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overall, model uncertainty is reduced by an order of magni-
tude, and irreducible error growth becomes the main con-
tributor to forecast uncertainty. While all models generally 
agree in their post-processed forecasts of September sea-ice 
volume and extent, this is not the case for sea-ice concentra-
tion. Additionally, forecast uncertainty of sea-ice thickness 
grows at a much higher rate along Arctic coastlines relative 
to the central Arctic ocean. Potential ways of offering spatial 
forecast information based on the timescale over which the 
forecast signal beats the noise are also explored.

Keywords Sea ice · Seasonal forecast · Arctic · Forecast 
uncertainty

1 Introduction

Interest in seasonal forecasts of Arctic sea ice has grown in 
recent years as a result of growing socio-economic activ-
ity in the region and as a science-motivated effort to test 
our understanding and ability to predict seasonal changes 

Abstract Dynamical model forecasts in the Sea Ice Outlook 
(SIO) of September Arctic sea-ice extent over the last dec-
ade have shown lower skill than that found in both idealized 
model experiments and hindcasts of previous decades. Addi-
tionally, it is unclear how different model physics, initial 
conditions or forecast post-processing (bias correction) tech-
niques contribute to SIO forecast uncertainty. In this work, 
we have produced a seasonal forecast of 2015 Arctic summer 
sea ice using SIO dynamical models initialized with identi-
cal sea-ice thickness in the central Arctic. Our goals are to 
calculate the relative contribution of model uncertainty and 
irreducible error growth to forecast uncertainty and assess 
the importance of post-processing, and to contrast pan-Arc-
tic forecast uncertainty with regional forecast uncertainty. 
We find that prior to forecast post-processing, model uncer-
tainty is the main contributor to forecast uncertainty, whereas 
after forecast post-processing forecast uncertainty is reduced 

Electronic supplementary material The online version of this 
article (doi:10.1007/s00382-016-3388-9) contains supplementary 
material, which is available to authorized users.

 * E. Blanchard-Wrigglesworth 
 ed@atmos.washington.edu

1 Department of Atmospheric Sciences, University 
of Washington, Seattle, WA 98195-1640, USA

2 Georges Lemaître Centre for Earth and Climate Research, 
Université catholique de Louvain, Louvain-La-Neuve, 
Belgium

3 Centre National de Recherches Météorologiques, UMR 
3589, Météo France, Toulouse, France

4 Global Modeling and Assimilation Office, NASA Goddard 
Space Flight Center, Greenbelt, MD, USA

5 Barcelona Supercomputing Center, Barcelona, Spain

6 Naval Research Laboratory, Stennis Space Center, Hancock 
County, MS, USA

7 NOAA/NWS/NCEP/Climate Prediction Center, College 
Park, MD, USA

8 Applied Physics Laboratory, Polar Science Center, University 
of Washington, Seattle, WA, USA

9 Science Systems and Applications, Inc., Greenbelt, MD, 
USA

10 Joint Institute for the Study of the Atmosphere and Ocean, 
University of Washington, Seattle, WA 98195-1640, USA

11 Pacific Marine Environmental Laboratory, National Oceanic 
and Atmospheric Administration, Seattle, WA, USA

http://orcid.org/0000-0002-2608-0868
http://crossmark.crossref.org/dialog/?doi=10.1007/s00382-016-3388-9&domain=pdf
http://dx.doi.org/10.1007/s00382-016-3388-9


E. Blanchard-Wrigglesworth et al.

1 3

in the Arctic. Since 2008, seasonal forecasts of Septem-
ber sea-ice extent—collectively called the September Sea 
Ice Outlook (SIO)—have been annually produced, col-
lected and discussed by the Arctic research community 
under the auspices of the Arctic Research Consortium of 
the United States (ARCUS) and since 2013 by the Sea Ice 
Prediction Network (SIPN, see http://www.arcus.org/sipn/
sea-ice-outlook).

