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ABSTRACT

The Naval Research Laboratory ocean surface flux (NFLUX) system provides satellite-based surface state

parameter and surface turbulent heat flux fields operationally over the global ocean. These products are

presented as an alternative to using numerical weather prediction models—namely, the U.S. Navy Global

Environmental Model (NAVGEM)—to provide the surface forcing to operational ocean models. NFLUX

utilizes satellite sensor data records from the Special Sensor Microwave Imager/Sounder (SSMIS), the Ad-

vanced Microwave Sounding Unit-A (AMSU-A), the Advanced Technology Microwave Sounder (ATMS),

and the Advanced Microwave Scanning Radiometer-2 (AMSR-2) sensors as well as satellite environmental

data records from WindSat, the Advanced Scatterometers (ASCAT), and the Oceansat scatterometer

(OSCAT). The satellite data are processed and translated into estimates of surface specific humidity, surface

air temperature, and 10-m scalar wind speed. Two-dimensional variational analyses of quality-controlled

satellite data, in combination with an atmospheric-model field, form global gridded surface state parameter

fields. Bulk formulas are then applied to produce surface turbulent heat flux fields. Six-hourly analysis fields

are created from 1 January 2013 through 31 December 2013. These fields are examined and validated against

in situ data andNAVGEM.Overall, theNFLUXfields have a smaller bias, lower or similar root-mean-square

error, and increased skill score relative to those of NAVGEM.

1. Introduction

Accurate representation of surface heat fluxes at the

air–sea interface is an important aspect of atmospheric,

oceanic, and coupled air–sea forecast modeling. The

total ocean surface heat exchange is determined by the

solar radiative flux, longwave radiative flux, latent heat

flux (LHF), and sensible heat flux (SHF). These fluxes

strongly influence the ocean mixed layer and sonic-

layer depths as well as the stability and convection in

the atmospheric boundary layer. Modeling for both

short time scales, such as operational forecasting, and

long time scales, such as climate studies, is highly de-

pendent on the forcing from surface heat fluxes. This

study focuses on the surface turbulent heat fluxes: LHF

and SHF. The radiative fluxes will be the focus of a

future paper.

The surface turbulent heat fluxes can change rapidly

with time and space. The most dramatic changes typi-

cally occur in areas with sharp sea surface temperature

(SST) gradients or strong winds. These regions include

strong ocean currents, such as the Kuroshio and Gulf

Stream (Small et al. 2008; Xu et al. 2011); eddies, hur-

ricanes, tropical storms (Drennan et al. 2007); and cold-

air outbreaks (Jensen et al. 2011). In the ideal situation,

the turbulent heat flux fields used in global ocean

modeling must be able to accurately represent the wide

range of possible atmospheric and oceanic conditions,

including the more extreme scenarios.

Direct surface turbulent heat flux measurements are

often costly and limited to dedicated research missions

(Yelland et al. 2009). Therefore, surface turbulent heat
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fluxes are typically estimated from bulk algorithms with

inputs of near-surface atmospheric-model state param-

eters including specific humidity QA, air temperature

TA, SST, and 10-m scalar wind speed U10. The bulk

formulas for LHF and SHF are expressed as follows:
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where r is the air density, CE is the moisture transfer

coefficient, LV is the latent heat of vaporization, U10

is the vector wind at 10m, Usfc is the vector surface

current, qsfc is the surface saturation specific humidity,

CH is the heat transfer coefficient, and cp is the specific

heat capacity of air. The input surface state parameters

can be obtained from a variety of sources. In situ (ship

and buoy) observations can provide long time series at

specific locations, but the spatial coverage is very

sparse, particularly in the Southern Hemisphere. Sat-

ellite observations offer much better spatial sampling

at scales larger than the sensor footprint. Geostationary

satellites have high temporal sampling but do not provide

global coverage. Polar-orbiting satellites provide global

coverage, but the temporal sampling of a given area can

be relatively infrequent—from hourly to daily depending

on the type and number of satellites that are being used.

Because of the lack of adequate temporal and spatial

coverage, the in situ and satellite observations by them-

selves are not able to provide the surface forcing fields for

global modeling.

The alternatives to using individual in situ or satellite

observations to obtain the input surface state parame-

ters for global modeling are to use either numerical

weather prediction (NWP) reanalysis products or

satellite-based products. NWP reanalysis products typ-

ically assimilate at least some in situ and satellite data

and can offer high temporal and spatial coverage, but

there may be additional unassimilated surface obser-

vations, the flux parameterizations used within the

NWP reanalysis products may not be consistent with

current flux models, and there are often large regional

biases (Curry et al. 2004; Smith et al. 2011). Satellite-

based products produce global fields of the surface

state parameters and then apply bulk algorithms to

estimate the surface turbulent heat fluxes. Some satellite-

based products assimilate model data and/or in situ

data in addition to the satellite data. These products

offer high temporal and spatial coverage and are

more likely to have similar characteristics over time

than the NWP reanalysis products, but they are also

subject to errors in the satellite retrieval algorithms

and accuracy of the surface state parameters (Smith

et al. 2011).

Several satellite-based global gridded surface tur-

bulent heat flux products are now available from

various sources. Information on the most recent ver-

sions of each of the existing products is presented in

Table 1. The products include the Goddard Satellite-

based Surface Turbulent Fluxes, version 3 (GSSTF

v3; Shie et al. 2009; Shie 2012); the Hamburg Ocean

Atmosphere Parameters and Fluxes from Satellite

Data, version 3.2 (HOAPS v3.2; Andersson et al.

2010; Fennig et al. 2012); the French Research Insti-

tute for Exploitation of the Sea, version 3 (IFREMER

v3; Bentamy et al. 2013); the Japanese Ocean Flux

Dataset with Use of Remote Sensing Observations,

version 2 (J-OFURO v2; Tomita et al. 2010); the ob-

jectively analyzed air–sea fluxes, version 3 (OAFlux v3;

Yu and Weller 2007); and SeaFlux version 1 (v1;

Clayson et al. 2015, 2014, manuscript submitted to Int.

