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Abstract: We estimated surface salinity flux and solar penetration from satellite data, and performed
model simulations to examine the impact of including the satellite estimates on temperature,
salinity, and dissolved oxygen distributions on the Louisiana continental shelf (LCS) near the
annual hypoxic zone. Rainfall data from the Tropical Rainfall Measurement Mission (TRMM) were
used for the salinity flux, and the diffuse attenuation coefficient (Kd) from Moderate Resolution
Imaging Spectroradiometer (MODIS) were used for solar penetration. Improvements in the model
results in comparison with in situ observations occurred when the two types of satellite data
were included. Without inclusion of the satellite-derived surface salinity flux, realistic monthly
variability in the model salinity fields was observed, but important inter-annual variability was
missed. Without inclusion of the satellite-derived light attenuation, model bottom water temperatures
were too high nearshore due to excessive penetration of solar irradiance. In general, these salinity
and temperature errors led to model stratification that was too weak, and the model failed to capture
observed spatial and temporal variability in water-column vertical stratification. Inclusion of the
satellite data improved temperature and salinity predictions and the vertical stratification was
strengthened, which improved prediction of bottom-water dissolved oxygen. The model-predicted
area of bottom-water hypoxia on the Louisiana shelf, an important management metric, was
substantially improved in comparison to observed hypoxic area by including the satellite data.
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1. Introduction

Ocean models with adequate parameterization, boundary conditions, forcing, and validation
can provide important information describing past (hindcast), current (nowcast), and future (forecast)
states of the ocean from global to regional and local scales, e.g., [1]. Hydrodynamic models can improve
understanding of a wide variety of processes; including heat transfer, advection, mixing, and material
transport. Further, coupling hydrodynamics with biogeochemical observations and models that
characterize nutrient, carbon, and oxygen dynamics and food web interactions can provide products
for specific applications, such as formulation of nutrient and carbon budgets or distribution maps of
dissolved oxygen [2–4].

Remote sensing data from satellite are often assimilated to improve the model estimations;
they provide synoptic data with better spatial coverage than in situ data, but typically only surface
distributions are obtained, without any vertical information. The remote sensing data can also be
used as a surface forcing. This approach is used here for the Tropical Rainfall Measurement Mission
(TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS) data.
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Surface salinity flux and penetration of solar irradiance directly impact surface-layer heat content,
water column stratification, and thermohaline circulation in the ocean. Thus, accurate estimates of both
of these properties are essential in ocean circulation models. The surface salinity flux, the net balance
between precipitation and evaporation, is typically estimated as the difference between the surface
salinity analysis from a data assimilation system and the surface salinity from the ocean model (details
are described in Section 2.5). The ocean solar shortwave transparency is generally parameterized
as a single, spatially-invariant Jerlov oligotrophic optical water type [5]. These approaches are
generally adequate in open-ocean regions, but as we will discuss, can cause problems in more complex
coastal waters.

In this study, we developed a high resolution coastal model covering a portion of the northern
Gulf of Mexico coast to study coastal circulation, and its impact on nutrient transport [3] and hypoxia
development. Every summer off the coast of Louisiana west of the Mississippi River delta, an extensive
zone of hypoxic bottom water forms (characterized by dissolved oxygen concentrations below 2 mg/L
or 64 mmol/m3), primarily as a result of the decay of organic matter, produced either locally (due
to enhanced nutrient concentrations) [6] or transported into the area from terrestrial sources [7].
However, water column stratification is an important prerequisite as well, leading to reduced mixing
and limited ventilation of bottom waters [8]. The size of hypoxic zone varies from year-to-year, and
over the past 30 years has ranged from a minimum of 4400 km2 in 2000 to 22,000 km2 in 2002 [9].
From a management perspective, the goal is to reduce the size of the hypoxic zone (through upstream
nutrient reductions) to a five-year running average of less than 5000 km2 [10], a goal that has yet to be
achieved. Modeling results can provide important insight into the relative importance of the various
forcing processes on hypoxia development and may be used to identify how nutrient reductions
impact hypoxic area size [11–13].