An initial assessment of forecast skill in SIO over 2008–
2013 by Stroeve et al. (2014) found that overall skill was 
only marginally better than a linear trend forecast, while 
dynamical model predictions slightly underperformed 
relative to statistical predictions. Unexpectedly, forecast 
skill did not significantly improve as the forecast lead time 
decreased from 4 to 2 months. Blanchard-Wrigglesworth 
et al. (2015) compared forecast skill in SIO dynamical 
models to the skill in perfect models and hindcasts (retro-
spective forecasts) and found that SIO skill was markedly 
low, not even beating a simple damped anomaly persistence 
forecast. In addition, it was found that SIO models were 
equally poor in predicting each other, an indication that 
differences in the initial conditions and/or the model phys-
ics across the models must play a role in the large forecast 
spread (and thus large forecast uncertainty). Blanchard-
Wrigglesworth et al. (2015) also found that when initial-
ized with identical perturbation anomalies, the responses 
of four SIO models’ forecasts were significantly different, 
suggesting that different model physics are a key contribu-
tor to forecast uncertainty.

Another factor that may lead to large forecast spread in 
SIO is the application of different post-processing adjust-
ments or bias correction methods on raw forecasts. Given 
the large trend in September sea-ice extent during recent 
decades, removing climatological means or trends from dif-
ferent periods for bias correction may result in significantly 
different forecasts, all other factors being equal. It is note-
worthy that for the 2015 SIO, just 11 out of 37 submissions 
by dynamical models documented a bias correction proce-
dure in their forecasts, and among these forecasts, bias cor-
rection techniques were inconsistent, both in the hindcast 
time-period used for bias correction, and which quantities 
were corrected (mean, trend, or both). Indeed, the skill of 
seasonal and annual forecasts of sea ice extent has been 
found to be particularly sensitive to the choice of bias cor-
rection method on the raw forecast (Fučkar et al. 2014).

Studies using both idealized ‘perfect-model’ setups 
(e.g., Day et al. 2014a) and statistical models (e.g., Lind-
say et al. 2008) have highlighted the importance of sea-ice 
thickness as a predictor of summer sea-ice area. Unfortu-
nately, sea-ice thickness is a complex, difficult-to-observe 
state variable (e.g., Haas 2003). Large scale, temporally 
infrequent satellite-based observations are only recently 
becoming more readily available (e.g., Laxon et al. 2013; 

Tilling et al. 2016), while small scale but high resolution 
airborne observations such as those from NASA Operation 
IceBridge (Kurtz et al. 2013) may provide accurate sea-ice 
thickness estimates for a certain region at a certain time. 
Given the lack of spatially-and-temporally rich observa-
tions of sea-ice thickness, modeling centers have either not 
assimilated sea-ice thickness into seasonal forecasts’ initial 
conditions (e.g., Sigmond et al. 2013) or used reconstruc-
tions of sea-ice thickness in order to initialize seasonal 
forecasts (e.g., Guemas et al. 2014; Collow et al. 2015). 
The latter study showed that the skill of seasonal forecasts 
of sea ice is dependent on the quality of the sea-ice thick-
ness initial conditions while, importantly, it has also been 
shown that the different ocean–sea ice reanalyses that are 
used to initialize forecasts with different dynamical models 
can be vastly different (Chevallier et al. 2016). Ultimately, 
it is not known to what degree different initial conditions 
across models affect overall SIO dynamical model forecast 
skill and forecast uncertainty.

To date, no multi-model SIO sea ice forecast initialized 
with identical sea ice has been produced. In this work, we 
show results from a multi-model seasonal forecast of Arc-
tic sea ice in which all models are initialized with identi-
cal sea-ice thickness within an Arctic basin domain. We use 
two sets of forecast ensembles that are initialized with a 
recent 1 May climatology and a 2015 1 May sea-ice thick-
ness, which allows us to investigate both the growth of dif-
ferent sources of forecast uncertainty and the impact that 
forecast post-processing has on forecast uncertainty. Addi-
tionally, we are able to investigate differences between pan-
Arctic and regional forecasts.

The paper is organized as follows: we first describe the 
forecast design in Sect. 2 and show results in Sect. 3. We 
end with a discussion of results and conclusions in Sect. 4.

