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Abstract This paper presents an alternative approach to the regularized least squares
solution of ill-posed inverse problems. Instead of solving a minimization problem
with an objective function composed of a data term and a regularization term, the
regularization information is used to define a projection onto a convex subspace of
regularized candidate solutions. The objective function is modified to include the
projection of each iterate in the place of the regularization. Numerical experiments
based on the problem of motion estimation for geophysical fluid images, show the
improvement of the proposed method compared with regularization methods. For the
presented test case, the incremental projection method uses 7 times less computation
time than the regularization method, to reach the same error target. Moreover, at
convergence, the incremental projection is two order of magnitude more accurate than
the regularization method.
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1 Introduction

Regularization methods are usually applied to ill-posed inverse problems in order
to retrieve a solution with desired properties. The solution is generally sought as
the minimizer of an objective function composed of a data term and a regulariza-
tion term. The data term measures the distance between a given candidate solution
and an observed output of the studied system. The regularization term is a func-
tional constraint that implicitly defines the subset of admissible solutions; it is
problem dependent and is chosen to enforce the well-posedness of the inverse prob-
lem.

In the community of image processing, projections methods have been consid-
ered in the place of regularization. Based on earlier works from Natterer [35] and
Louis [26] that demonstrated the regularizing effects of projection methods, Schuster
and Weickert [38] used a projection method to solve the inverse problem associ-
ated with motion estimation (Appendix 1 gives an overview of motion estimation).
They used an explicit basis to determine a projection subspace, but did not provide
any criteria for choosing or constructing such a subspace. However, they cautioned
about carefully choosing the subspace as it could affect the solution of the inverse
problem. Furthermore, the regularizing effects of a projection method does not nec-
essarily correspond to those of a given regularization method. In fact the subset of
regularized admissible solutions is not necessarily a subspace (in the sense of vector
space). For that reason, the authors cautioned of choosing the projection subspace
carefully since it determines the properties of the solution. Because an explicit basis
is required to construct the projection, the method is called explicit projection there-
after.

However, it is possible to define a projection in such a way that its regulariz-
ing effect corresponds to those of a given regularization method, i.e. solving the
projection problem will yield a solution with all the properties of the regularized
solution.

In this study we propose a generalized approach to define a projection method that
corresponds to any regularization method. The functional constraint of the regular-
ized objective function is used to define a projection onto the subspace of admissible
solutions that is convex for linear regularization functions and for the linearized
approximation of nonlinear ones. The subset of admissible solutions is implicitly
defined by the projection and has all the properties imposed by the regularization con-
straint. Thanks to those properties, the solution of the projection method will have all
the properties of the regularized solution, and the convexity of the subspace enforces
the convergence towards the solution. Afterward, the objective function is modified
to include the projection in the place of the regularization, and solved with a standard
optimization algorithm. In the implementation, the projection is applied to each iterate,
and for that reason, the method is called incremental.

The remaining part of the paper is organized as follows: Sect. 2 gives a short descrip-
tion of inverse problems, regularization and explicit projection methods. Section 3
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which is the main contribution of the present work, introduces the proposed projec-
tion method for inverse problems. Then details on construction of such projection
are given for the general case of discretized problems, followed by the example of
the minimum norm and the minimum gradient regularization in the continuous case.
Section 4 shows numerical examples based on the motion estimation problem, and
indeed illustrate the feasibility and the effectiveness of the proposed method. Section
5 concludes the paper.

2 Inverse Problems and Approaches of Solution

2.1 Notation

Hereafter, we use the following notations unless otherwise stated: � is the physical
space of the problem, V is the vector space of parameter, the generic element x ∈ �

is called the physical space variable, V is called control space and the generic element
v ∈ V is referred to as the control variable. The norm is denoted by ‖ · ‖ in a given
vector space and the associated dot product is denoted 〈·, ·〉. The symbol ∇ is the
gradient with respect to the control variable and ∇x is the gradient with respect to
the physical space variable. Without loss of generality, the details are given for the
following considerations: the physical space � is a rectangular box in Rn , V is a
subspace of (L2(�))m for given positive integers m and n, and ‖ · ‖ is the Euclidean
norm in Rn or the L2 norm in (L2(�))m .