Over the course of model development described herein, we observed that the simulations failed
to accurately reproduce observed stratification, particularly on the inner Louisiana shelf (<50-m depth),
due mainly to insufficient representation of the solar penetration and surface salinity flux. In coastal
areas, salinity is strongly influenced by interaction of the higher-salinity offshore waters with freshwater
river discharge and precipitation, so improved spatial/temporal estimates of surface salinity flux
(evaporation minus rainfall) are required for realistic salinity simulation. Spatial variability in the
optical fields is also greater in coastal zones, and the coherence scales are much shorter than those in
offshore waters due to for example, higher absorption in river plume and higher concentrations of
chlorophyll a, chromophoric dissolved organic matter, and suspended particulate matter in inshore
water. Thus, characterization of the light attenuation as a single, uniform value across the domain
is not adequate; the excessive solar penetration can lead to overheating of the bottom waters in
shallow areas [14].

Satellite remote sensing can provide synoptic surface data to estimate both the surface salinity
flux and the solar penetration, with the potential to improve simulations. We explore this possibility
by prescribing the surface salinity flux as the difference between rainfall estimated from TRMM and
evaporation estimated from the Navy Operational Global Atmospheric Prediction System (NOGAPS).
Similarly, we used spatially varying MODIS derived diffuse attenuation coefficient of sea water to
prescribe the vertical extinction of solar irradiance.

To assess the effect of including the satellite data, we performed a twin experiment applying the
model and compared the model temperature and salinity fields as well as the simulated hypoxia areas
on the Louisiana Continental Shelf (LCS). One simulation did not incorporate satellite data (reference
run) and one used satellite data to estimate both surface salinity flux and light attenuation (test run).
In addition, we coupled the circulation model to a Simplified Dissolved Oxygen (SDO) hypoxia model
to estimate the distribution of hypoxic bottom waters on the LCS. We assessed the improvement
in the model results when the two types of satellite data were included through comparisons with
in situ measurements.

The paper is organized as follows. The ocean hydrodynamic model and forcing are described in
Section 2. The simplified dissolved oxygen model is presented in Section 3. The satellite remote sensing



Remote Sens. 2016, 8, 435 3 of 16

data including Kd from MODIS and rainfall from TRIMM are described in Section 4. Comparisons of
model twin experiment with and without satellite data are presented in Section 5. Conclusions are
provided in Section 6.

2. Ocean Circulation Model

2.1. Ocean Model Configuration

The ocean circulation model used in this study is an application of the US Naval Research
Laboratory’s Ocean Nowcast/Forecast System [15] on the Louisiana Continental Shelf. The NRL
Ocean Nowcast/Forecast System is an integration of a data-assimilating, dynamical ocean model,
a statistical data-analysis model, and various data streams for ocean bathymetry, climatological data,
surface forcing, open boundary forcing, and observations for data assimilation. The dynamic model
within the system is the Navy Coastal Ocean Model (NCOM) [16]; therefore we denote the model
as NCOM-LCS.

The NCOM-LCS model domain covers entire Louisiana Continental Shelf, Mississippi Sound,
and part of the Gulf of Mexico, extending from 27.4˝N to 30.4˝N and from 88.2˝W to 94.5˝W (Figure 1).
The NCOM-LSC is embedded in the regional Intra-Americas Sea Nowcast/Forecast System
(IASNFS) [17,18] that covers the Gulf of Mexico and Caribbean Sea and in turn IASNFS uses the
Navy Global NCOM model [1] for boundary conditions. The NCOM-LSC model grid follows
longitude-latitude lines with 1.9 km grid size on average. Vertically, there are 35 hybrid sigma-z
levels in the model. Twenty equal spaced terrain-following sigma layers are used from the surface
down to a depth of 100 m to better resolve the topography effects on the shelf and level coordinates
are used below in deeper depths.
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Figure 1. NCOM-LCS model domain and grid (every second gridline shown). The model ocean
topography is contoured.