2  Model forecast design

In this study, we use the Pan-Arctic Ice Ocean Model and 
Assimilation System (PIOMAS, Zhang and Rothrock 
2003) sea-ice thickness fields to initialize seasonal fore-
casts in eight different dynamical models. PIOMAS has 
been shown to simulate observed pan-Arctic sea-ice vol-
ume with high fidelity (Schweiger et al. 2011), while in a 
recent study a prediction system initialized with PIOMAS 
was found to show higher skill than when initialized with 
other sea-ice thickness datasets (Collow et al. 2015). Partic-
ipating models in our study are listed in Table 1 and range 
from regional ice-ocean models to global fully-coupled 
atmosphere-ice-ocean models. All models have submit-
ted forecasts to the SIO in past years. We run two sets of 
simulations that are initialized on 1 May and are 5 months 
in length. The first set of simulations, the climatology 

http://www.arcus.org/sipn/sea-ice-outlook
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forecast, is initialized with mean 2007–2014 1 May sea-
ice thickness that represents a recent climatology of 1 May 
sea ice thickness. The second set of simulations, the 2015 
forecast, is initialized with the 2015 1 May sea-ice thick-
ness. Initial conditions for all other variables are taken from 
1 May 2015 in both sets (table S1). Given that most of the 
spring predictability of summer sea ice extent in dynamical 
models is borne from sea ice thickness (Day et al. 2014b), 
the climatology forecast will evolve toward the equivalent 
of a 2007–2014 climatology of summer sea ice conditions, 
enabling us to use this simulation as an approximation of 
a recent climatology against which we can post-process 
the experiment simulation. Given the strong biases that 
GCMs tend to exhibit in their simulations of Arctic sea ice 
(e.g., Massonnet et al. 2012), we anticipate that both sets 
of simulations will exhibit model drift, and forecast post-
processing allows us to remove this drift. In the results, 
we show two forecasts: the absolute 2015 forecasts, and 
‘anomaly’ 2015 forecasts, which are computed as a differ-
ence between the 2015 and climatology simulations. All 
models produce ensembles for both sets of simulations, 
with the number of ensemble members ranging from 7 to 
20 for each individual model (see Table 1). Details of each 
model’s components and initialization techniques are given 
in the supplementary material (table S1) with further infor-
mation listed in the individual reports associated with the 
SIO summer 2015 reports (see the SIO url listed above).

When initializing the sea-ice thickness in each set of 
simulations, we only modify sea-ice thickness in the Arctic 
basin. We apply a geographic weighting mask as follows:

where hiIC is the initial condition sea-ice thickness used in 
the simulations, hinat is the native sea-ice thickness of each 
model on 1 May, hiPIO is the PIOMAS sea-ice thickness on 
1 May, and w is a weighting mask that varies between 0 and 
1 (see Fig. 1 and the supplementary material). The reasons 
for the design and application of the weighting mask are: 
one, September sea-ice extent is influenced by spring sea-
ice thickness in the central Arctic but not by spring sea-ice 

(1)hiIC = hinat + w(hiPIO − hinat),

thickness in sub-Arctic seas (see e.g., Figure 4 in Day et al. 
2014b)—in other words, the seasonal sea-ice zone in sub-
Arctic seas melts back due to the seasonal cycle by late sum-
mer irrespective of spring sea-ice thickness in sub-Arctic 
seas—and two, in dynamical models it is much more com-
plex to remove or add sea ice completely near the ice edge 
than to simply edit sea-ice thickness in grid cells that are 
already ice covered, as initial shock can lead to numerical 
instabilities and strong, unrealistic adjustment of upper ocean 
properties where the sea ice has been removed/added. Impor-
tantly, in PIOMAS on 1 May, the Arctic basin (as defined 
by our weighting mask) contains 80 % of total northern 

Table 1  List of participating 
models

See table S1 for further details

Model Type Ensemble size Resolution (sea ice model)