2.2 Inverse Problems

In most applications of science and engineering, there is a need to find the best approx-
imation v∗ ∈ V that satisfies an equation of the form:

A(v) + e = f (1)

where A is an operator (linear or nonlinear) that describes the relationship between
the input (v) and the output. In the general case, v might be constrained to satisfy a
given model. For example, the velocity field of a geophysical fluid must satisfied the
evolution model of the fluid that is in general nonlinear. This is the general case of the
problem thatwe consider in numerical experiments. The vector f is the observed output
and the vector e is the observation error. The latter is unknown and seldom sought for.
If information on its distribution is available, it can be used in the definition of norms.
Given the output f , the problem of finding the input v that satisfies (1) is known as an
inverse problem. Such problems arise in most science and engineering applications
like geophysics, remote sensing, image processing, medical imaging, astronomy, etc.
Inverse problems are known to be ill-posed in the general case, meaning that at least
one of the three conditions of the well-posedness stated by Hadamard [23] is violated:
the existence, the uniqueness and the continuity (or the stability) of the solution. Due
to the ill-posedness, other information are required to solve an inverse problem. In the
present work, we consider the regularization and the projection.
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2.3 Regularization

A solution v∗ to the inverse problem associated with (1) is given by:

v∗ = argmin
v∈V

J(v), (2)

where the objective (or cost) function J is defined over the control space V as:

J(v) = 1

2
‖A(v) − f‖2 + 1

2
Jr(v). (3)

The first term of the right-hand side of (3) defines the closeness to the observed output;
it is generally called the data term and noted Jd hereafter. The second term, Jr(v), is
the regularization term; it is given by a functional constraint that implicitly restricts
the subset of acceptable solutions to those satisfying the constraint. The regularization
term is most often given under the form:

Jr(v) =
∫

�

c�(x)‖�(v(x))‖2dx, (4)

where � is a given function and c� is a non negative weighting function. � is called
regularization function hereafter and the solution given by the associated regularization
method is said to be �-regularized. Most of the time, the weighting function c� is
constant and replaced by a multiplicative scalar. Multiple functional constraints can
be combined into the objective function, each one associated with its own weighting
function.

The commonly used functional constraints for regularization belong to the family
of Tikhonov stabilizing functionals [41] defined as:

Jr(v) =
∫ p∑

s=0

cs(x)

(
dsv

dxs

)2

dx, (5)

for one dimensional problems where v is a scalar function of one variable x and cs
are the weighting functions. The extension to higher dimensions is straightforward.

A necessary condition for v∗ to be the minimum of the objective function (3) is the
Euler–Lagrange equation given by:

∇J(v∗) = 0, (6)

where ∇J is the gradient of the objective function with respect to the control vari-
able v. It is implicitly assumed that J is differentiable. The condition (6) is sufficient
if J is strictly convex. The convexity of J is improved by the regularization term.
Regularization theory for ill-posed problems has been rigorously developed over the
past decades. Early development can be found in the work of Tikhonov [41,42] and
Nashed [34]. The state of the art on the topic is large and there is no general solution
as regularization depends on the problem of interest.
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2.4 Explicit Projection

Based on earlier works from Natterer [35] and Louis [26] that demonstrated the reg-
ularizing effects of projection methods, Schuster and Weickert [38] used a projection
method to solve the inverse problem associated with the problem of motion estima-
tion (see Appendix 1 for an overview of motion estimation). Instead of solving an
optimization problem defined by the objective function of the form (3) composed of a
data and a regularization term, they define a projected objective function of the form:

J�(v) = 1

2

∫ T

0

∫
�

�
(
〈v,∇ f 〉2

)
dxdt, (7)

for a single channel image f where � ∈ C2([0,+∞]) is a strictly increasing function
and �(s2) is convex in s. The subset of admissible solutions is restricted to a finite
dimensional subspace that defines the projection subspace. The projected problem
consists of finding the coefficients of the solution in a properly chosen basis of the
projection subspace. Schuster and Weickert derived an explicit convergence rate for
arbitrary order of tensor product B-splines basis functions under certain smoothness
of the image function.

The explicit projection method as defined in [38] requires a finite dimensional
projection space and its basis. However, the authors did not provide the criteria for
choosing their subspace in particular, or the projection subspace and its basis for a
general inverse problem. As mentioned in the introduction, the regularizing effects
of a given projection do not necessarily correspond to those of a regularization, that
is why the authors cautioned of choosing the projection subspace carefully since it
determines the properties of the solution.

3 From Regularization Functions to Projection

In the present section, we introduce an incremental projection method that is com-
pletely different from the explicit projection for solving inverse problems. There is
neither requirement of finite dimensional subspace nor a requirement of an explicit
basis. In additionwe define such projection implicitly such that its range is the subset of
�-regularized admissible solutions, for any regularization function �. The regulariz-
ing effects of such a projection are the same as those of the regularization defined by�.

