposes and to utilize the resampled grid with
forecasting tools and models to gauge the effect, if any, produced by the
thinning process

4.1. Inundation and surge modeling

The experimental tests in this section are designed to examine the
fidelity of ocean models in accurately capturing hurricane-induced
surge and inundation when configured using a range of RTIN-
generated bathymetry and topography fields. The hurricane Katrina
(Aug. 2005) benchmark (Blain et al., 2008) is then used for this eval-
uation. Model experiments run from pre-storm run-up to beyond the
storms’ landfall. Following hurricane Katrina, the US Geological survey
recorded 458 observations of high water marks along the Mississippi
and Louisiana coastal and inland regions. This data in addition to NOAA
hydrograph stations at Pilot’s Station, SW Pass, Louisiana, Waveland,
Mississippi and Dauphin Island, Alabama are used in evaluating model
performance. The Katrina benchmark also includes the best available
wind forcing, NOAA’s Hurricane Research Division (HRD) Real-time
Hurricane Wind Analysis System (H*Wind) product. This hurricane
benchmark test is chosen for the availability of observational data and
the documented ocean model performance using operational coastal
surge and inundation models.

4.1.1. Bathymetry RTINs for surge and inundation modeling areas

The first case was a bathymetric dataset collected from the NOAA
Coast Relief Model (2014) centered on a region impacted by hurricane
Katrina. A 1,050,625 point dataset, the topology & bathymetry was
gridded into a 1025 by 1025 square covering a 2 degree by 2 degree
swath resulting in 216.5 m resolution. A variety of different thinned
RTIN meshes were produced using different thinning metrics, starting
with very small criteria and gradually increasing.

Table 1 shows the Katrina bathymetry data as thinned by the com-
bined depth and percentage criteria. The entries consist of: number of
points remaining (in thousands), % reduction from original, and RMS
error (m), the sample standard deviation between the thinned values and
the original values.

The braking effect of the percentage metric is readily apparent when
examining how slowly the number of remaining points changes when the
percentage metric is held constant. Examining the RMS error values
shows a correlation value of 0.65 between the eventual RMS error of the
thinned mesh and the maximum amount of thinning achieved for
Katrina. In general this shows that a very low RMS error is achievable
with very high levels of thinning, reinforcing the need to conform the
criteria used to the underlying nature of the data being thinned.

The effectiveness of using both criteria can be seen clearly by
considering what occurs when only one criteria is used in thinning.

Tablee 1
Hurricane Katrina bathymetry data thinning results.
1m 3m 10m 30m

0.03% 437 K\.58\.20 410 K\.61\.37 408 K\.61\.61 407 K\.61\1.02
0.1% 340 K\.68\.25 269 K\.74\.63 240 K\.77\1.22 240 K\.77\1.87
0.3% 295 K\0.72\.20 208 K\.80\.71 151 K\.86\1.88 144 K\.86\3.67
3% 239 K\0.77\0.27 137 K\.87\.76 69 K\.93\2.13 56 K\.94\ 6.07
10% 219 K\.79\0.29 113 K\.89\.78 43 K\.96\2.15 31 K\.97\6.10

50% 213 K\.80\.29 101 K\.90\.80 29 K\.97\2.19 16 K\.98\6.13
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Specifically for the Katrina data set using only the depth criterion, values
were obtained ranging as follows:

1 meter : 81% reduction\ 0.30 rms error

30 meter : 99% reduction\ 0.20.2 rms error

These values are clearly more extreme than for the combined criteria.
Note in particular that the RMS error for 30 m is over 3 times greater than
the worst case in Table 1. This can be seen further below, where using
only the % criterion, the RMS error again is decidedly greater.

0.03% 61% reduction\1.1 rms error

50% 99% reduction\83.6 rms error

4.1.2. Hurricane surge modeling

In this section we describe evaluations of the effect of the two RTIN
thinning parameters and the resulting resolution of the bathymetry on
the ability of the ocean model to accurately simulate hurricane storm
surge and inundation using that bathymetry. Surge refers to the over
water component of the water pileup from the hurricane wind stress
while inundation refers to the inland movement of that water due to the
surge pileup at the shoreline.

Hurricane Katrina: The Katrina test case applies the finite element
—based Advanced Circulation Model (ADCIRC) in its two-dimensional
depth-integrated mode (Fleming et al, 2007). ADCIRC is a
well-established, validated (e.g., Dietrich et al., 2011; Blain et al., 2010;
Westerink and Coauthors, 2008) surge and inundation model.