CNRM Fully coupled 15 1 lon × 1 lat

EC-EARTH2.3 Fully coupled 20 1 lon × 1 lat

NASA GEOS-5 Fully coupled 10 1 lon × 1 lat

NCAR CESM1 Fully coupled 9 0.9 lon × 1.25 lat

NOAA CFSv2 Fully coupled 16 0.5 lon × 0.5 lat

NRL GOFS3.1 Global ice-ocean 10 0.1 lon × 0.1 lat

PIOMAS Regional ice-ocean 7 0.8 lon × 0.8 lat

UCL NEMO-LIM3 Global ice-ocean 10 1 lon × 1 lat

Fig. 1  Weighting mask w (see Eq. 1 in main text and supplemen-
tary material) used for application of initial condition sea-ice thick-
ness. The black contour shows the mean 2007–2014 sea ice edge in 
NSIDC observations on 1 May and the blue contour shows the mean 
September sea ice edge for 2007–2014 in NSIDC observations
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hemisphere sea-ice volume and in addition both volume time 
series are strongly correlated (r = 0.95, see Fig. 2d). Over 
most of the Arctic basin, sea-ice thickness is modified north 
of the mean 1 May sea-ice edge, but south of the mean Sep-
tember sea-ice edge (Fig. 1). The only exception occurs in 
Svalbard’s vicinity, where the mean 1 May and September 
sea-ice edges are almost collocated. This is the only region 
where the initial sea-ice thickness is modified north of the 
September sea ice edge. However, given the climatological 
sea-ice drift from the north, which advects spring thickness 
anomalies into the region, and the small impact that Septem-
ber sea-ice anomalies in this region have on total September 
sea-ice area variability (which is dictated mostly by variabil-
ity in the Siberian and Alaskan sectors, see e.g., Figure 14 
in Deser et al. 2000), we do not expect this design feature to 
have a significant impact on our results.

PIOMAS uses an ice-thickness distribution (ITD) scheme 
whereby sea ice is distributed into different ice-thickness cat-
egories at each grid cell. For those models that do not have 
an ITD scheme, the mean PIOMAS sea-ice thickness is 
simply specified at each grid cell. For models that do have 
an ITD scheme, the 12-category PIOMAS ITD is linearly 
interpolated into the model’s n-category ITD (for example, 
the CICE sea-ice model has a 5-category ITD) in order to 
both conserve mean sea-ice thickness and the distribution 
of sea-ice thickness. Snow and ice enthalpy per unit volume 
are conserved, and all other sea ice variables (sea-ice con-
centration, snow depth, etc.) and other component variables, 
including ocean component variables, are left unchanged 
from the different models’ native initial conditions (table S1).

The 1 May sea-ice thickness initial conditions used in 
both sets of simulations are shown in Fig. 2. Compared to 

Fig. 2  a Mean PIOMAS 1 May 
sea-ice thickness in meters over 
the 2007–2014 period (referred 
to as climatology), b PIOMAS 
2015 1 May sea-ice thickness, c 
2015—climotology difference 
within the masked region shown 
in Fig. 1, and d time series of 
1 May pan-Arctic (blue) and 
Arctic basin (as defined by w in 
Fig. 1, in black) sea-ice volume 
over 2007–2015. The dashed 
lines are the 2007–2014 mean 
for both domains
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the 2007–2014 climatology, 2015 had thicker ice north of 
the Canadian Arctic Archipelago and Greenland, north of 
Alaska and in the Baffin Bay, and thinner ice over the Laptev 
and East Siberian seas and the McKenzie River Delta. Over-
all, total sea-ice volume in the northern hemisphere and 
within the Arctic basin was greater in 2015 relative to the 
2007–2014 climatology. For observations of sea ice extent 
and concentration, we use the National Snow and Ice Data 
Center (NSIDC) Sea Ice Index data (Fetterer et al. 2002). We 
have found that our results are not significantly sensitive to 
the choice of observational product by also using the NSIDC 
bootstrap algorithm data (Comiso et al. 2000) (not shown).

3  Results

3.1  Sea‑ice extent, concentration and volume

We begin by showing values of daily sea-ice extent and 
mean September sea-ice extent in Fig. 3. Initial sea-ice 
extent on 1 May differs markedly across all models. This is 
not unexpected: since the forecast design does not modify 

the sea ice edge of each model’s original initial conditions 
(as the May 1 sea-ice edge lies to the south of the weighting 
mask area in Fig. 1), there is an initial difference in sea-ice 
extent across models. These inter-model differences in sea-
ice extent increase throughout the forecast period, resulting 
in a significant model spread of the ensemble-mean Sep-
tember sea-ice extent, which ranges from 3× 106 km2 to 
over 6× 106 km2. The model-mean September sea-ice 
extent of 4.92× 106 km2 compares well with the observed 
2015 value of 4.63× 106 km2 (Fig. 3i), but has a large 
uncertainty associated with it as reflected by the standard 
deviation of the all-model ensemble.