3.1 Incremental Projection Method for Inverse Problems

Let f be the observed output of a physical system that is governed by (1), which is
rewritten here for convenience:

A(v) + e = f, (8)

Let V� ⊂ V be the subspace of admissible candidate solutions. For instance, V� is
the subspace of �-regularized admissible solutions. Let P� be a projection defined
as:
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P� : V → V
v �→ P(v),

(9)

such that V� is the image of V by P�. We define the projected solution of the inverse
problem associated with (8) as:

v∗ = argmin
v∈V

1

2
‖A (P�(v)) − f‖2. (10)

Equation (10) minimizes the the non-regularized objective function associated with
the modified problem given by:

A (P�(v)) + e = f . (11)

In the subspace V�, the projected problem is equivalent to the original problem. In
addition, the regularization condition is already satisfied and the objective function is
reduced to the data term (10). In the implementation, the minimization is carried out
iteratively, and the projection is applied to each iterate of the solution (see the details
in Sect. 3.2), and for that reason, the method is called incremental projection.

As mentioned in the introduction, the subset of regularized admissible solutions
is not necessarily a subspace, in the sence of vector space. The method proposed in
this paper (see Sect. 3.2) avoids that problem by implicitly defining the projection so
that its subspace has all the properties imposed by the regularization constraints. The
subspace V� as defined in the next section is convex for linear regularization functions
� and the linearized approximation of nonlinear ones. The convexity is easily verified
under the quasi-solution formulation of the regularized cost function (3). The quasi-
solution formulation of inverse problems and its relation with regularization can be
found in [36] and references therein. An example of quasi-solution formulation is
given by (12).

The formulation (11) turns the problem of regularization into the definition of the
projection operator P�.

If V� is a finite dimensional subspace, we get a formulation similar to the one in
[38]. In the present work, our attention is focused on the subspace of �-regularized
admissible solutions. However, the method can be extended to any subspace or subset
of admissible solutions of the problem.

3.2 Projections Based on Regularization Functions

3.2.1 From Regularization to Projection

Let �, V , � and ϕ be respectively the physical space of the system defined by a
rectangular subset of Rm , the control space defined as V = (L2(�))n , a regularization
function as defined in (4) and a positive scalar function (∀x ∈ �,ϕ(x) ≥ 0) of the
physical space variable. We define the projection associated with the regularization
function � as follows:
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P0
� : V → V

v �→ argmin
u∈V

∫
�

ϕ(x)‖u(x) − v(x)‖2dx,

subject to
∫
�

‖�(u(x))‖2dx = 0,

(12)

where the function ϕ describes the prior knowledge of the inverse problem at each
point x. ϕ will be called trust function and must be large where the problem is known
to be well-posed and small where it is ill-posed. Any appropriate norm can be used in
the place of the L2 norm. Let V0

� be defined as follows:

V0
� = {v ∈ V such that‖�(v)‖ = 0} .

If V0
� has the structure of a subspace of V , then P0

� is obviously a projection onto
V0

�. In fact, ∀v ∈ V, P0
�(v) ∈ V0

� and P0
�(P0

�(v)) = P0
�(v). For example, V0

� has
the structure of a subspace when the goal of the regularization is to filter out the high
frequencies in the solution. In the general case, V0

� is not a subspace, howeverP0
� still

has all the properties of a projectionwith the exception that it is not a linear application.
In any case, V0

� is a convex subset of V for linear regularization functions.
In practice, the goal of the regularization if not to find a solution which satisfies

exactly �(v) = 0, but rather to find a solution v∗ such that ‖�(v∗)‖ is small enough.
P0

� can then be approximated by:

P� : V → V
v �→ P�(v) = argmin

u∈V
(εv,�(u)), (13)

with εv,� defined as:

εv,� : V� → R+
u �→ εv,�(u) = 1

2

∫
�

λ‖�(u(x))‖2 + ϕ(x)‖u(x) − v(x)‖2dx,
(14)

where λ is a regularization parameter; If λ is large enough, then P� = V0
�. Hereafter,

lambda is set to 1 for the sake of simplicity, and without loss of generality. It is
preferable to solve the unconstrained problem defined by (13) and (14) than solving
the constrained problem (12), see for example [11,12,14]