J. Climatol.). Each of the products has a relatively

long time series and high spatial resolution, which

is suitable for climate studies. None of these prod-

ucts are available in an operational or near-real-time

mode, however; the surface fluxes are produced in

a delayed mode. Because of the lack of real-time

satellite-based products, the surface forcing fields

used in operational ocean models currently come

from NWP-model fields. In particular, the primary

source of forcing for U.S. Navy global ocean models

is the Navy Global Environmental Model (NAVGEM;

Hogan et al. 2014).

This study discusses the development of an opera-

tional satellite-based global turbulent heat flux prod-

uct, the Naval Research Laboratory (NRL) ocean

surface flux (NFLUX) system. The NFLUX system is

TABLE 1. Existing satellite-based global gridded surface turbulent heat flux products.

Dataset Grid resolution Temporal resolution Time period

GSSTF v3 0.258 3 0.258 Daily Jul 1987–Dec 2008

HOAPS v3.2 0.508 3 0.508 6-hourly, monthly Jul 1987–Dec 2008

IFREMER v3 0.258 3 0.258 Daily Oct 1999–Nov 2009

J-OFURO v2 1.008 3 1.008 Daily, monthly Jan 1988–Dec 2008

OAFlux v3 1.008 3 1.008 Daily, monthly Jan 1985–Jul 2014

SeaFlux v1 0.258 3 0.258 3 hourly Jan 1998–Dec 2007
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designed to provide near-real-time gridded surface

flux products that preserve the temporal and spatial

resolution of the NWP model while using all available

satellite observations of the air–sea interface. In ad-

dition to using the NFLUX fields as an alternative to

NWP fields to provide surface forcing to operational

models, these satellite-based products can also be used

to asses and monitor NWP products. The NFLUX

surface state parameter and turbulent heat flux fields

will be presented and validated against in situ ob-

servations and will be compared with NAVGEM

fields.

2. The NFLUX system

NFLUX is an end-to-end data processing and assim-

ilation system consisting of three primary components:

data processing, quality control, and 2D variational

analysis. A schematic of the NFLUX dataflow is pre-

sented in Fig. 1. Bulk algorithms are applied to the

analysis fields to produce global gridded surface turbu-

lent heat flux estimates.

a. Data processing

The first component of the NFLUX system processes

satellite environmental data records (EDRs), sensor

data records (SDRs), and in situ observations into sur-

face state parameter estimates. All satellite data are

processed at the swath level. A summary of the satellite

and in situ data processed in the NFLUX system is

provided in Table 2.

Satellite EDRs provide 10-m wind speeds that are

retrieved from three sensors on board four platforms:

the WindSat sensor on board the Coriolis platform

(Bettenhausen et al. 2006), the Advanced Scatter-

ometer (ASCAT) on board the European Organisa-

tion for the Exploitation of Meteorological Satellites

(EUMETSAT) MetOp-A and MetOp-B platforms

(Figa-Saldaña et al. 2002; Verspeek et al. 2012), and

the Oceansat scatterometer (OSCAT) on board the

Oceansat-2 platform (Chakraborty et al. 2013). The

OSCAT sensor failed on 20 February 2014, but the data

from prior to the failure are used within NFLUX.

WindSat 50-km-resolution EDRs are obtained from

the Fleet Numerical Meteorology and Oceanogra-

phy Center (FNMOC). ASCAT 25-km-resolution

and OSCAT 50-km-resolution EDRs are obtained

from the Royal Netherlands Meteorological Institute

(KNMI) Ocean and Sea Ice Satellite Application Fa-

cility. The retrieved EDR wind speeds are used without

modification.

Satellite SDRs are retrieved from four sensors on

board 10 platforms: the Special Sensor Microwave

Imager/Sounder (SSMIS) sensor on board the De-

fense Meteorological Satellite Program (DMSP) F16,

F17, and F18 platforms; the Advanced Microwave

Sounding Unit-A (AMSU-A) sensor on board the

National Oceanic and Atmospheric Administration

(NOAA) Polar-Orbiting Environmental Satellite

NOAA-15, NOAA-18, and NOAA-19 platforms and

the MetOp-A and MetOp-B platforms; the Advanced

FIG. 1. The NFLUX system data-flow schematic. Unshaded

rectangles signify the input datasets, ovals signify major internal

processes, and shaded rectangles signify the end product from each

primary component of the NFLUX system. The dashed arrow lines

indicate that the end product from one cycle is used in the

following cycle.

TABLE 2. Satellite and in situ data used within the NFLUX system.

Sensor Platform Data type Source NFLUX parameter

AMSU-A NOAA-15, NOAA-18, NOAA-19; MetOp-A, MetOp-B SDR CLASS QA, TA

ATMS SNPP SDR CLASS QA, TA

SSMIS DMSP F16, F17, F18 SDR CLASS QA, TA, U10

AMSR-2 GCOM-W1 SDR JAXA QA, TA, U10

WindSat Coriolis EDR FNMOC U10

ASCAT MetOp-A, MetOp-B EDR KNMI U10

OSCAT Oceansat-2 EDR KNMI U10

— — In situ NAVOCEANO QA, TA, U10
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Technology Microwave Sounder (ATMS) sensor on

board the Suomi–National Polar-Orbiting Partner-

ship (SNPP) platform; and the Advanced Microwave

Scanning Radiometer-2 (AMSR-2) sensor on board

the Global Change Observation Mission 1st–Water

(GCOM-W1) platform. The SSMIS, AMSU-A, and

ATMS level-1B SDR data are obtained from the

Comprehensive Large Array-data Stewardship Sys-

tem (CLASS). The AMSR-2 level-1R SDR data are

obtained from the GCOM-W1 data-providing ser-

vice, the JapanAerospace Exploration Agency (JAXA).