The model ocean topography (Figure 1) is derived from NRL global Digital Bathymetry Data
Base 2-min (DBDB2) [19] and refined with National Oceanic and Atmospheric Administration
(NOAA) National Geophysical Data Center (NGDC) bathymetry data from hydrographic surveys [20].
The model ocean topography is truncated to a maximum depth of 2200 m and the minimum water
depth is set to 5 m.

2.2. Initial and Open Boundary Conditions

Model initial conditions and boundary conditions (BCs) at open boundaries were obtained from
the IASNFS. IASNFS provides NCOM-LCS with sea surface height (η), temperature (T), salinity (S),
and currents (u and v) for BCs. We applied satellite altimetry derived tidal forcing from the Oregon
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State University tidal database [21]. Tides (K1, O1, P1, Q1, M2, S2, K2, and N2) are applied to model
depth-averaged normal velocity, u, at open boundaries by combining forcing from IASNFS with
a forced radiation BC modified from [22]:

u “ puIAS ` uTq ˘ c rpηIAS ` ηTq ´ ηs{h

where c is the barotropic wave phase speed: c “
a

gh, with g being the gravitational constant and h the
water depth. The subscripts IAS and T denote variables from IASNFS and tidal model, respectively.
The advection BC of first-order-upstream scheme was utilized for the tangential velocity, T and S.
A relaxation to the T and S fields of the IASNFS was applied along the open boundary over 15 model
grids, or about the baroclinic deformation radius on the LCS, with a linear weighting, which increases
from interior toward the boundary. The normal baroclinic velocity at the open boundary was computed
using the model’s full velocity equation, except that advection was only computed normal to the
boundary with first-order-upwind scheme.

2.3. River Runoff

River runoff has a strong impact on coastal salinity, circulation and nutrient distribution.
Two large rivers, the Mississippi River and Atchafalaya River discharge on average 14,800 m3/s
and 6350 m3/s of water into NCOM-LCS domain, respectively. In all, discharge from 95 rivers
and streams in the northern Gulf of Mexico are included in the model. Rivers are input into the
ocean model as a volume source with specified salinity, temperature and vertical flow distributions.
The real-time daily river flow data from the Army Corps of Engineers [23] for the Mississippi River
and the Atchafalaya River (Figure 2) and from the US Geological Survey (USGS) [24] for other rivers
in the model domain were used.
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Figure 2. Real-time daily average river flows from Army Corps of Engineers for Mississippi River at
Tarbert Landing, Mississippi, and for Atchafalaya River at Simmesport, Louisiana.

Atchafalaya discharge was routed to the model domain at Lower Atchafalaya (55%) and Wax
Lake outlets (45%) and nearby smaller streams and outlets. Mississippi River discharge was routed
to the model domain through Birdsfoot delta distributary channels by the following percentages:
Southwest Pass (27.0%), South Pass (11.2%), Cubits Gap (11.1%), Pass A Loutre (10.2), Baptiste
Collette Bayou (9.8%), Grand and Tiger Pass (9.4%) and West Bay Diversion (4.1%) estimated from
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the often incomplete measurements at downstream stations near the river mouths. The balance of the
Mississippi River runoff was distributed among nearby smaller streams and outlets. These discharge
distribution percentages were similar to those used by Rego et al. [25], although there were some
notable differences between their model and ours. For example, they assigned 37% to Southwest Pass
and 17% to South Pass. Differences in the location and amount of discharge to the Gulf can change the
delivery of freshwater to the model domain and may affect modeled patterns of salinity and freshwater
constituents on the shelf [25]. The impact of lower river distribution uncertainty on modeled hypoxia
uncertainty has not been evaluated, but is of interest for future study for both improving models
and evaluating the effects of existing and potential river diversions that are implemented to restore
Louisiana’s subsiding and eroding deltaic wetlands.