To better understand the behavior of P�, let us consider the numerical iterative
process to minimize the objective function (3) without the regularization term. The
minimization process converges to a local minimum or converges slowly, or both. The
iterate vi of the solution is more accurate in the physical region where the problem is
known to be well posed. The idea behind the incremental projection is to use P�(vi ),
instead of vi as the starting point of the next iteration. The problem being well posed
in V�, P�(vi ) which is a �-regularized approximation of vi is a better approximation
of the solution.
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Equation (10) equiped with the projection defined in Sect. 3.2.1 gives the solution
of the inversed problem as:

v∗ = argmin
v∈V

1

2
‖A (P�(v)) − f‖2, (15)

where

P�(v) = argmin
v∈V

1

2

∫
�

‖�(u(x))‖2 + ϕ(x)‖u(x) − v(x)‖2dx, (16)

which is a least squares optimization problem. The regularization parameter, λ

is set to 1 in (16). The operator P� is also defined as the solution of another least
squares optimization problem, we have an imbrication of least squares problems.
There is a wide range of methods to solve optimization problems. The methods for
solving the imbricated problem must be compatible with the method for solving the
external problem. For example, if the external problem is solved with a gradient-based
method, one must be able to provide the Jacobian Matrix of the process that solves the
imbricated problem. If we focus on (13), the extendedBregman iterative regularization
method [49] can be used. Moreover, if the l1 norm is used for the regularization, any
iterative shrinkage-thresholding algorithm (ISTA) [4,10,12,16,44,47]) can be used.

In the subsequent part of the paper we focus on the class of gradient descent algo-
rithms for solving least squares problems. The family of gradient descent algorithms is
chosen because it is well understood by a broad audience and can easily be used in the
case of nonlinear operator A as well as additional nonlinear model constraints on the
solution v∗. More importantly, gradient descent methods are widely used in geophys-
ical applications, and the numerical section of this paper is based on a geophysical
application. Since the gradient methods require the Jacobian matrix of P�, we derive
explicit expressions of P� for discretized problems. For the continuous cases, we
derive formulae for two commonly used regularizations, namely the minimum norm
and the minimum gradient.

Gradient descent methods define v∗ as the solution of the Euler–Lagrange equation
given by:

∇J(v) = 0, (17)

Equation (17) is then solved using an iterative process of the form of algorithm 1.

Input: v0, f
// J(v) = 1

2 ‖A (P�(v)) − f‖2
// P�(v) = argminv∈V

1

2

∫
�

‖�(u(x))‖2 + ϕ(x)‖u(x) − v(x)‖2dx.

k ← 0;
while not converged do

compute dk = −∇J(vk ) ;
compute αk that minimizes J(vk + αkdk );
vk+1 ← vk + αkdk ;
k ← k + 1;

end
Output: vk

Algorithm 1: Gradient descent algorithm for the modified problem (15)
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Each iteration of the algorithm requires the application of the operator P� in J and
the transpose of its Jacobian matrix in ∇J. Since the projection (13) is defined as the
solution of a least squares optimization problem, it can also be turned into the solution
of the Euler–Lagrange equation given by:

∇εv,�(u) = 0. (18)

The challenge is to evaluate ∇εv,� for a given �.

Proposition 3.1 Let � be a regularization function, ‖.‖ be the norm defined by the
dot product 〈., .〉, �∗ be the adjoint operator of the linearized approximation of �

associated with the dot product 〈., .〉, ◦ be the composition operator, and εv,� be
defined as:

εv,� : V → R+
u �→ εv,�(u) = 1

2

∫
�

‖�(u(x))‖2 + ϕ(x)‖u(x) − v(x)‖2dx.
(19)

If εv,� is differentiable in u then ∇εv,� is given by:

∇εv,�(u) = �∗ ◦ �(u(x)) + ϕ(x)(u(x) − v(x)), (20)

The Proposition (3.1) turns the problem of the evaluation of the gradient of∇εv,� into
the evaluation of �∗ ◦ � which depends on the regularization function. That is the
topic of the next two paragraphs.

3.2.2 Application to Discrete Problems

In most applications, continuous functions are discretized, regularization functions
are given by the derivatives of the control variable and can be written under the form
of a matrix multiplication using numerical approximations of derivatives. Tikhonov
stabilizing functions (5) fall under this category. Under the matrix multiplication form,
the regularization function writes:

�(v) = Bv, (21)

with an appropriate matrix B; the same symbol is used for both the continuous and the
discretized representation of functions (v and u). The Euler Lagrange equation (18)
rewrites as:

BT Bu + Dϕ(u − v) = 0, (22)

where Dϕ is a diagonal matrix with the discrete representation of ϕ on its diagonal.
The solution of (22) defines the approximation of the projection P as:

P(v) �
(

BT B + Dϕ

)−1
Dϕv (23)
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The trust function ϕ must be chosen to enforce the well conditioning of the matrix
BT B+Dϕ . An appropriate direct or iterative method can be used to solve the Eq. (22).