We now consider the extent anomaly forecasts (i.e., the 
2015 minus climatology forecasts). Compared to the fore-
casts of absolute extent, the spread in the forecast of the 
September extent anomaly is much smaller across models, 
with anomaly forecasts ranging from ∼0 to 0.6× 106 km2 . 
The model-mean anomaly forecast is 0.2× 106 km2. The 
observed 2015 anomaly sea-ice extent value was −0.1 
×106 km2 (with respect to the observed 2007–2014 clima-
tology), well within one standard deviation of the models’ 
forecasts (Fig. 3j).

Fig. 3  Daily 1 May to October 1 total northern hemisphere sea-ice 
extent (SIE, in 106 km2) for all 8 models in the 2015 forecast (red) 
and climatology forecast (black) simulations (panels a–h). Thin lines 
represent individual model runs, bold lines represent model means. 
Panel i (j) shows mean September SIE forecasts (SIE anomaly fore-
casts) for all 8 models in blue, the multi-model mean in black and 

the observed 2015 September sea-ice extent (anomaly relative to 
2007–2014) as a black line. The model mean September SIE anomaly 
is also shown in black. The error bars indicate one standard deviation 
for each model, and the model mean error bar the standard deviation 
of the all-model ensemble
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Forecasts of 2015 September sea-ice concentration 
(Fig. 4) have a large spread across the models, mirroring 
the large spread in extent in Fig. 3i. This model spread is 
also seen in the climatology simulations (not shown). As 
with pan-Arctic extent, the model-mean 2015 forecast 
shows a reasonable agreement with observations (Fig. 4i). 
Forecasts of September sea-ice concentration anomaly 
(Fig. 5) show large differences across models, unlike the 
forecast of September sea-ice extent anomaly (Fig. 3i). 
As a result, the model-mean concentration anomaly fore-
cast shows no consistent patterns of positive or negative 
anomalies, unlike the observed 2015 anomaly with respect 
to the observed 2007–2014 climatology. In Fig. 5, indi-
vidual model ensemble-mean forecasts also tend to fore-
cast weaker anomalies than observed, but this partly results 
from the ensemble-averaging which acts to reduce anomaly 
amplitudes by filtering out chaotic components.

Forecasts of daily sea-ice volume (Fig. 6) show a large 
divergence in absolute forecasts across models. As is the 
case for sea-ice area, the spread in forecasted September 
sea-ice volume anomalies (Fig. 6j) is much smaller than the 
total volume forecast spread (Fig. 6i). All models simulate a 
positive anomaly in September sea-ice volume, the positive 
anomaly signal in the initial conditions (see Fig. 2 above) 
persisting throughout the summer. Unfortunately, there are 
no observational data of sea-ice volume against which the 
forecasts can be validated, but we use the PIOMAS recon-
structed sea-ice volume values as a proxy for observations 
(black lines in Fig. 6j, i). Results from PIOMAS suggest 

that September 2015 sea-ice volume was close to the 2007–
2014 volume, hinting that forecasts slightly overestimate 
sea-ice volume and the persistence of the positive initial 
condition volume anomaly.

3.2  Forecast uncertainty

We now quantify forecast uncertainty and its partition into 
model uncertainty (also known as structural uncertainty) 
and irreducible error growth. When assessing or making 
use of a multi-model forecast, uncertainty in the forecast 
originates from model uncertainty and the irreducible fore-
cast uncertainty that arises from the chaoticity of the cli-
mate system present within each model’s forecasts (for 
ice-ocean models that do not have an atmospheric model 
component, irreducible forecast uncertainty will also arise 
from the uncertainty of forecast forcing). Additional fore-
cast uncertainty will originate from uncertainty in the initial 
conditions (e.g., the difference between the PIOMAS sea-
ice thickness fields and the unknown, real-world sea-ice 
thickness fields)—our forecast design however precludes 
us from estimating this source of forecast uncertainty.