2.4. Data Assimilation

To better capture the variations such as from Loop Current Eddies off the outer shelf the
satellite altimeter measurement was assimilated. Satellite altimeter sea surface height (SSH) from
TOPEX/Poseidon, ERS-2, Geosat Follow-On (GFO), Jason-1, Envisat, Jason-2 and Cryosat-2 and
multi-channel sea surface temperature (MCSST) from AVHRR were used for the data assimilation.
The Modular Ocean Data Assimilation System (MODAS) [26,27] was used to produce the
three-dimensional ocean temperature using correlation between SSH/MCSST and subsurface
temperature. The salinity was estimated from Temperature-Salinity correlation (T-S correlation).
NCOM-LCS then assimilated the analyses by continuous modification of model temperature and
salinity toward the analyses applying a vertical weighting function combined with scale separation.
The details of data analysis and data assimilation used are described in Ko and Wang [18].
Data assimilation, however, has a minimum impact on this study of shelf region due to application of
a vertical weighting, which is very small for the shallow water [18].

2.5. Atmospheric Forcing

The atmospheric forcing for the model simulations utilized products from the Navy Operational
Global Atmospheric Prediction System (NOGAPS) [28] and the Coupled Ocean/Atmosphere
Mesoscale Prediction System (COAMPS) [29]. It consists of fields of sea level air pressure, 10-m
wind from COAMPS and solar radiation and surface total heat flux from NOGAPS. The three hourly
products, combination of analyses at 00:00 and 12:00 UTC and forecasts at 3 h, 6 h and 9 h, were used.

Solar radiation was applied separately from the surface heat flux since solar radiation penetrates
below the ocean’s surface and impacts vertical mixing and sub-surface temperature. For the twin
experiment, the reference run applied a constant, spatially-uniform Jerlov oligotrophic oceanic water
type IA for solar penetration [5]. An adjustment of the rest of surface heat flux (solar radiation removed)
was applied proportional to the difference between the multi-channel sea surface temperature (MCSST)
analysis and the model sea surface temperature (SST). The surface salinity flux in the reference run was
computed based on the difference between the MODAS surface salinity analysis and the model sea
surface salinity (SSS) [18]. The MODAS salinity analysis is based on the T-S correlation using monthly
climatology as a first guess. The salinity analysis on the surface is mostly the monthly climatology
because the T-S correlation is very weak near the sea surface.

3. Simplified Dissolved Oxygen (SDO) Model

A simple oxygen model described by [4,30–32] was used to assess the impact of Kd and rainfall
from satellites on the bottom water hypoxia. This simple oxygen model consists of a parameterization
for air-sea oxygen exchange of Wanninkhof [30], an empirically derived parameterization of net
water column respiration based on observations by Murrel et al. [31], and an empirical oxygen- and
temperature-dependent parameterization of sediment oxygen consumption or SOC described by
Hetland and DiMarco [32]. The net water column respiration term is constant in time and in depth,
but varies horizontally with water depth. Inshore of the 20-m isobath, net water column respiration is
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negative implying an oxygen source; the largest positive net water column respiration representing
an oxygen sink occurs between the 20- and 30-m isobaths [4].

Oxygen initial condition and boundary condition are based on the NOAA National Ocean
Data Center (NODC) World Ocean Atlas. For the air-sea oxygen exchange the COAMPS wind
that is used to drive NCOM-LCS was used. The fully three-dimensional evolution of dissolved
oxygen is also subjected to advection and mixing driving by the NCOM-LCS produced currents and
mixing coefficients.