In the Katrina experiment the ADCIRC model is used with a grid of
irregular node locations. The bottom-up RTIN was created covering the
modeled area and bathymetry points were interpolated to the ADCIRC
node locations. Fig. 3 shows the regridded, thinned RTIN for the 10 m
and 10% criteria. The residual, i.e. the difference between the depth/
altitude, for the regridded thinned RTIN and the original model grid at
the original model grid locations, is near zero for most of the region, with
a maximum residual of about 1.7 m.

The bathymetry grid used for the surge and inundation model covers
a much larger area than the 2 degree by 2 degree area that was used to
create the thinned RTIN. While the model grid centers on the northern
Gulf of Mexico coastal region and encompasses surrounding inland areas,
it also includes the entire Gulf of Mexico and extends out into the western
North Atlantic Ocean. Such an expansive domain allows the surge to
naturally build up within the modeled region as the hurricane moves
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Fig. 3. Thinned bathymetry for hurricane Katrina.
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from the deep ocean into coastal waters. Ocean boundaries in deep water
are subject to minimal surge and inverted barometer effects and can
appropriately accept tidal forcing from a global tide model. These
boundaries are also far removed from the coastal area of interest. The
targeted spatial resolution of the model’s grid near the coast and inland
is 225 m.

Two ADCIRC surge and inundation model runs were conducted: 1)
using the original model bathymetry grid, and 2) using the regridded,
thinned RTIN bathymetry interpolated to the original model grid. The
interpolation of the RTIN bathymetry to the model grid is a necessary
step at the present time because the ADCIRC model does not utilize a
native RTIN grid. The ADCIRC model grid is composed of irregular sized
triangles (finite elements) with different numerical constraints on their
shape (i.e., equilateral triangles) than those associated with the RTIN.
The remainder of the model grid bathymetry outside of the RTIN region
remains unchanged.

The elevation difference between the bathymetry on the original
model grid and the regridded thinned RTIN bathymetry on the model
grid shows a maximum difference of 2 m, which correlated well with the
residual between the original bathymetry data grid and the regridded
thinned RTIN bathymetry, indicating that the interpolation step had
minimal impact. For most of the region the difference is near zero. Also
the RMS error over the entire region is 0.19 m, with a maximum value
of 1.5m.

Now we can describe the water level differences between the surge
and inundation model runs on the original model grid and the regridded
thinned RTIN bathymetry interpolated to the model grid created using
the 0.03% and 1 m metric. The water level difference at each location is
computed using the maximum water height over the entire simulation
period for each bathymetry used, i.e. original and thinned RTIN. For most
of the region the difference is predominately zero, and the maximum
difference is 6 m at three locations. The high value spots are at about
29.3N and 89.5W, located south of Buras, LA. but there is no evident
correlation between the location of these outliers and the high residual
values. The RMS error over the entire region is 0.044 m indicating overall
excellent comparison between results using the different bathymetries.

4.2. Ocean model temperature experiment

Acoustic models typically require data sets that provide water tem-
perature and salinity as these are factors for determining acoustic prop-
agation (Jensen et al., 2011). In this example we used data from one time
instance (July 11, 2013) of three-dimensional ocean temperature from a
real-time nowcast over an area in the vicinity of Chesapeake Bay. The
data set is composed of a horizontal grid of 296 (Longitude) by 262
(Latitude) points and has 49 vertical layers at fixed depths (ranging from
0 m to 4718 m) with a total of 86,432 temperature points. This was the
first actual dataset tested possessing dimensions not expressible as 2"+1
by 2"+1 for some value n, where n is a whole valued integer. Fig. 4 shows
representative examples of the water temperature at depths of 32 m
and 296 m.

Thinning was accomplished separately on each horizontal depth layer
after applying the bottom-up algorithm to create the RTINs As it was
decided that using the percentage criteria to preserve shallow areas did
not make sense in a temperature context, just the threshold criteria was
used. The metric value was set to 5% of the lowest temperature in each
elevation layer since the range of temperatures changes with depth. This
helps to preserve any of the finer details of the temperature gradients. For
example, if the user specified a thinning metric of 2 °C and the value of a
grid point under consideration is within 2 degrees of its neighbors it
would be eliminated. Fig. 5 shows the RTIN structure for the same 2
depth layers illustrating the amount of thinning that was accomplished.