Variables of interest to address forecast uncertainty are 
the sea-ice volume and area within the masked region of 
Fig. 1. To avoid differences among models due merely to 
their differing land masks (especially in the Canadian Arc-
tic Archipelago region), each model’s output is regridded to 
the PIOMAS grid and subject to the PIOMAS land mask. 
With this processing, the models have nearly the same 

Fig. 4  Ensemble-mean 2015 September sea-ice concentration forecasts for all 8 models. The black line represents the 15 % concentration con-
tour in the NSIDC observations, which is usually taken to define the sea ice edge
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Fig. 5  Mean September sea-ice concentration anomaly (2015—climatology) forecasts for all 8 models, model mean, and the observed Septem-
ber concentration anomaly (2015—climatology)

Fig. 6  As Fig. 3, but for sea-ice volume (SIV, in 1013 m3). Panel i (j) 
shows mean September SIV forecasts (SIV anomaly forecasts) for all 
8 models in blue, the multi-model mean in black and the PIOMAS (in 
assimilation mode) 2015 September SIV (anomaly relative to 2007–

2014), labeled ’PIO’. The model mean September SIV anomaly is 
also shown in black. The error bars indicate one standard deviation 
for each model, and the model mean error bar the standard deviation 
of the all-model ensemble
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sea ice conditions in the masked region on 1 May, and the 
growth in their forecast spread henceforth is easily seen 
(Fig. 7).

We quantify forecast uncertainty as follows: model 
uncertainty (MU hereafter) is defined as the across-model 
standard deviation of each models’ ensemble-mean fore-
casts, or σ(¯f ), where ¯f  is a model’s ensemble-mean fore-
cast; the uncertainty associated with the irreducible error 
growth (IE hereafter) is defined as the mean of the standard 
deviation of each model’s forecast ensemble, or σ(f ) . We 
also compute the model uncertainty of the anomaly fore-
cast (aMU hereafter), or σ(f ′), where f ′ is the anomaly of 
the model’s ensemble-mean forecast (bold lines in Fig. 7c, 
d). Figure 8 shows the values for all 3 uncertainty met-
rics for sea-ice volume and sea-ice area. For both quanti-
ties, MU dominates forecast uncertainty, and is about 2–3 
times greater than IE. Interestingly, error growth is not lin-
ear with time, and IE shows a rapid period of error growth 
from early June to mid July and may be related to the pre-
viously reported ’predictability barrier’ (Blanchard-Wrig-
glesworth et al. 2011; Day et al. 2014b), a period in early 
summer when positive albedo-ice melt feedbacks initiated 
mainly by unpredictably atmospheric conditions result in 
a rapid loss of predictive skill. In contrast, aMU is about 

an order of magnitude lower than MU, and only about a 
third or half of IE. We note however that a fraction of MU 
and aMU will derive from the sampling uncertainty of the 
ensemble means given the finite ensemble sizes, rather than 
model uncertainty per se. This fraction can be estimated by 
the standard error of the mean, which given the ensemble 
sizes in the experiment will be ∼0.28 × IE. The implication 
of anomaly forecasting (i.e., post-processing the forecast) 
for the skill and uncertainty of seasonal sea-ice forecasts is 
discussed further below.

Our forecast design allows us to investigate how fore-
cast uncertainty varies regionally. We have applied the 
same forecast uncertainty analysis as above but using sea-
ice thickness at each grid-cell rather than pan-Arctic met-
rics. Figure 9 shows spatial patterns of MU, IE and aMU 
for four different forecast lead times (forecast days 30, 
60, 90 and 120). During the first 2 months of the forecast, 
MU and IE grow rapidly along the Arctic coastlines, indi-
cating higher forecast uncertainty in those regions relative 
to the central Arctic. At longer forecast times, MU also 
grows significantly in the central Arctic, unlike IE which 
tends to maintain the high coastal / low central Arctic pat-
tern seen in earlier months. As is the case for pan-Arctic 
volume, aMU at each grid cell is much reduced relative to 

Fig. 7  Daily 1 May to October 
1 Arctic basin sea-ice area (in 
106 km2) and volume (in 1013 m3

) 2015 forecasts and anomaly 
(2015—climatology) forecasts 
for sea-ice area (c) and volume 
(d) for all 8 models. Bold lines 
indicate the model mean value 
for each model, the shaded area 
around the bold line indicate 
one standard deviation for each 
model. The black lines in a and 
c show daily observed Arctic 
basin sea-ice area
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Fig. 8  Daily 1 May to October 
1 model uncertainty (MU), 
irreducible error growth (IE), 
and anomaly forecast model 
uncertainty (aMU)—see main 
text for definitions—for a sea-
ice area in 1011 m2 and b sea-ice 
volume in 1012 m3

Fig. 9  Spatial model uncertainty (MU, top row), irreducible error (IE, middle row) and anomaly model uncertainty (aMU, bottom row) for sea-
ice thickness at forecast lead times of 30 days (a, e, i), 60 days (b, f, j), 90 days (c, g, k) and 120 days (d, h, l). All units are meters
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MU. Interestingly, an area of high initial growth of aMU in 
the first 2 months north of the CAA and Greenland tends to 
advect with the climatological ice drift toward the Beaufort 
Gyre by the end of the forecast period.