4. Satellite Measurements

As mentioned in Section 2.5, for the reference model run, a uniform Jerlov oligotrophic oceanic
water type IA was specified for solar penetration. Applying a uniform water type is sufficient for most
ocean regions, particularly in deep water. However, in coastal areas, higher absorption coefficients in
river plume and inshore regions are generally observed, due to higher concentrations of chlorophyll,
CDOM, and suspended particulate matter. As such, this approach neglects the spatial and temporal
variability in the solar attenuation, which can lead to overheating near the bottom in shallow waters
due to incorrect, excessive solar penetration in the model, e.g., [33]. To account for this variability in
water column absorption, we explore an alternative approach to attenuate solar radiation through the
water column, using ocean color satellite imagery (MODIS-Aqua).

The approach to estimate surface salinity flux for the reference model run is described in
Section 2.5. It basically uses monthly climatology data from MODAS, which can be a significant
drawback as it excludes inter-annual variability. Thus, we explore an alternative approach to estimate
surface salinity flux using satellite rainfall data (TRMM). The MODIS and TRMM data are used in the
“test” model run described in the analyses and results below.

4.1. Diffuse Attenuation Coefficient from MODIS

Diffuse Sunlight that penetrates into the water column interacts with dissolved and particulate
material in the surface layer. Through absorption and scattering processes, the spectral quality
of the light is altered before it is reflected back out and recorded by satellite ocean color sensors.
Following atmospheric correction of the top-of-the-atmosphere radiance measurements, an estimate
of spectral water-leaving radiance is obtained, which can be used to calculate the diffuse attenuation
coefficient of downwelling irradiance (Kd) [34]. Kd is an indication of how deep the solar radiation
can penetrate into the water column; the more dissolved and particulate matter in the water, the higher
the Kd value, and the less light will be able to penetrate (i.e., shallower penetration). Thus, the satellite
imagery provides a spatially-varying synoptic estimate of the vertical attenuation of light in the water.

MODIS imagery was processed through the Naval Research Laboratory Automated Processing
System (APS) [35] to create monthly composite images of Kd at 488 nm (Kd (488)) at 1 km resolution for
the study domain and time period, using the Kd algorithm of [36]. APS is consistent with atmospheric
correction and bio-optical algorithms implemented in NASA SeaDAS image processing software.
As an example, Figure 3 shows MODIS Kd (488) over the model domain, for 4 months in 2006.

Kd (488) was subsequently converted to Kd for photosynthetically available radiation (PAR,
covering 400–700 nm spectral interval), denoted KPAR, based on empirical algorithms for the LCS [37].
KPAR were interpolated spatially to the model grid and used as input to the NCOM-LCS model in
the “test” run to determine the penetration depth of solar radiation applying a logarithm scheme.
Monthly composites are used, as opposed to daily images, to reduce the number of missing pixel
values due to cloud blockage. Temporal interpolation was performed at each model time step.
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Figure 3. Moderate Resolution Imaging Spectroradiometer (MODIS) Kd (488), 2006. (A) January;
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4.2. Rainfall from TRMM

Spaceborne radars and passive microwave radiometers, such as the Tropical Rainfall Measurement
Mission’s (TRMM) Precipitation Radar (PR) and Microwave Imager (TMI), can provide information
on integrated column precipitation content, areal distribution, and intensity. Rainfall accumulation
data covering the NCOM-LCS model domain and time period were obtained from the TRMM Online
Visualization and Analysis System (TOVAS) web site [38]. We used the 3B43 V7 data product, with
horizontal resolution of 0.25˝ and temporal resolution of one month. This product was developed to
provide best-estimate precipitation rates from TRMM and other data sources (such as rain gauges,
Advanced Microwave Scanning Radiometer for Earth Observing Systems (AMSR-E), Special Sensor
Microwave Imager (SSMI), and others) [39]. Figure 4 shows example rainfall distributions for
4 months in 2006. Interannual monthly rainfall variability, averaged over the entire model domain
(27.0˝N–30.5˝N, 88˝W–94.5˝W), is shown in Figure 5. TRMM rainfall was spatially interpolated to the
model grid. Surface salinity flux for the NCOM-LCS “test” run was then calculated as the difference
between precipitation (the TRMM rainfall) and evaporation (derived from NOGAPS latent heat flux)
and applied to the model surface layer. Temporal interpolation was performed at each model time step.
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5. Results of Twin Experiment