Limb corrections, which adjust the off-nadir bright-

ness temperatures to nadirlike brightness temperatures,

have been applied to the AMSU-A and ATMS SDRs.

In addition, antenna pattern corrections proposed by

Mo (1999) have been applied to the NOAA AMSU-A

SDRs. No additional corrections have been applied to

the SSMIS or AMSR-2 SDRs.

The retrieved SDRs are translated into estimates of

the surface state parameters using multiple polynomial

regression algorithms on the basis of a series expansion

of the hyperbolic tangent function. The coefficients were

developed using a bootstrapping technique with all

available brightness temperature channels for a given

sensor–platform combination and a background SST

field. For each retrieved parameter for each sensor–

platform combination, unique algorithms were de-

veloped for ascending and descending orbits, as well

as clear and cloudy conditions. The SDR data pro-

cessing also includes checks for valid brightness tem-

perature ranges, rain, near-land-contaminated data,

and ice-contaminated data. The background SST fields

are daily SST analysis fields produced by theU.S. Naval

Oceanographic Office (NAVOCEANO) at 0.18 reso-
lution. AMSU-A and ATMS data are used to estimate

QA and TA, and SSMIS and AMSR-2 data are used to

estimate QA, TA, and U10. For full details on satellite

SDR data processing and validation of swath-level

satellite retrievals, refer to Van de Voorde et al.

(2014, 2015).

In situ data are retrieved by NAVOCEANO from the

World Meteorological Organization Global Telecom-

munication System. The in situ data include both vol-

untary observing ship (VOS) and buoy data. The in situ

observations make direct measurements of TA andU10.

Depending on the reported measurements, QA is either

calculated from the observed dewpoint temperature and

surface pressure or from the relative humidity, air tem-

perature, and surface pressure. Buoy QA and TA ob-

servation heights are nominally at 5m, buoy U10

observation heights are nominally at 10m, and the ship

observation heights vary from 10 to 40m (Kent et al.

2007). All in situ observations are height adjusted to a

common height of 5m for QA and TA and 10m for U10

using the Coupled Ocean–Atmosphere Response Ex-

periment (COARE) 3.0 algorithm (Fairall et al. 2003).

These heights were chosen to allow the majority of

in situ observations to be used without applying a height

adjustment.

b. Quality control

The second component of the NFLUX system applies

an automated quality control (QC) to all in situ and

satellite observations. The NFLUX QC process is a

variant of the Navy Coupled Ocean Data Assimilation

(NCODA) system (Cummings 2005). A complex QC

process is used in which each observation is subjected

to a series of tests, with the final probability of error, or

error likelihood, assigned on the basis of all of the QC

test results. The most important QC tests in the system

are the differences between the observation and the

monthly climatological values and between the obser-

vation and the previous analysis field. The QC process

was designed to ensure that erroneous data would be

assigned a high probability of error, while extreme but

still valid data would be assigned a low probability of

error. Error likelihoods range from 0 to 1, with values

near 1 representing a high probability of error.

To construct themonthly climate fields used in theQC

process, we considered the satellite-based products lis-

ted in Table 1 and selected the SeaFlux dataset because

of the high spatial and temporal resolution. Note here

that the GSSTF v3 QA fields account for the

Earth incidence angle (EIA) drifting effect, which cau-

ses artificial variations in the brightness temperatures

(Hilburn and Shie 2011; Shie 2012), unlike the SeaFlux

QA fields. By correcting the brightness temperatures for

the EIA drift, the linear regression trend of the globally

averaged QA is reduced from 20.2% to 20.03% per

year (Shie 2012), which corresponds to approximately

a 0.02 g kg21 correction per year. The total global mean

QA uncertainty of the SeaFlux data is 0.57 g kg21

(Clayson et al. 2015, 2014, manuscript submitted to Int.

J. Climatol.), which is greater than the expected error

associated with the EIA drift. The SeaFlux 3-hourly

global gridded products from January 1998 through

December 2007 were obtained from the SeaFlux Inter-

net site (http://seaflux.org/) and were averaged to create

monthly climate fields.

c. 2D variational analysis

The third component of the NFLUX system performs

2D variational analyses of the quality-controlled satel-

lite observations with atmospheric-model forecasts to pro-

duce gridded analysis fields of TA, QA, and U10. For

this study, all in situ observations have been withheld
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from the analyses so that they can be used for validation.

As with the QC component, the variational analysis

component is also a variant of the NCODA system.

This study uses NFLUX global gridded surface state

parameter fields produced with a 6-hourly update cycle

from 1 January 2013 through 31 December 2013. The

global grid extends from 79.158S to 79.158N with 24-km

spatial resolution.

Each 2D variational analysis is performed with a

blended background, or prediction, field. The blended

background field for QA and TA (U10) is formed by

adding the weighted average of the previous 12 (2)

NFLUX analysis increment fields to the atmospheric-

model forecast field (here, the NAVGEM 12-h

forecast fields). The increment field is the gridded

correction field estimated by the analysis. Adding

previous increment fields to the forecast field acts to

‘‘persist’’ previously observed satellite-minus-model

corrections.

The NFLUX analysis uses parameter-specific spa-

tial correlation scales to define the background error,

modeled as the product of a spatial correlation and

a variance. The second-order autoregressive form is

used as the analytical correlation structure in these

results. To estimate the error correlation length

scales, a time series was assembled of NAVGEM 12-h

forecasts and verification analyses for each parameter,

every day at 0000 and 1200 UTC for a full year (2013).

At each verification time, an error field was calculated

as the difference between the 12-h forecast field and

the verification analysis field. At every point on a

uniform 28 grid, neighboring error values from the

difference field were accumulated into 50-km bins,

from 50 to 500 km, and the binned covariances were

fit with a Gaussian function. The characteristic scale

of the Gaussian function was defined as the correla-

tion length scale at that grid point. The time series of

correlation length fields were then averaged, and a

two-way smoothing filter was applied to produce the

final error correlation length scales used within the

NFLUX system (Fig. 2). The error variance is esti-

mated at each analysis time as the weighted sum of

the previous 10 days of successive 6-h forecast-field

differences.