3.2.3 Application to Continuous Problems

In this paragraph, we derive an explicit expression of ∇εv,� for two commonly used
regularization functions in the continuous form namely the minimum norm and the
minimum gradient.

Minimum norm regularization The regularization term in the minimum norm reg-
ularization is defined as:

Jnorm(v) =
∫

�

‖v‖2dx. (24)

The associated regularization function �norm is the identity so that �∗
norm ◦ �norm is

the identity too. The gradient ∇εv,norm is then given by:

∇εv,norm(u(x)) = u(x) + ϕ(x)(u(x) − v(x)). (25)

The solution of the Euler Lagrange equation defines the projection as:

P�(v(x)) = ϕ(x)

1 + ϕ(x)
v(x). (26)

Minimum gradient regularization The gradient regularization term is given by:

Jgrad(v) =
n∑

i=1

∫
�

‖∇xvi (x)‖2dx, (27)

which can be considered as a multi-term regularization, a simple term being:

Jgrad(vi ) =
∫

�

‖∇xvi (x)‖2dx, 1 < i < n. (28)

The simple term regularization function is then defined as:

�grad(vi ) = ∇xvi (x), 1 < i < n. (29)

It is possible to define a single trust function ϕ for all terms or a special one for each
term. In the present work, we use the same trust function.

Proposition 3.2 Let V = (L2(�))n with � a rectangular subdomain of Rm and �

be the linear regularization function defined by:

� : V → R+
u �→ �(u) = ∇xui , 1 ≤ i ≤ n,

(30)
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with homogeneous Neumann conditions on the boundaries, the operator �∗ ◦ � is
given by:

�∗ ◦ � = −∇2
x . (31)

By Proposition 3.2, the restriction of �∗
grad ◦ �grad to the i th component of the

vector field is given by:
�∗

grad ◦ �grad = −∇2
x , (32)

and the gradient of the energy functional εv,grad is given by:

∇εv,grad(ui ) = −∇2
xui (x) + ϕ(x)(ui (x) − vi (x)), 1 < i < n. (33)

The projection itself is the solution of the Euler–Lagrange equation given by:

∇2ui − ϕ(x)(ui (x) − vi (x)) = 0, 1 ≤ i ≤ n. (34)

Equation (34) can be solved by any appropriate methods. We give in the next few lines
the outlines of one methods. According to the development in [48], (34) can be solved
by considering ui as a function of time as follows:

∂

∂t
ui (x, t) = ∇2ui (x, t) − ϕ(x)(ui (x, t) − vi (x)), 1 ≤ i ≤ n, (35)

ui (x, 0) = vi (x).

The set of equations (35) is known as the generalized diffusion equations. It gives an
asymptotic solution to (34). Numerical experiments in Sect. 4 are based on that imple-
mentation for gradient regularization function. The iterative process (35) is truncated
to a fixed number (50 in this paper) and algorithmic differentiation is used in the
computation of the gradient of J in Algorithm 1.

4 Numerical Experiments: motion estimation for Geophysical Fluid
Images

We applied the proposed incremental projection method to the problem of motion
estimation with 2D fluid images. Appendix 1 gives an overview of motion estima-
tion. The optical flow constraint is replaced by the convection diffusion equation that
is well suited for fluid flows. The projection operators for the minimum norm and
the minimum gradient regularization functions are implemented and compared with
the associated regularization methods. The same optimization toolbox is used for all
experiments. We ensure that the optimal setup is used in each case. For instance, we
consider constant weighting functions and determine the optimal weighting parame-
ter for each regularization problem, see Appendix “Selection of the Regularization
Weighting Parameter” section.
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4.1 Setup of Numerical Experiments

4.1.1 Trust Function for Motion Estimation

The trust function is defined by the contours map. Following [48], the contour map of
a gray-level image function f(x) takes one of the following forms:

c1(x, f) = ‖∇xf(x)‖2 or, (36)

c2(x, f) = ‖∇x(Gσ (x) ∗ f(x))‖2, (37)

where Gσ (x) is a Gaussian function with standard deviation σ and ∗ is the convolution
operator. The Gaussian convolution is used for denoising purpose. The contour map
is chosen because it accounts for the aperture problem in motion estimation which
states that: only the motion along the normal to iso-contours can be inferred from
an image sequence (see for example [30] and references therein). It has the effect
of keeping P�(v) close to v on contours and forces it to satisfy the regularization
condition in homogeneous areas. In the present work, the trust function is normalized
for the minimum gradient projection so that 0 ≤ ϕ(x) ≤ 1. For the minimum norm
projection, the normalized trust function is scaled by a large factor (103) to ensure that
P�(v) is close to v where ϕ is large.