The twin experiment was conducted applying NCOM-LCS for the period from 2002 to 2010 when
there are observations available for comparisons. The model time step is rather small at 150 s but the
model variables were outputted every hour. The reference case was conducted without satellite data
and with a constant and spatially/temporally-uniform Kd based on the Jerlov Type 1A oligotrophic
water and the surface salinity flux was estimated from the difference between model SSS and MODAS
SSS which is essentially the monthly climatology. The test case was conducted with satellite data,
which includes the spatially-varying monthly Kd estimated from MODIS ocean color images and the
surface salinity flux estimated with TRMM rainfall. Otherwise, all other forcing such as wind, heat
fluxes including solar radiation, river runoff, and BCs from IASNFS were identical as described in the
previous sections. The hypoxia simulations based on the SDO (Section 3) were conducted sequentially
by applying the NCOM-LCS outputs from the twin experiment.
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The observations of temperature and salinity from shelf-wide cruises conducted by the US
Environmental Protection Agency (EPA) [31,40] on the Louisiana shelf were used for ocean model
evaluation. Data from a total of 706 CTD stations occupied from December 2002 to August 2007 are
available. The observation-based estimate of hypoxic area on the Louisiana shelf from an annually
recurring mid-summer mapping cruise [6,41] were used for evaluation of hypoxia prediction.

5.1. Impact on Ocean Model Predictions

Figure 6 shows the comparisons between observed and modeled salinity and temperature
(averaged along each offshore transect; see [3] for station locations), with and without the satellite
data. Root-mean-squared errors (RMSE) are also calculated. For the integrated values, the temperature
(Figure 6, right column) was fairly well predicted even without the satellite data with 0.7˝C RMSE
overall (Figure 6, right-top panel). With satellite data the model prediction did improve and RMSE
decreased to 0.55˝C with a tighter correlation with observations (Figure 6, right-bottom panel) (Table 1).
The temperature profiles predicted from the twin experiment as shown along a cross-section at 91.5˝W
(Figure 7), however, demonstrate the significant impact of satellite data. The overheating near the
bottom in the nearshore water (Figure 7a) was largely removed once the satellite Kd was applied
(Figure 7b). The spatially/temporally-varying Kd from MODIS effectively prevented over-penetration
of solar radiation and improved the nearshore vertical thermal structure.
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Table 1. Comparison of mean transect temperature from observations and corresponding values from
model without (reference case) and with (test case) satellite-derived Kd and rainfall. Unit for bias and
root mean square error (RMSE) are ˝C.

Temperature Reference Case Test Case

Bias 0.45 0.16
RMSE 0.72 0.55

R2 0.972 0.975
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(solar attenuation parameterized as Jerlov Type 1A oligotrophic water); and for (b) test run (solar
attenuation determined from satellite Kd).

In a model inter-comparison study, Fennel et al. [42] shows the NCOM-LCS applying the Kd
from MODIS produced colder bottom water on the Louisiana shelf than other two models that used
constant and uniform Kd. The colder bottom water in NCOM-LCS is due to reduced solar penetration
in the nearshore murky water which leads to a much lower bias evaluated against the observations
than other two models, again demonstrating the importance of applying spatially/temporally varying
satellite Kd on the overall model temperature prediction.