Each satellite retrieval algorithm has a unique ob-

servation error, as does each platform that provides

EDR wind speeds. The observation errors are taken to

be the root-mean-square error of the swath-level re-

trievals as compared with in situ data that are within 18
and 3h of the satellite swath-level retrieval time and

location. The range of observation errors for each sensor

is given in Table 3. For a more detailed list of observa-

tion errors, refer to Van de Voorde et al. (2015).

All available satellite observations with a QC value of

0.90 or less and an observation time within 3 h of the

NFLUX analysis time are assimilated into the analyses.

As a means of thinning the data for computational

FIG. 2. NFLUX horizontal length scales (km) for (top) specific

humidity, (middle) air temperature, and (bottom) wind speed.
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efficiency, ‘‘super observations’’ are created for each

surface state parameter by averaging the input satellite

observations within bins that are 3 times the size of the

global analysis grid-mesh interval. For locations and

times at which there are no satellite data available, the

blended background field is effectively persisted.

d. Flux fields

The NFLUX system uses the COARE 3.0 bulk algo-

rithm (Fairall et al. 1996, 2003) to produce global

stability-dependent surface latent and sensible heat flux

estimates. This algorithm was chosen on the basis of

previous studies by Brunke et al. (2003) and Iwasaki

et al. (2010) that compared various bulk formulas and

determined that the COARE 3.0 algorithm had the best

overall performance. In the current study, we do include

the warm-layer and cool-skin calculations. The velocity

roughness length is specified as Charnock’s expression;

there is no wave dependence. Fairall et al. (2003) found

that the COARE 3.0 algorithm is accurate to within 5%

for wind speeds of 0–10ms21 and 10% for wind speeds

of 10–20m s21.

The inputs to the COARE 3.0 algorithm include

NFLUX QA, TA, and U10 gridded analysis fields and

NAVGEM SST forecast fields. The Usfc term is set to

zero. Because this study compares NFLUX with

NAVGEM and the NFLUX system does not provide

SST analysis fields, the NAVGEM SST fields were

used so that the results highlight the differences in the

NFLUX and NAVGEM LHF and SHF fields attrib-

utable to the QA, TA, andU10 fields. Here, we use the

convention that positive values represent an upward

heat flux from the ocean to the atmosphere and that

negative values represent a downward heat flux from

the atmosphere to the ocean.

In addition to the heat fluxes, ocean models also use

the surface momentum flux. The momentum flux can

be estimated using the COARE 3.0 bulk algorithms

and vector wind stress. The current NFLUX system

produces a scalar wind speed and not a vector wind

speed, which limits the application of the bulk algo-

rithms to the turbulent heat flux estimations; therefore,

the momentum flux is not computed as part of the

NFLUX system.

3. NAVGEM

NAVGEM is a global atmospheric forecast and data

assimilation system that uses the NRL Atmospheric Var-

iational Data Assimilation System–Accelerated Repre-

senter (NAVDAS-AR), an operational four-dimensional

weak-constraint variational data assimilation system

(Xu et al. 2005; Rosmond and Xu 2006). The assimi-

lation of new data occurs every 6 h, and full forecasts

are run every 12 h; forecast fields are output every 3 h.

For each analysis, the SST field is obtained from the

FNMOC. The SST analysis field is used as a lower

boundary condition in NAVGEM and is held constant

throughout the forecast (Hogan et al. 2014). NAVGEM

does assimilate in situ data, as well as data from some

of the sensors that are used within NFLUX.Microwave

sounding radiances from the AMSU-A and SSMIS sen-

sors are assimilated, but the QA and TA retrievals are

not. ASCAT, SSMIS, and WindSat U10 data are also as-

similated, but the scaling factors, the background fields,

the forming of super observations, and other parameters

that are used to form the analysis fields are different

between NAVGEM and NFLUX.

The NAVGEM fields used in this study include the

surface air temperature, surface specific humidity, 10-m

wind speed, and sea surface temperature fields. These

fields are retrieved from the operational product distri-

bution on a uniform 0.58 application grid and are used

without modification.We calculate turbulent heat fluxes

from the NAVGEM retrieved products using the same

COARE 3.0 bulk algorithms that are used to calculate

the NFLUX turbulent fluxes. As with the NFLUX tur-

bulent heat flux calculations, the Usfc term is set to zero.

4. Comparisons with in situ observations

One year of 0000 and 1200 UTC NFLUX global

gridded surface state analysis fields and surface turbu-

lent heat flux fields are compared with NAVGEM 12-h

forecast fields and are validated against in situ obser-

vations. Because NAVGEM assimilates in situ obser-

vations, the 12-h forecast fields, rather than the analysis

fields, are used for comparison to ensure that the in situ

observations that are used for validation have not yet

been assimilated.

The statistical metrics used to evaluate the gridded

products in this study are mean error (ME), standard

deviation (SD), root-mean-square error (RMSE), cor-

relation coefficient squaredR2, and an overall skill score

(SS). The error statistics are defined using

TABLE 3. Range of satellite observation errors by sensor.

Sensor QA (g kg21) TA (8C) U10 (m s21)

AMSU-A 1.47–2.33 1.28–3.17 —

ATMS 1.19–1.59 1.34–1.86 —

SSMIS 1.22–1.86 1.50–1.87 1.45–2.85

AMSR-2 1.16–1.53 1.27–1.84 1.17–2.43

WindSat — — 1.69

ASCAT — — 1.25–1.34

OSCAT — — 1.24
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whereXi are the in situ observations,Yi are the NFLUX

or NAVGEM analysis field values, sX and sY are the

corresponding standard deviations, and the overbar

represents a simple average. MSE(Y, X ) is the mean

square error of the NFLUX or NAVGEM analysis field

values relative to in situ data, and MSE(C, X ) is the

mean square error of monthly climatological values

relative to in situ data.