3.3  Skillful forecast lead time

The potential value of a forecast to stakeholders greatly 
depends on the geographic characteristics of the forecast. 
Integrated metrics such as pan-Arctic sea-ice extent or vol-
ume, while being of interest from an academic point of 
view, are not of great practical use to stakeholders, who 
are more interested in regional metrics. Unfortunately, 
regional metrics tend to have lower predictive skill than 
integrated metrics (e.g., Day et al. 2014b; Goessling et al. 
2016), while the physical mechanisms that lead to loss of 
predictability with forecast lead time are different across 
pan-Arctic and regional scales (Tietsche et al. 2016). These 
differences between pan-Arctic and regional predictability 
can also be seen in our results when considering the multi-
model forecast: models uniformly forecast 2015 September 
pan-Arctic extent and volume anomalies (Figs. 3j, 6j), yet 
there is no agreement across models on the spatial patterns 
of September sea-ice concentration anomalies (Fig. 5).

An alternative way to communicate useful forecast 
information is to show the length of time over which the 
forecast has skill relative to using climatology as a forecast. 
To achieve this we compute the daily signal strength of the 
sea ice thickness forecast by calculating the signal-to-noise 
ratio as follows:

where ss is the signal strength, hie and hic are the mean 
ice thickness at each grid cell in the 2015 and climatol-
ogy forecasts respectively, and σ is the standard deviation 
operator. When ss is greater than 1, the signal of the fore-
cast is greater than the noise. We calculate ss for each day, 
grid cell, and model. Finally, we compute the last day on 
which ss is greater than one, and call this the ’signal time’. 
Figure 10 shows the spatial patterns of signal time for all 
eight models’ forecasts. Overall, the pattern bears resem-
blance to the pattern of initial condition anomaly in Fig. 2c, 
which is unsurprising: the larger the initial condition anom-
aly (whether it be positive or negative), or signal (i.e., the 
numerator in Eq. 2 at time = 0), the longer the forecast sig-
nal tends to last. However, there are notable exceptions. In 
most models, a tongue of long signal time extends toward 
the Chukchi Sea from the north of the CAA, despite the 

(2)ss(t) = |(hie(t)− hic(t))/σ (hie)|,

Fig. 10  Forecast period (‘signal time’ in the text) in days from ini-
tialization over which the 2015 ensemble mean ice thickness forecast 
anomaly (the signal) is greater than an estimate of ensemble spread 

(the noise). The color scale represents month with May, June, July, 
August and September in increasingly darker red coloring
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initial condition anomaly being weak north of the Chukchi 
Sea. By contrast, in many models, the positive initial con-
dition anomaly along the north coast of Alaska does not 
translate into a long forecast signal. This likely results from 
the large growth in IE along coastlines shown in Fig. 9: the 
fast growth in σ(hie) means that ss drops below one at an 
earlier date. Importantly, only a relatively small area of the 
Arctic shows signal times that last until September.

4  Discussion and conclusions

In this work, we have produced a multi-model seasonal 
sea-ice forecast using identical sea-ice thickness initial 
conditions in the Arctic basin to explore the relative con-
tribution of model uncertainty and irreducible error growth 
to forecast uncertainty. Furthermore, we have explored dif-
ferences in skill between more standard pan-Arctic metric 
forecasts and regional forecasts that may be of more use to 
stakeholders.

Forecasts of September 2015 using 1 May 2015 sea-
ice thickness initial conditions show that prior to forecast 
post-processing, model uncertainty dominates forecast 
uncertainty. It is indeed remarkable how fast different mod-
els diverge in their forecasts, and by September the range 
in sea-ice extent is several million km2, amply above the 
observed variability in September sea-ice extent. The fast 
divergence documented here is impressive, especially in 
light of the long, annual persistence timescales that sea-ice 
thickness anomalies tend to exhibit in dynamical coupled 
models (Blanchard-Wrigglesworth and Bitz 2014).

