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ABSTRACT

There has been an increased interest in seasonal forecasting of the Arctic sea ice extent in recent years, in

particular the minimum sea ice extent. Here, a dynamical mechanism, based on winter preconditioning, is

found to explain a significant fraction of the variance in the anomaly of the September sea ice extent from the

long-term linear trend. To this end, a Lagrangian trajectory model is used to backtrack the September sea ice

edge to any time during the previous winter and quantify the amount of sea ice advection away from the

Eurasian and Alaskan coastlines as well as the Fram Strait sea ice export. The late-winter anomalous sea ice

drift away from the coastline is highly correlated with the following September sea ice extent minimum

(r520:66). It is found that the winter mean Fram Strait sea ice export anomaly is also correlated with the

minimum sea ice extent the following summer (r520:74). To develop a hindcast model of the September sea

ice extent—which does not depend on a priori knowledge of theminimum sea ice extent—a synthetic ice edge

initialized at the beginning of the melt season (1 June) is backtracked. It is found that using a multivariate

regressionmodel of the September sea ice extent anomaly based on ice export from the peripheral Arctic seas

and Fram Strait ice export as predictors reduces the error by 38%. A hindcast model based on the mean

December–April Arctic Oscillation index alone reduces the error by 24%.

1. Introduction

There has been a negative trend in the Arctic Ocean

sea ice extent since the late 1970s, when satellite ob-

servations became available on a consistent basis

(Parkinson et al. 1999). This trend is present in all months

and ranges from 20.30 to 20.87 3 106km2decade21

(from 22.3% to 213.6%decade21) in May and Septem-

ber, respectively (Fetterer et al. 2002, updated daily).

The rate of decline in the September minimum sea

ice extent (SIE) accelerated in recent decades when

compared to the 1978–96 time period (Comiso et al.

2008). Following the record minimum September SIE

in 2012, the September sea ice extent recovered 1.5 3
106 km2 in 2013, highlighting the significant amplitude

of the interannual variability (Fetterer et al. 2002, up-

dated daily).

The current decline of the September minimum sea ice

cover is also accompanied by a decrease in mean sea ice

thickness (Kwok and Rothrock 2009). During the period

1986–94, a mean reduction of draft depth of 1.5m was

observed from repeated submarine transects between the

coast of Alaska and the North Pole. The decrease in sea

ice draft is attributed primarily to sea ice dynamics with

thermodynamics playing a less influential role (Tucker

et al. 2001). The particular dynamical mechanisms lead-

ing to the reduction in thickness are an anomalouslyweak

Beaufort Gyre, a broad Transpolar Drift Stream, and
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high export of multiyear ice (MYI) associated with a

positive Arctic Oscillation (AO) index in the late 1980s

and early 1990s. Likewise, Rigor and Wallace (2004)

document a reduction in mean sea ice age during the

same time period, associated with the sustained positive

phase of the AO. In the mid-1990s, the AO returned to a

more neutral state, yet the rate of decline of the Sep-

tember sea ice extent accelerated. Many studies build on

this link between the AO and the MYI mass budget

(Rigor andWallace 2004), highlighting the importance of

winter sea ice dynamical processes in the Arctic (e.g.,

Wang et al. 2009; Stroeve et al. 2011).

Of particular interest are the record September SIE

minima in 2007 and 2012 with area losses of 36% and

48% of the mean 1979–2006 minimum sea ice extent,

respectively (Fetterer et al. 2002, updated daily). The

year-to-year ice loss leading to both of these minima are

the largest observed during the satellite era. Summer-

time thermodynamic processes also play an important

role in setting the September sea ice edge. In particular,

the surface albedo feedback can significantly amplify an

initial anomaly in open water area at the beginning of

the melt season (Perovich et al. 2007). Perovich et al.

(2008) propose that this mechanism was influential in

the extensive loss of sea ice in the Beaufort Sea in 2007.

Recently, Hutchings and Perovich (2015) showed that

wintertime sea ice divergence as calculated from buoy

triads in a region of approximately 1000km2 in the

Beaufort Sea could account for the anomalously high

local basal melt in 2007.

First year ice (FYI) is flatter thanMYI and tends to be

covered by lower-albedo melt ponds (Perovich and

Polashenski 2012). This is another positive feedback,

one that will become more important as the pack tran-

sitions to a seasonal ice cover. The continued loss of sea

ice area in turn increases the heat content in the upper

ocean. The anomalous oceanic heat can also be ad-

vected, affecting the subsequent basal melt of sea ice

(Steele et al. 2010). In the western Arctic, open water

anomalies early in the melt season can be caused by an

anomalous oceanic heat flux through Bering Strait (e.g.,

Woodgate et al. 2010) as well as wind-driven divergence

in the Chukchi and Beaufort Seas (e.g., Frey et al. 2015).