The ME measures the overall mean bias, SD is the

standard deviation of the difference between the in situ

and model data, RMSE measures the absolute error

between the in situ and model data, andR2 is a measure

of the linear association between the model and the

observation. The SS is a nondimensional measure of

the skill of a model relative to using climatological

values (Murphy 1988, 1995). In this study, the same

SeaFlux monthly climatological fields used in the QC

are used as the reference climatological fields in the SS

calculation. A positive SS represents improved skill,

and a negative SS represents reduced skill. An SS of 1.0

is perfect, and an SS of 0.0 represents no difference in

skill between using the model and using monthly

climatological values.

The in situ observations of QA and TA (U10) used for

validation have been height adjusted to 5-m (10m) ref-

erence heights, as discussed in section 2a, and have been

through the automated QC but have not been assimi-

lated into the NFLUX analyses. The in situ observations

of LHF and SHF used for validation have been calcu-

lated using the COARE 3.0 bulk algorithms, with the

Usfc term set to zero. VOS and buoy in situ observations

that contain valid measurements of QA, TA, U10, and

SST are used to estimate the turbulent heat fluxes. VOS

SST observations are known to have large uncertainty

that is due to different measuring methods (Berry and

Kent 2011). By only using buoys that report the four

components used to calculate the turbulent fluxes,

however, the in situ coverage is very sparse. Including

both VOS and buoy observations provide adequate

spatial coverage and observations that sample a wide

range of atmospheric conditions.

In situ observations assigned an error likelihood es-

timate of 0.90 or less by the QC process and observed

within 3 h of the analysis time are used to create the

matchup validation dataset. For each verification anal-

ysis time, each in situ observation call sign or identifi-

cation number (ID)must be unique. If multiple call signs

or IDs exist, only the observation nearest in time to the

verification analysis time is used. To reduce coastal

boundary effects in the matchup dataset, the in situ

validation observations must also be located greater

than 111km from land. The global in situ validation

dataset consists of 128 086 QA observations, 199 944 TA

observations, 194 649 U10 observations, and 81 510 tur-

bulent heat flux observations.

a. Surface state parameters

Comparisons of the NFLUX and NAVGEM state

parameter fields versus the in situ data are presented in

Fig. 3, and the corresponding error statistics are pro-

vided in Table 4. NFLUX and NAVGEM both have a

strong linear relationship with the in situ data for QA

and TA. The NFLUX and NAVGEM comparisons for

U10 also have a linear relationship with the in situ data,

but with much more scatter. The large scatter in U10 is

primarily due to comparing a model wind speed, which

represents the wind speed over a large area (24 km in

this study), with a single point observation.

From Table 4 it is seen that NFLUX (NAVGEM) has

an overall positive (negative) bias for each parameter.

For QA and U10, NFLUX has a smaller absolute value

for the bias, lower RMSE, and increased SS relative to

NAVGEM. For TA, NFLUX has a smaller absolute

value for the bias, similar RMSE, and similar SS rela-

tive to NAVGEM. To examine the errors further, the

total number of in situ observations for each parameter

was sorted and divided into 25 equally populated bins.

The bias and RMSE were then calculated for each

bin (Fig. 4). The general trends of the bias and RMSE

for each parameter are similar between NFLUX and

NAVGEM, with the NFLUX bias showing a positive

offset from the NAVGEM bias throughout the sam-

pled range.

The NFLUX QA comparisons have a slightly higher

RMSE at low specific humidities and a lower RMSE at

high specific humidities relative to NAVGEM. As QA

increases from approximately 17 g kg21, NAVGEM has

an increasing RMSE and increasing negative bias, which

is likely related to the model assimilation of satellite

radiances reaching saturation. NFLUX shows a similar

but less pronounced pattern. The improved results for

NFLUX seen at high specific humidities are attributed

to themultiple polynomial regression algorithms used in

the satellite retrievals, which are able tomore accurately

MAY 2016 MAY ET AL . 1227



FIG. 3. (left) NFLUX and (right) NAVGEM (top) specific humidity, (middle) air temperature, and (bottom) wind

speed vs in situ observations. The plots represent 2D histograms, with the colors showing the number of observations

within each 0.25-unit square bin.
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estimate high values (Van de Voorde et al. 2015). The

in situ specific humidity matchups that are greater than

or equal to 17 g kg21 (which account for 25% of the total

matchups) relative to NFLUX (relative to NAVGEM)

have an overall bias of 0.3994 (21.2209) g kg21 and an

overall RMSE of 1.4261 (1.8038) g kg21. For in situ

matchups that are less than 17 g kg21 relative to NFLUX

(relative to NAVGEM), the overall bias is 0.3030

(20.2408) gkg21 and the overall RMSE is 1.1781

(1.0391) gkg21.

Both the NFLUX and NAVGEM TA comparisons

have similar RMSE values, with NFLUX showing a

slightly lower RMSE from approximately 138 to 238C.
The large positive bias and high RMSE seen in NFLUX

for low air temperatures are attributed to the satellite

retrievals. At low temperatures, 1) larger scatter is seen

in the satellite brightness temperatures and the SSTs and

2) the satellite brightness temperatures are generally

less sensitive to temperature changes (Jackson andWick

2010). If in situ air temperatures of less than 58C (which

account for 6% of the total matchups) are eliminated

from thematchups, NFLUX (NAVGEM) has an overall

bias of 0.18208C (20.32928C) and an overall RMSE of

1.19128C (1.24218C).
The NFLUX U10 comparisons have a higher RMSE

at low wind speeds and a lower RMSE at high wind

speeds relative to NAVGEM. Both NFLUX and

NAVGEM have a high positive bias and high RMSE

at low wind speeds. For scatterometer retrievals, the

uncertainty in positive scalar quantities is largest at

low wind speeds; therefore, there is often a low wind

cutoff applied at 3m s21 (Freilich and Dunbar 1999;

Bourassa et al. 2003). The SSMI and SSMIS satellite

retrievals exhibit similar degraded performance at

low wind speeds (Goodberlet et al. 1989; Bentamy

et al. 1999; Van de Voorde et al. 2015). At this time,

NFLUX does not apply a low wind cutoff for the

satellite wind speed assimilation. Retrievals of wind

speed at low values are less reliable and degrade the

overall NFLUX performance in these regions.