Again we computed residuals by regridding the thinned grid to the
original grid points using linear interpolation, and then taking the dif-
ference between temperatures on the original grid and the regridded
thinned grid. Table 2 shows the statistics for residuals of four selected
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Fig. 4. Ocean temperature — depths of 32 m and 296 m. The colour bars are in units of
degrees Centigrade. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

layers, the difference between the original data and the regridded thin-
ned grid. Additionally the kurtosis for the residuals is leptokurtic (fat
tailed). Table 3 shows the characteristics of the cumulative distribution
function of the regridded residuals for the 4 layers. We see that for the
0 m and 2555 m depth layers that the range of values for the 95% con-
fidence interval (CI) fall within the specified thinning criteria and that
only a small percentage of the total number of points exceed the thinning
criteria. The 32 m and 296 m depth layer’s 95% CI exceed the thinning
criteria indicating that smaller thinning criteria may be appropriate for
these layers due to a large number of instances of high gradients in them.

The blue line in Fig. 6 shows the thinning metric that was used for
each depth layer of the ocean temperature, which was computed as 5% of
the smallest temperature value for each layer. The maximum errors are
apparent in the residuals and are spatially dispersed throughout the grid
versus clustering in a few locations. The red line in Fig. 6 shows the RMS
error of the residual for each depth layer. The residual is nominally about
0.2 °C for the entire data set. Recall that the temperature range of this
data is 2-30 °C, so the RMS error residual is about 1/10 of the smallest
value, indicating an excellent retention of fidelity. The average per-
centage of points remaining after thinning for all layers is 6%, indicating
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Fig. 5. Thinned RTIN structure of water temperature data from Fig. 4.
Table 2
Regridded residual statistics.
Depth (m) Max °C Mean °C RMS °C Skewness
0 1.31 0.014 0.001 Symmetric
32 1.44 0.006 0.001 Symmetric
296 1.55 0.001 0.001 Symmetric
2555 0.42 0.001 0.0003 Moderately skewed
Table 3

Regridded residual cumulative distribution function characteristics.

Depth Thinning criteria c 95 CI (°C) % < Thinning
(m) (9] ©Q) Criteria
0 0.94508 0.24 [- 0.53 0.51] 0.999
32 0.4057 0.31 [— 0.68 0.64] 0.812
296 0.36047 0.3 [— 0.67 0.62] 0.761
2555 0.13142 0.054  [-0.099 0.942
0.126]

that the thinning reduced the size of this data set by more than a factor of
10 while maintaining good fidelity.
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5. Summary and conclusions

In this paper we described an approach for variable resolution ba-
thymetry data analysis. The strength of the system is that it allows for the
creation of flexible irregular mesh structures that can model any shape
from regular grid spaced structures that are very common by using right
triangular irregular networks (RTINs). These structures have the capa-
bility to thin dense areas of data where little data is needed while
maintaining fidelity in areas of more detail. This allows for interpolation
and analysis of all structures as well as the ability to convert all structures
to a grid that can be exported and visualized. Finally, we discussed the
use of the bottom-up approach and data thinning in two applications. The
first is to provide variable resolution bathymetry for tests of surge and
inundation modeling, in particular the recent hurricane Katrina (2005).
Secondly we consider the use of the approach for an application to a
different oceanographic data grid of 3-D ocean temperature. This is the
first case of applying this approach to geophysical data that is not terrain
(land & seafloor), and the results shown here provide very strong evi-
dence that it can be applied to other forms of geophysical data.

There are a number of areas for which we feel additional research
efforts are needed to fully leverage the advantages offered by the RTIN
process to gridded oceanographic data. Uncertainty estimates that apply
to the thinned RTIN structure need development as do criteria for thin-
ning based on geomorphological features such as the slope. For appli-
cation of RTIN to ocean models, assessments are needed regarding the
compatibility and effectiveness of the variable resolution structure with
operational ocean models. Future adaptive modeling strategies may be
able to take advantage of the thinned RTIN bathymetries, such that they
would require computations only at the RTIN point locations. An
advantage to this strategy would be that computational costs of the ocean
models could be reduced. Furthermore, research is needed to determine
the effect variable bathymetric grid uncertainties have on models in
which the RTIN is used.
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