4.1.2 Experimental Data

The image sequence used in the present work comes from a laboratory experiment
on the drift of an isolated vortex (see [20] for details on that experiment). Figure 1
shows the true motion field superimposed on the first image of the sequence. Only

Fig. 1 True velocity field
superimposed on the first image
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the 60× 60 pixels most active region of the image domain is shown. The full domain
is 256.512cm × 256.512cm for an image of 128 × 128 pixels. The flow is made
up of two vortices: a major one rotating counterclockwise and a minor one rotating
clockwise. The truemotion field is computed by direct assimilation of image sequence,
a technique recently introduced for the use of images in data assimilation (see [43]).
The computed motion field is an approximation of the truth. In order to have an
image sequence and the associated true motion field, a second image is computed
by convection-diffusion of the first image with the motion field. The first image and
the computed image make up the experimental image sequence. The goal of motion
estimation is to recover the velocity field from the experimental image sequence. The
optimization algorithm used for numerical experiments is M1QN3, a quasi-Newton
algorithm from the MODULOPT library [21].

4.2 Comparison Between Projection and Regularization

The present subsection presents a comparative study of the evolution of the minimiza-
tion process. The comparison is based on the velocity error, the angular error and the
vorticity error. The vorticity error is not frequently used in motion estimation. It is
included in the present study because of the importance of the vorticity in fluid flows.
The vorticity quantifies the local spinning of a fluid particle around a nearby point. Its
computation is straightforward compared with the angular error that uses approxima-
tion. All the error functions are normalized. In the present study, the normalization is
the division by the same function evaluated at the initial guess. Appendix “Diagnostic
Functions” section gives the details of the computation of those error functions. The
mean and the maximum are computed over the 60× 60 pixels most active subdomain
shown in Fig. 1.

4.2.1 Minimum Norm Regularization and Projection

Figure 2 shows the motion field estimated using the minimum norm regularization
and projection as well as the true motion. An interpretation is that the minimum norm
regularization is not adapted to motion estimation. The solution of the the projection
method captures the main feature of the truth (the two vortices) but underestimates the
order of magnitude. Figure 3 shows the evolution of the normalized error functions
during the minimization. The objective function is not shown because it is completely
different for both methods. The regularization methods converges after 250 iterations.
At that point, the regularization term dominates the objective function and the opti-
mization algorithm can not find a descent direction or step. After 250 iterations, the
mean velocity error is reduced by 40% for the regularization method, and 58% for
the projection method. The regularization method reduces the error by 40% after 250
iterations while the projection method reaches the same target after 16 iterations. That
is 15.6 times less iterations for the projection method. In terms of maximum veloc-
ity error, the difference is insignificant between the two methods. The vorticity error
(mean and maximum) increases over the iterations for both methods with an advan-
tage to the projection. It means that the estimation of the local spinning is inaccurate.
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Fig. 2 Velocity field for the minimum norm regularization and projection

Fig. 3 Evolution of errors function during the minimization process for the minimum norm regularization
and projection
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Table 1 Summary of converged error

Method ēv ēvr ēag eag(◦)

Normalized mean error (%) and mean angular error (◦)
Minimum norm regularization 60 364 33 29

Minimum norm projection 42 297 21 18

Minimum gradient regularization 9 77 3 2

Minimum gradient projection 0.1 0.3 0.1 0.1

Normalized maximum error (%) and maximum angular error (◦)
Minimum norm regularization 117 414 195 174

Minimum norm projection 121 477 185 165

Minimum gradient regularization 27 148 27 24

Minimum gradient projection 0.4 0.4 9 8

Fig. 4 Velocity field for the minimum gradient regularization and projection

The angular error (mean and maximum) shows similar behavior to the velocity error.
In terms of computation time per iteration, the projection method performs slightly
better than the regularization. That is not surprising; the difference between the two
methods is that the projection performs a vector scaling at each iteration while the
regularization computes the regularization term that is more expensive. Overall, the
projection yield fast iterations, rapid convergence and better results at convergence.
Table 1 gives a summary of diagnostic functions when the minimization algorithm is
stopped.