NAVGEM and, to a lesser extent, NFLUX have an

increased negative bias and increased RMSE as wind

speed increases. This pattern has also been docu-

mented in other studies such as Bentamy et al. (1999)

and Roberts et al. (2010). The improvement NFLUX

TABLE 4. NFLUX and NAVGEM specific humidity, air tem-

perature, and wind speed error statistics relative to in situ data. The

ME, SD, and RMSE specific humidity errors are reported in grams

per kilogram, air temperature errors are reported in degrees Cel-

sius, and wind speed errors are reported in meters per second. A

negative ME indicates an underestimation by the analysis.

ME SD RMSE R2 SS

NFLUX QA 0.3274 1.2019 1.2457 0.9578 0.3742

NAVGEM QA 20.4896 1.1798 1.2773 0.9579 0.3420

NFLUX TA 0.2408 1.2216 1.2451 0.9789 0.4989

NAVGEM TA 20.3043 1.2117 1.2494 0.9788 0.4955

NFLUX U10 0.2142 2.0563 2.0674 0.6442 0.5480

NAVGEM U10 20.3258 2.1421 2.1668 0.6258 0.5035

FIG. 4. NFLUX and NAVGEM bias and RMSE statistics com-

puted for the observed range of (top) specific humidity, (middle)

air temperature, and (bottom) wind speed. The in situ observations

were sorted and divided into 25 equally populated bins for each

surface state parameter.

MAY 2016 MAY ET AL . 1229



FIG. 5. (left) NFLUX and (right) NAVGEM 1-yr-average (top) specific humidity, (middle) air temperature, and (bottom) wind

speed bias relative to in situ observations. The sizes of the squares represent the number of observations in each grid box, ranging

from 5 to 50.
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shows over NAVGEM at high wind speeds is a re-

sult of the use of multiple polynomial regression algo-

rithms in the satellite retrievals, similar to the results

seen in QA. In situ wind speed matchups less than or

equal to 3m s21 account for 11% of the total matchups,

and in situ wind speed matchups greater than 10ms21

account for 18%of the total matchups. For in situmatchups

that are less than or equal to 3ms21 relative to NFLUX

(NAVGEM), the overall bias is 1.8678 (1.3832)m s21 and

the overall RMSE is 2.6536m s21 (2.3499m s21). For

in situ matchups greater than 3m s21 and less than or

equal to 10m s21 relative to NFLUX (NAVGEM), the

overall bias is 0.3175m s21 (20.2701m s21) and the

overall RMSE is 1.7564m s21 (1.8647m s21). For in situ

matchups that are greater than or equal to 10m s21

relative to NFLUX (NAVGEM), the overall bias is

21.2120m s21 (21.5942m s21) and the overall RMSE

is 2.7164m s21 (3.0168m s21).

The NFLUX and NAVGEM global distributions of

the bias relative to in situ data for each surface state

parameter are presented in Fig. 5. The biases are

computed over the given year and are binned to a

uniform 1.08 grid. NFLUX QA shows the largest pos-

itive biases (too moist) in the tropics, the Kuroshio in

the western Pacific Ocean, and the Gulf Stream in the

western Atlantic Ocean. NFLUX QA shows a slight neg-

ative bias throughout the midlatitudes. The NAVGEM

QA bias is almost exclusively negative (too dry), with

the largest negative biases matching the areas with

the largest positive biases that are seen with NFLUX

QA. NFLUX TA shows positive biases (too warm)

throughout the tropics and Gulf Stream with nega-

tive biases (too cold) throughout the midlatitudes.

NAVGEM TA shows mostly a negative bias (too cold)

pattern globally, with the largest negative biases seen in

the midlatitudes. The NFLUX U10 global bias pattern

FIG. 6. (left) NFLUX and (right) NAVGEM (top) latent heat flux and (bottom) sensible heat flux vs in situ

observations. The latent heat flux (sensible heat flux) plots represent 2D histograms, with the colors showing the

number of observations within each 5 (2)Wm22 square bin.
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is less uniform than either the QA or TA bias pattern,

but there is a general overestimation throughout the

tropics and western boundary currents and an under-

estimation in the midlatitudes. The NAVGEM U10

global bias pattern shows a general uniform underes-

timation, with an area of overestimation seen in the

western tropics.

b. Surface turbulent heat fluxes

Comparisons of the NFLUX and NAVGEM cal-

culated surface turbulent heat flux fields versus the

in situ data are presented in Fig. 6, with the corre-

sponding error statistics provided in Table 5. Each

of the NFLUX and NAVGEM flux comparisons

have a general linear relationship with the in situ

data. As LHF or SHF increases, NFLUX exhibits an

increasing underestimation in the surface flux, whereas

NAVGEM seems to better estimate the higher sur-

face fluxes. NFLUX (NAVGEM) has an overall

negative (positive) bias relative to the in situ data.

For both LHF and SHF, NFLUX has a smaller ab-

solute bias, lower RMSE, and increased SS relative

to NAVGEM.

For a more detailed comparison, the in situ flux values

were sorted and split into 25 equally populated bins. The

bias and RMSE were then calculated for each bin

(Fig. 7). The overall trends for the bias and RMSE for

each parameter are similar between NFLUX and

NAVGEM, with the NFLUX bias showing an in-

creasing negative offset relative to the NAVGEM

bias. NFLUX has a lower RMSE for LHF relative to

NAVGEM until approximately 150Wm22, and then

NFLUX has a higher RMSE. NFLUX has a similar

RMSE for SHF throughout the sampled range when

compared with NAVGEM.