Salinity predictions are also improved when satellite data are included, with RMSE between
the observations and model values decreasing from 1.38 to 1.09 (Figure 6, left column) (Table 2).
The impact of applying surface salinity flux estimated with TRMM rainfall is further demonstrated in
the salinity profiles along a cross-section at 90˝W across the shelf (Figure 8). The water nearshore is
fresher and offshore saltier (Figure 8b) with TRMM rainfall included, compared to the reference case
(Figure 8a). Without the TRMM rainfall, we observed lower correlation (R2 = 0.17) between the model
predictions and the observations. Particularly, during 2006, the salinity predictions were much fresher
than the observed (Figure 6, left-top panel). This is because 2006 was a dry year, as indicated by less
rainfall over much of the model domain relative to other years in the modeling time period (Figure 5)
and less river discharge (Figure 2). Using monthly salinity climatology to calculate surface salinity flux
(as in the reference case) resulted in over-estimation of salinity flux and lower modeled salinity values
compared to observations. Applying temporally and spatially varying TRMM rainfall improved the
salinity prediction overall (Figure 6, left-bottom panel) and the over-estimation of fresh water during
the 2006 dry season was much reduced.

With improved prediction in both temperature and salinity resulting from the inclusion of the
satellite data, the overall water column stratification on the shelf improved. The distribution of the
maximum buoyancy frequency (N) (Figure 9) at various locations on the shelf shows the stratifications
were strengthened, becoming closer to the observations. The improved stratification has a strong
impact on the extent of the bottom water hypoxia as discussed in the next session.

Table 2. Comparison of mean transect salinity from observations and corresponding values from
model without (reference case) and with (test case) satellite-derived Kd and rainfall. Unit for bias and
RMSE are ppt.

Salinity Reference Case Test Case

Bias ´0.55 ´0.42
RMSE 1.38 1.09

R2 0.17 0.30
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Figure 9. Cumulative distribution function of maximum buoyancy frequency (Nmax), which is an index
of the strength of vertical stratifications, for 12 cruises (20–90 stations occupied per cruise from
December 2002 to August 2007. Observations (green) were compared to a reference model run without
satellite data (blue) and a test model run with satellite data (red). The black dashed vertical line at
N = 40 represents the buoyancy frequency at which hypoxia begins to occur [7].

5.2. Impact on Bottom Hypoxia

The hypoxia model based on SDO described in Section 3 was applied to estimate the dissolved
oxygen concentration over the entire NCOM-LCS domain from 2002 to 2010 applying ocean predictions
(temperature, salinity, current and mixing coefficient) from the twin experiment. The area of bottom
water hypoxia was calculated across the grid as the area where the bottom layer oxygen concentration
was less than 64 mmol/m3. Figure 10 shows the time series of the simulated bottom hypoxia area on
the Louisiana shelf. The blue curve indicates the reference case and the red curve the test case with
satellite data. The area of bottom hypoxia has a strong seasonal variation with the largest hypoxic
area observed during the summer season due to the decay of the phytoplankton bloom following
large spring river nutrient runoff, e.g., Lohrenz et al. [43] and increasing light levels. But it is also due
to increased water column stratification [7,44] and to changes in summer time current direction from
westward down coast to eastward up coast, which increases the nutrient retention time on the shelf [3].
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Interannual variation is also evident related to differences in yearly river runoff and physical conditions
in ocean such as temperature, salinity and current and in atmosphere such as wind and solar radiation.

Including satellite data in the model simulations has a substantial impact on the predicted bottom
hypoxia. On average, the area of bottom hypoxia on the shelf almost doubled for the test case (inclusion
of satellite data, Figure 10). The stronger stratification due to the improved temperature and salinity
prediction with satellite data reduces the vertical mixing and constrains the exchange of oxygen with
the surface layer; therefore the oxygen concentration in the bottom layer decreases and the area of
bottom hypoxia increases. In the SDO model, the lower bottom water temperature in the test case also
results in lower microbial oxygen consumption. However, owing to the stronger stratification in the
test case, the smaller oxygen consumption rate is sufficient to drawdown oxygen to hypoxic levels.
The year to year comparison of the predicted bottom water hypoxia area, calculated from model grids
where low dissolved oxygen (<64 mmol/m3) persisted over 15 days each season, indicates that it is
overall much more comparable to the estimation based on the cruise observations [6,41] when satellite
data are included in the model (Figure 11). There are inconsistencies. For example, we are uncertain as
why in the test case the model predicted a rather large hypoxia area in 2009 relative to the observation.
We do not have CTD measurements for that year to make a close exam. Otherwise, the observed hypoxia
area was based on a single week-long cruise, the observation may not be representative, e.g., hypoxia
may occur outside of cruise duration, therefore area of hypoxia may be underestimated for that year.
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6. Conclusions