In contrast, when post processing the forecast by sub-
tracting each model’s climatology forecasts, models agree 
much better in their forecasts of sea-ice extent and volume 
anomalies. Model uncertainty decreases by an order of 
magnitude, and the irreducible error growth becomes the 
dominant source of forecast uncertainty. This result sug-
gests that effective post-processing adjustment (bias cor-
rection) plays an important role in seasonal forecasting of 
September sea ice, a problem that is exacerbated not only 
by the large model biases with respect to climatology but 
also by the large trends in the observations and the sensitiv-
ity of the trend to the time period chosen for its calculation. 
It is likely that improvements in the application of bias cor-
rection methods across SIO models would result in reduced 
forecast uncertainty and higher forecast skill. Unlike sea-
ice extent and volume, forecasts of sea-ice concentration 
still show large inter-model differences after post-process-
ing, indicating that regional forecasts of sea ice are more 
uncertain, and thus likely to show less skill, than pan-Arc-
tic sea-ice extent forecasts.

Although we find good agreement between the observed 
sea-ice area anomaly and the forecast anomaly (Fig. 7c), 

we are unable to make any assessment of the reliability 
of the forecast system, since such an assessment requires 
a large sample size of forecasts and observations (e.g., 
Hamill 2001). However, we note that the magnitude of IE 
in Fig. 8a is close to the observed standard deviation of 
(detrended) September sea-ice area (∼0.5 million km2 ), 
an indication that the dispersion component of forecast 
skill (the predictability of the ensemble spread) is close to 
saturation. Given that additional uncertainty from the aMU 
and unknown uncertainty associated with initial conditions 
will add to total forecast uncertainty, this means that, if the 
2015 forecast is representative of the models’ mean state 
predictability (i.e., if 2015 is not an anomalously unpre-
dictable year that led to faster-than-usual IE growth), any 
overall forecast skill of September extent in the model sys-
tem discussed in this work could only originate from the 
signal component of predictability (the predictability of the 
ensemble mean, see e.g., Branstator and Teng 2010; Blan-
chard-Wrigglesworth et al. 2011 for a more detailed discus-
sion of both sources of initial-value predictability). Unfor-
tunately, a long dataset of annual forecasts (or hindcasts) is 
needed to estimate this component of predictability, though 
we note that previous idealized experiments have shown 
that the signal component of sea-ice predictability can be 
higher than the dispersion component over the first two 
seasons of forecast lead time (Blanchard-Wrigglesworth 
et al. 2011).

We have also explored regional aspects of forecast 
uncertainty and a regional forecast metric based on the 
forecast lead time over which the signal beats the noise 
that may be of use to stakeholders. In terms of regional 
forecast uncertainty, there is a stark contrast between the 
Arctic coastlines and the central Arctic basin, particularly 
during the initial 2–3 months of the forecast period. Fore-
cast uncertainty grows rapidly along the Arctic coastlines, 
and in some regions contributes to shorten the timescale 
over which the forecast signal beats the noise. A similar 
geographic pattern of error growth has been shown in ide-
alized ‘perfect-model’ experiments (Tietsche et al. 2014), 
which hinted that sea ice dynamics play a key role in this 
degradation of forecast skill. Unfortunately not all of the 
participating models output thermodynamic and dynamic 
ice volume tendencies, precluding us from investigating the 
partition of error growth further. Considering the regional 
needs of stakeholders in the Arctic, our results have signifi-
cant consequences for the future design and plausibility of 
stakeholder-focused seasonal sea-ice forecasts.

There are some limitations imposed by the design of 
our forecast simulations. It is important to note that fore-
cast uncertainty associated with inter-model differences 
in initial conditions in other (non sea-ice) components of 
the system that affect the forecast evolution of Arctic sea 
ice will manifest itself in our results as part of the model 
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uncertainty component. While ultimately it would be desir-
able to diagnose model uncertainty in a forecast set-up 
in which all initial conditions across all components are 
identical, the challenges involved in designing such a fore-
cast are considerable. Our effort represents a step in that 
direction.
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