4.2.2 Minimum Gradient Regularization and Projection

Figure 4 shows the motion field estimated using minimum gradient regularization and
projection. The regularization method globally underestimates the magnitude because
of the smoothing effect of the regularization term. The solution of the projection
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Fig. 5 Evolution of error during the minimization process for the minimum gradient regularization and
projection

method is visually indistinguishable from the truth. Figure 5 shows the evolution of
the normalized error functions during the minimization. The regularization methods
converges after 164 iterations. At that point, the regularization term dominates the
objective function and the optimization algorithm can not find a descent direction or
step. After 164 iterations, the mean velocity error is reduced by ∼91% for the regu-
larization method, and 99.9% for the projection method. The regularization method
reduces the error by 91% after 164 iterations while the projection method reaches
the same target after 17 iterations. That corresponds to almost 10 times less iterations
than the regularization method to reach the same target. After 164 iterations, the max-
imum velocity error is reduced by 73% for the regularization method and 99.6% for
the projection method. In terms of vorticity, the regularization method decreases the
mean error by 23% and increases the maximum error while the projection method
decreases both themean error and themaximum error by 99.7 and 99.6% respectively.
The regularization is inaccurate in the estimation of the local spinning. In terms of
angular error, the mean is reduced by 97% and the maximum is reduced by 73% for
the regularization method; for the projection, the mean is reduced by 99.9% and the
maximum is reduced by 92%. Both methods get the right orientation of the velocity
fields, but only the projection gets the right amplitude. It is also important to notice
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that the projection method globally improves each indicator from the first iteration,
while the regularization method first deteriorates the vorticity over a large range of
iteration, and does not improve the maximum vorticity error. In terms of computa-
tion time per iteration, the regularization method is approximately 1.5 faster than the
projection and it takes 10 times more iterations than the projection method to reduce
the velocity error by 91%. Globally, the projection methods takes 6.7 times less com-
putation time to reduce the velocity error by 91%. Overall, there is a net advantage
of the incremental projection method compared to the regularization. Table 1 gives a
summary of diagnostic functions when the minimization algorithm is stopped.

Experiments with the minimum gradient projection and constant trust function
(ϕ(x) = 1), not included in this document, shows similar behavior to the projection
with the trust function (36): faster convergence and final result closer to the truth than
the regularization. However, the projection with the variable trust function (36) is
better than the projection with constant trust function.

5 Conclusion

In this study, we introduced an incremental projection method as an alternative to the
regularization of inverse problems. The proposed method is based on the projection
onto the subspace of regularized admissible solutions. The projection replaces the use
of a regularization term in the objective function and significantly improves the con-
vergence of optimization algorithms both in terms of speed and the error in the final
solution. The proposition is supported by numerical experiments that demonstrate its
feasibility and the improvement compared with regularization methods. The example
problem shows that for the minimum gradient regularization, the incremental projec-
tion method uses 6.7 times less computation time than the regularization method to
achieve the same reduction of the error. At convergence, the incremental projection
result is 90 times closer to the exact solution than the regularized solution is. It makes
the proposed formulation a good alternative approach to regularization methods. Fur-
ther investigations of this ongoing work include the theoretical study of convergence
and the construction of trust functions.
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Appendix 1: Optical Flow Motion Estimation

The motion estimation is an example of inverse problem that consists in determining
the vector field that transports one frame to the next in a sequence of images under
the optical flow constraint which states that the luminance function is conserved over
time. Let� ⊂ R2 be a rectangular image domain and f a given image function defined
from � × [0, T ] to R. The optical flow constraint defines the motion vector field v as
the solution of the following equation:
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∂ft

∂t
+ ∇ft · v = 0, (x, t) ∈ � × [0, T ]. (38)

The control space is defined as V = (L2(�))2. Motion estimation is known to be
subject to the aperture problem: it is impossible to determine the motion where the
gradient of the image function is null, or in the direction orthogonal to the gradient
of the image function (see [30] and references therein). This is the main source of
ill-posedness that induces the necessity of regularization. The ill-posedness of inverse
problems in image processing are detailed in [5]. Given the observation f of the image
function, the solution v to (38) can be estimated through a minimization problem. To
this end, the objective function J is defined as follows:

J(v) = 1

2

∫ T

0

∥∥∥∥∂f

∂t
+ ∇f · v

∥∥∥∥
2

�

dt + αrJr(v) (39)

To turn (39) into the form of the objective function (3), one considers f as an implicit
function of v given by the solution of the optical flow constraint (38). The optical
flow approach of motion estimation is well addressed in the literature; the interested
reader can consider [19,24,32,46] for more detailed survey. Since the work of Horn
and Schunck [24], many propositions have been made for the regularization of the
optical flow.