To assess the impact of satellite remote sensing data on simulations of coastal circulation and
hypoxia on the Louisiana continental shelf, a twin experiment with and without satellite data was
conducted for the 2002–2010 time period. The coastal ocean model (NCOM-LCS) was employed.
The NCOM-LCS covers the entire Louisiana shelf where the extensive bottom hypoxia occurs yearly
during the summer season. This provides a good opportunity to assess the impact of satellite data on
the simulation of hypoxia.

The temporally/spatially varying Kd derived from MODIS and rainfall from TRMM were used in
the twin experiment. The reference case used constant light penetration of Jerlov Type 1A oligotrophic
water, which is typical for the open ocean, but leads to excessive solar penetration in nearshore
waters and over-heating near the bottom. Also, for the reference case, applying seasonal climatology
to estimate the surface salinity flux precluded any interannual variation in the salinity prediction.
With the satellite data, the Kd from MODIS and rainfall from TRMM, the ocean model prediction
was much improved. The over-heating near bottom was corrected and over-estimation of the fresh
water during a dry year (2006) was reduced. The improved temperature and salinity prediction led to
improved model stratification.

The hypoxia simulation was conducted using the ocean model outputs from the twin experiment
and a simple dissolved oxygen (SDO) model. The simulated annually-integrated hypoxic area
increased substantially for each model year when satellite data were included, and agreement with
observations improved.

The complexity of modeling the circulation at the Louisiana shelf was illustrated by e.g., Hetland
and DiMarco [14]. Various factors that may produce uncertainties in the modeling of circulation and
hypoxia on LCS were investigated by Mattern et al. [11]. In this study, we examined the effects of Kd
and rainfall data from satellite on the modeling applying a twin experiment. Overall improvement in
the model circulation and hypoxia simulation with satellite data clearly demonstrates the impact of
the satellite remote sensing data from MODIS and TRMM on modeling the Louisiana shelf.
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Abbreviations

The following abbreviations are used in this manuscript:

TRMM Tropical Rainfall Measurement Mission
MODIS Moderate Resolution Imaging Spectroradiometer
Kd Diffuse attenuation coefficient
CADIOP Cloud-Aerosol Lidar with Orthogonal Polarization
NOGAPS Navy Operational Global Atmospheric Prediction System
LCS Louisiana Continental Shelf
SDO Simplified Dissolved Oxygen model
NRL Naval Research Laboratory
NCOM Navy Coastal Model
IASNFS Intra-Americas Sea Nowcast/Forecast System
DBDB2 Digital Bathymetry Data Base 2-min
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NGDC National Geophysical Data Center
USGS US Geological Survey
MCSST Multi-Channel Sea Surface Temperature
AVHRR Advanced Very High Resolution Radiometer
MODAS Modular Ocean Data Assimilation System
COAMPS Coupled Ocean/Atmosphere Mesoscale Prediction System
NOAA National Oceanic and Atmospheric Administration
CDOM Colored Dissolved Organic Matter
APS Automated Processing System
PAR Photosynthetically Available Radiation
PR Precipitation Radar
TMI TRMM Microwave Imager
AMSR-E Advanced Microwave Scanning Radiometer for Earth Observing Systems
SSMIT Special Sensor Microwave Imager
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