Finally, Rigor et al. (2002) suggest that open water

anomalies early in the melt season can be caused by

divergent wind forcing along the Eurasian coastline

during the previous winter associated with a positive

phase of the AO.

Nikolaeva and Sesterikov (1970) find that FYI form-

ing after 1 February in the Laptev Sea is unlikely to

survive the following summer melt season. Based on this

concept, Nikolaeva and Sesterikov (1970) developed

and validated a skillful operational sea ice prediction

system for the Laptev Sea. Following the same line of

argument, Chevallier and Salas-Mélia (2012) showed

that the ice fraction in the 0.9–1.5-m thickness category

from a numerical model gives the largest predictive skill

for a 4-month seasonal forecast of the minimum SIE.

This thickness range is in line with that of Nikolaeva and

Sesterikov (1970), who estimate that new ice forming on

1 February will be 1.15–1.45m thick at the onset of melt.

Holland and Stroeve (2011) documented a change in

the correlation between the simulated winter ice thick-

ness, summer large-scale atmospheric circulation, and

the minimum SIE as the pack ice transitioned from a

perennial to a seasonal ice cover. In particular, they

showed an increase in the correlation between the

wintertime thin ice fraction and the minimum SIE from

0.3 in the late twentieth century to 0.65 in the middle of

the twenty-first century. During the same time period,

the correlation between the mean summer sea level

pressure and theminimumSIE decreases from 0.5 to 0.1.

This increase in the relative importance of winter pro-

cesses suggests potential predictability of the minimum

SIE on seasonal time scales as the sea ice thins.

With the opening of the summer pack ice in 2007,

there has been an increased interest in short-term and

seasonal forecasting of sea ice conditions, and in par-

ticular the minimum sea ice extent. This is exemplified

by the creation of the Sea Ice Outlook, managed by the

Sea Ice PredictionNetwork (https://www.arcus.org/sipn/

sea-ice-outlook). The Sea Ice Outlook is an ongoing

comparison of different methods used to forecast the

minimum SIE. In the Sea Ice Outlook, many partici-

pants use numerical ice models forced with atmospheric

fields from reanalyses. Other methods in use include

statistical models and heuristic or mixed approaches.

Short-term and seasonal forecasts however are notori-

ously difficult with the interannual variability of the

September SIE showing no autocorrelation with the

previous year (Serreze and Stroeve 2015). For instance,

Stroeve et al. (2014) show that the collective skill in

forecasting the September sea ice minimum is high in

years when the minimum SIE is close to the long-term

linear trend, while the collective skill is low in years

when the September sea ice minimum falls far from the

long term trend (e.g., the record low SIE minimum of

2012 or the anomalously high SIE minimum of 2013).

This is in accord with Lindsay et al. (2008), who show

that the lagged correlations between the North Atlantic

Oscillation (NAO), the AO, or predictors from nu-

merical simulations and the September SIE minimum

greatly increase when the long-term trend in the SIE is

not removed.

Following Nikolaeva and Sesterikov (1970), we use a

Lagrangian back-trajectory framework to study the
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dynamic preconditioning effect of sea ice export from

the Alaskan and Eurasian peripheral seas into the cen-

tral Arctic Ocean and sea ice export from the Arctic

through Fram Strait on the September minimum sea ice

extent.We use the results of this analysis to test a variety

of hindcast models to predict the September minimum

sea ice extent on a seasonal time scale. We focus on the

time period 1993–2014, when the winter pack ice is

thinner and responds more readily to wind forcing fol-

lowing the decline in MYI thickness during the late

1980s and early 1990 (Rigor and Wallace 2004; Tucker

et al. 2001).

2. Data

In this study we use weekly averaged sea ice velocities

from the Polar PathfinderDaily Sea IceMotionVectors,

version 3 (Tschudi et al. 2016). This dataset provides sea

ice velocities interpolated onto the 25-km resolution

Equal Area Scalable Earth (EASE) grid (Brodzik et al.

2012) with daily temporal resolution from 31 October

1978 until 31 December 2014. The sea ice velocity is

calculated from the optimal interpolation (Fieguth et al.