The NFLUX and NAVGEM global distributions of

the bias relative to in situ data for LHF and SHF are

presented in Fig. 8. The biases are computed over the

given year and are binned to a uniform 1.08 grid. For
both LHF and SHF, NFLUX shows an overall positive

bias (too much flux leaving the ocean) throughout the

midlatitudes and a negative bias (too much flux entering

the ocean) in the tropics and Gulf of Mexico regions.

NAVGEM shows an overall positive bias globally for

LHF. For SHF, NAVGEM generally shows a positive

bias throughout the midlatitudes and a negative bias in

the tropics.

5. Discussion

Large-scale biases in the state parameter fields, such

as those seen in Fig. 5, are largely due to errors in the

satellite retrievals. As discussed previously, NFLUX

developed four unique algorithms for each retrieved

parameter on each sensor–platform combination for

ascending versus descending orbits and clear versus

cloudy skies. As expected, some of the algorithms per-

form better than others. Each of the retrieval algorithms

also uses a daily SST as a predictor. Jackson and Wick

(2010) discuss how satellite retrievals that use SST as a

predictor are less likely to capture large SST–TA dif-

ferences because the retrieval will draw toward the SST

TABLE 5. NFLUX and NAVGEM latent heat flux and sensible

heat flux error statistics relative to in situ data. The ME, SD, and

RMSE turbulent heat flux errors are reported in watts per meter

squared. A negative ME indicates an underestimation by the

analysis.

ME SD RMSE R2 SS

NFLUX LHF 29.1749 59.6318 60.3331 0.4532 0.3223

NAVGEM LHF 16.6872 62.6359 64.8203 0.4705 0.2177

NFLUX SHF 20.8003 24.0492 24.0624 0.3861 0.3899

NAVGEM SHF 3.6264 24.1525 24.4231 0.4460 0.3715

FIG. 7. NFLUX and NAVGEM bias and RMSE statistics com-

puted for the observed range of (top) latent heat flux and (bottom)

sensible heat flux. The in situ observations were sorted and evenly

divided into 25 equally populated bins for each surface turbulent

heat flux parameter.
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value, shallow layers of cold or warm air are difficult for

satellite observations to detect, and the large satellite

footprint will smooth out small temperature gradients.

Even with these issues, satellite retrievals that include

SST as a predictor have improved overall results over

satellite retrievals that do not include SST as a predictor

(Jackson and Wick 2010; Roberts et al. 2010; Van de

Voorde et al. 2014).

According to Van de Voorde et al. (2015), the TA

descending (nighttime) retrievals generally have im-

proved performance relative to the ascending (daytime)

retrievals, with similar performance between the clear

and cloudy algorithms. This agrees with the findings

from Roberts et al. (2010), who discussed that TA

retrievals rely more on the SST input, with only

modest improvement when using separate clear- and

cloudy-sky algorithms. The improved TA retrievals

seen during nighttime could be an indicator that

using a diurnally varying SST, instead of a daily SST,

would improve the TA estimates. This would most

significantly affect areas with large diurnal SSTs, such

as the tropics, which are seen to have a large positive

bias (Fig. 5).

FromVan de Voorde et al. (2015), the QA cloudy-sky

and U10 clear-sky algorithms generally have improved

performance, with similar performance between the

ascending and descending algorithms. This result also

agrees with the findings from Roberts et al. (2010), who

discussed that QA and U10 retrievals rely more on the

microwave measurements that are affected by cloud

liquid water, with small improvements seen when SST is

included as an input. NFLUX uses a cloud liquid water

threshold value of 0.025mm for separating cloudy ver-

sus clear skies. From the QA and U10 biases seen in

FIG. 8. (left) NFLUX and (right) NAVGEM 1-yr-average (top) latent heat flux and (bottom) sensible heat flux bias relative to in situ

observations. The sizes of the squares represent the number of observations in each grid box, ranging from 5 to 50.
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Fig. 5, a reassessment of the cloud liquid water threshold

value should be considered. This would likely have the

largest impact on areas with significant cloud coverage,

such as the intertropical convergence zone and areas of

low pressure. Similar to the TA retrievals, there is also

expected to be a slight improvement when including di-

urnal SSTs, as opposed to daily SSTs, in the QA and U10

satellite retrievals.

Several recent studies (Bourras 2006; Brunke et al.

2011; Smith et al. 2011) have performed comparisons of

the different versions of the existing satellite-based

datasets and have shown that the differences in the QA

and TA fields are the main contributors to differences

in the LHF and SHF fields. This relationship is easily

seen in this study by comparing the global QA and TA

bias patterns from Fig. 5 with the global flux bias pat-

terns from Fig. 8. The regions with too much (not

enough) moisture or heat are associated with regions of

too much flux leaving (entering) the ocean. Therefore,

it is expected that by improving the state parameter

retrievals, the corresponding LHF and SHF estimates

would also improve.

Although the QA and TA fields are the main con-

tributors to differences in the flux fields, it is actually the

differences in the surface and near-surface state pa-

rameters (qsfc–QA and SST–TA) that are used in esti-

mating the surface fluxes. The qsfc term in the COARE

3.0 algorithms is calculated using the saturated vapor

pressure at the SST.With the strong dependence on SST

in both LHF and SHF estimates, SST should be con-

sidered with respect to the surface fluxes as well. The left

panel of Fig. 9 shows a histogram of the SST–TA dif-

ferences for the in situ data in comparison with those

used in NFLUX and NAVGEM. NAVGEM is seen to

better represent the number of occurrences throughout

the sampled stability range than does NFLUX. The

global distribution of the in situ SST–TA differences is

presented in the right panel of Fig. 9. The SST–TA dif-

ferences are computed over the given year and are

binned to a uniform 1.08 grid. The largest areas of SST–

TA differences, greater than 38C, are associated with the
western boundary currents.