Additional techniques to improve the solution of motion estimation problems
include the discretization scheme such as Helmhotz decomposition [50], the use of
L1-norm [45,51], and multi-scale strategies [1,3,6,8,9,15,22,27,31] and references
therein.

Appendix 2: Diagnostic Functions and Selection of the Regularization
Weighting Parameter

Diagnostic Functions

The following functions are used for the evaluation of the estimated velocity field:
velocity error, vorticity error, angular error, objective function and its data term. The
commonly used functions are the velocity error and the angular error. The vorticity
error is introduced in the present work because of its importance in fluid flows. It quan-
tifies the local spinning of a fluid particle around a nearby point and its computation
is straightforward compared with the angular error that uses approximation.

The physical domain�, is a rectangular subset of R2 and the physical space variable
is given by x = (x1, x2). The control space is V = (L2(�))2 and the control variable
(transport velocity field) is of the form v(x) = (v1(x), v2(x)). Let vr denote the
vorticity of v, and the superscripts a, t and b stand for the analysis (estimated solution),
the truth and the background (initial guess) respectively; the velocity error (ev), the
vorticity error (evr) and the angular error (eag) are defined as follows:
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ev(x) = ‖v∗(x) − vt(x)‖; (40)

evr(x) = |vra(x) − vrt(x)|; (41)

eag(x) = |ag (
vt(x), v∗(x)

) |; (42)

where the vorticity of a vector field v is defined as:

vr(x) = ∂v2

∂x1
(x) − ∂v1

∂x2
(x). (43)

The angle between vt and v∗ if defined as follows:

ag(x) = arccos

( 〈
wa(x), wt(x)

〉
‖wa(x)‖‖wt(x)‖

)
, (44)

where w(x) = (v1(x), v2(x), ε), with ε � 1, a positive scalar, chosen to be ε =
1

100 max(‖vt(x)‖), x ∈ � in the present work. The parameter ε makes it possible to
compute the angle if one of the vectors (vt or v∗) is null. TheEq. (44) is an improvement
of the commonly used angular error where ε is set to 1 [2,17,18]. Setting ε to 1 induces
large error in the estimated angular error when vectors (vt or v∗) have small norms.

In each case, we define the mean error emean (mean over the physical domain) and
the normalized mean error ēmean as:

emean = 1

mes(�)

(∫
�

e(x)dx
)

, ēmean = emean

ebmean
, (45)

where mes(�) is the measure of � and eb is the error on the background (initial
guess). emean defines the continuous form of the root mean squares error (RMSE)
and ēmean defines the normalized RMSE (NRMSE). The maximum error emax and the
normalized maximum error are defined as:

emax = max
x∈�

e(x) and ēmax = emax

ebmax
. (46)

The normalized objective function is defined as:

J̄ = J

Jb
, (47)

where Jb is the value of the objective function associated with the background. In the
present work, the background (initial guess) vb is set to zero (vb = 0).

Selection of the Regularization Weighting Parameter

To select the best weighting parameter, we carried out the error analysis with varying
regularization parameter, see Fig. 6 for the example of minimum gradient regular-
ization. The optimal weighting parameter is chosen to be the point where the mean
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Fig. 6 Minimum gradient regularization: evolution of converged diagnostic functions with the regulariza-
tion weighting parameter (logarithmic scale)

velocity error reaches its minimum value. In the case of minimum norm regulariza-
tion, there is no valley as in the case of minimum gradient. The curves grow smoothly
from the small values of the weighting parameter, where the data term dominates
the objective function to the large values, where the regularization term dominates.
Experiments with other regularizations for motion estimation (first and second-order
divergence or curl regularization, isotropic image/flow-driven regularization) on the
same data shows similar behavior to the minimum gradient regularization. The error
analysis methodwas chosen because of the availability of the ground truth. A selection
of scientific works on the estimation of the weighting parameter in the absence of the
truth includes [7,13,25,28,29,33,37,39,40] and references therein.
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