The in situ SST–TA differences are divided into

five bins, and the bias and RMSE are calculated and

FIG. 9. (left)Histogram of the in situ, NFLUX, andNAVGEMSST–TAdifferences used in calculating the surface turbulent heat fluxes.

Bins have a width of 0.58C. (right) In situ 1-yr-average SST–TA differences. The sizes of the squares represent the number of observation

in each grid box, ranging from 5 to 50.

TABLE 6. NFLUX and NAVGEM specific humidity and latent heat flux errors relative to in situ data, split into SST–TA difference bins.

QA bias (g kg21) QA RMSE (g kg21) LHF bias (Wm22) LHF RMSE (Wm22)

SST–TA (8C) N NFLUX NAVGEM NFLUX NAVGEM NFLUX NAVGEM NFLUX NAVGEM

From 25 to 21 10 784 0.0588 20.6378 1.3531 1.5060 27.8152 42.5576 55.4896 72.2622

From 21 to 0 12 210 20.0322 20.7450 1.2026 1.4251 11.1612 28.2728 44.3939 57.1837

0–1 26 045 0.2353 20.8726 1.2440 1.5385 29.3059 17.0984 48.9121 55.8690

1–3 23 611 0.3104 20.9494 1.2923 1.6025 225.1870 4.6896 60.6867 59.2398

3–10 7746 0.3566 21.0881 1.3355 1.6899 250.8749 29.7836 97.6058 89.0471
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included for QA and LHF in Table 6 and for TA and

SHF in Table 7. NFLUX QA has improved error

statistics relative to NAVGEM for each of the sta-

bility bins. NFLUX LHF, TA, and SHF have im-

proved error statistics relative to NAVGEM for the

first three bins of SST–TA differences: from 258
to218C, from218 to 08C, and 08–18C. From the 18–38C
bin to the 38–108C bin, NFLUX shows increasing

degradation in the error statistics relative to NAV-

GEM. It was previously mentioned that the QA re-

trievals do not depend greatly on the SST input, which

is a fact that is consistent with NFLUX QA having

improved error statistics relative to NAVGEM QA

for each stability bin. The other parameters do in fact

show a larger dependence on the input SST.

As discussed previously, the same SST fields from

NAVGEMare used in both the NFLUX andNAVGEM

turbulent heat flux calculations to highlight the differ-

ences from the QA, TA, and U10 fields. The NAVGEM

SST fields do not have diurnal variability, which, de-

pending on the time of day, can dramatically change

the SST–TA differences and in turn the LHF and SHF

results. Similar to the discussion for the satellite retrievals,

it is expected that including a diurnally varying SST in

the turbulent heat flux calculations would decrease the

associated biases.

6. Conclusions

NFLUX is a new data processing and analysis system

(built on the existing NCODA system) that provides

satellite-based global gridded surface state param-

eter fields in near–real time. Surface turbulent heat

flux fields are then estimated from the COARE 3.0

bulk algorithms using the satellite-based surface

state parameters as input. This study uses NAVGEM

to provide the atmospheric background and SST

fields, but the NFLUX system can use atmospheric

forecasts from other sources. NFLUX is designed to

be an alternative to using NWP-model fields, such as

NAVGEM, to provide the surface forcing for oper-

ational ocean models and to provide a mechanism

for using satellite and in situ observations of the

air–sea interface to assess and monitor the NWP

products.

The NFLUX products compare well to both in situ

data and the NAVGEM forecast fields. Overall,

NFLUX has a lower absolute bias, lower or similar

RMSE, and increased skill score for the surface state

parameters relative to NAVGEM. The multiple poly-

nomial regression algorithms used in the satellite re-

trievals are shown to better estimate high surface state

values than does NAVGEM, but NFLUX has degraded

results relative to NAVGEM at low temperatures

(,58C, which accounts for 6% of the total matchups)

and low wind speeds (,3m s21, which accounts for 11%

of the total matchups) because of known issues in sat-

ellite retrievals. The NFLUX LHF and SHF compari-

sons show a lower overall absolute bias, lower overall

RMSE, and an increased overall skill score relative to

NAVGEM. At large SST–TA differences, NFLUX has

degraded error statistics relative to NAVGEM as a re-

sult of including daily SST as a predictor in the satellite

retrievals and flux estimates.

Even with the known issues in the satellite retrievals,

NFLUX shows an overall improvement over NAVGEM

globally. Future work will investigate the satellite re-

trievals at low values and high SST–TA differences for

further improvement. Using a diurnally varying SST

field in the satellite retrievals, as well as the flux cal-

culations, will also be considered. Work is also under

way to develop the radiative flux components of the

NFLUX system to provide a full set of surface flux

measurements.
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TABLE 7. NFLUX and NAVGEM air temperature and sensible heat flux errors relative to in situ data, split into SST–TA difference bins.

TA bias (8C) TA RMSE (8C) SHF bias (Wm22) SHF RMSE (Wm22)

SST–TA (8C) N NFLUX NAVGEM NFLUX NAVGEM NFLUX NAVGEM NFLUX NAVGEM

From 25 to 21 10 784 20.9799 21.3309 1.8778 2.2245 20.7018 21.2051 29.5924 30.8920

From 21 to 0 12 210 20.3026 20.5929 1.2089 1.3860 8.1070 9.2464 15.7426 18.3128

0–1 26 045 0.0073 20.4089 1.0027 1.1334 0.6107 3.0941 10.6038 12.6976

1–3 23 611 0.3790 20.2171 1.1509 1.1999 28.2693 23.5275 16.4467 17.9793

3–10 7746 0.9988 20.4946 1.8748 1.8533 228.8488 29.5418 43.5407 40.4704
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