1995) of satellite-derived sea ice drifts, buoy drifts, and

free drift estimates calculated from NCEP–NCAR re-

analysis geostrophic winds using a simple linear re-

lationship between the ice drift and the wind speed

(Thorndike andColony 1982). The final gridded velocity

product is computed as a weighted average of all data

sources, where the weight is a function of the error

attributed to each respective data source (Tschudi

et al. 2016).

The satellite data incorporated in the Polar Pathfinder

dataset are the Scanning Multichannel Microwave Ra-

diometer (SMMR), onboard NASA’s Nimbus-7 satellite

and operating from October 1978 until July 1987; the

Special SensorMicrowave/Imager (SSM/I), onboardU.S.

Defense Meteorological Satellite Program satellites and

operating from July 1987 through the end of 2006; the

Special SensorMicrowave Imager and Sounder (SSMIS),

also onboard the U.S. Defense Meteorological Satellite

Program satellites and operating from the beginning of

2007 until present; the Advanced Very High Resolution

Radiometer (AVHRR), onboard the NOAA satellites

and operating from July 1981 through the end of 2004;

and the Advanced Microwave Scanning Radiometer–

Earth Observing System (AMSR-E), onboard the still

active NASA Aqua satellite and operating from June

2002 until August 2011. The spatial resolutions are 25,

25, 12.5, and 1.1 km for the SMMR, SSMI 37-GHz,

AMSR-E, and AVHRR sensors, respectively. The root-

mean-square error (RMSE) attributed to each data

source is 5.1, 3.5, 3.3, 6.1, and less than 1 cm s21 for SSMI,

AMSR-E, AVHRR, free-drift estimates, and buoys re-

spectively. An interpolation of all data sources exclud-

ing the buoys indicates anRMSEof 3.4 cm s21 taking the

Lagrangian buoy velocities to be the truth (Tschudi et al.

2016). In the summer, the satellite sensors have diffi-

culties distinguishing surface ice features due to surface

melt. As a result, the dataset relies more heavily on buoy

data and the free-drift estimates. Nevertheless, the error

in the monthly mean velocities from the gridded Polar

Pathfinder sea ice velocity product during the summer

(May–July) were found to be approximately 1.5 cm s21

when compared with sea ice velocities derived from

synthetic aperture radar (SAR) imagery (Sumata et al.

2015). Finally, a low bias in the SMMR velocity data was

recently reported on the NSIDC website (see http://

nsidc.org/data/docs/daac/nsidc0116_icemotion/smmr_

ssmi.html). All analysis using satellite-derived sea ice

velocities presented in this paper begin in 1993 and

therefore the bias in the SMMR data does not affect

the results presented below.

We use the NOAA–NSIDC Climate Data Record of

Passive Microwave Sea Ice Concentration, version 2

(Meier et al. 2013, updated 2015). Sea ice concentration

and extent from SMMR and SSMI (and SSMIS) 18-, 19-,

and 37-GHz channels are given on a 25-km resolution

grid. The physical SSMI sensors changed during the time

series due to satellite replacements. Sensor recalibration

was conducted during any overlap period between the

sensor systems in order to minimize error in measured

sea ice variables. Error estimates during sensor overlap

are assessed to be smaller than 0.05% (Cavalieri et al.

1999; Eisenman et al. 2014).

3. Methodology

We use a Lagrangian ice trajectory model to quantify

the amount of ice export from the Alaskan and Eurasian

peripheral seas prior to the minimum sea ice extent in

mid-September. This coastal export is largely associated

with localized offshore winds resulting in polynyas,

particularly in the Laptev Sea (Timohkov 1994).

Southerly winds in the eastern Siberian, Chukchi, and

Beaufort Seas, however, can be associated with cold air

advection and anomalous sea ice growth lessening the

effect of offshore sea ice motion. A simple scale analysis

shows that dynamics is dominant in local sea ice thickness

changes on short time scales. For instance, a typical ice

speed of 5 cms21 toward the north will result in an;5-km

band of open water along the coast in one day, while a 58C
change in ice surface temperature due to cold (or warm)

air advection will change the ice thickness by approxi-

mately 3mm in one day for a 1-m-thick ice floe (from a

simple 0-layer thermodynamic approximation assuming a
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linear internal temperature profile).We note that the open

water formed by advection will refreeze, resulting in ap-

proximately 10cm of ice growth during the first day.

Our model tracks the sea ice edge back in time (time

step 5 1 week) from its position in September to any

previous time. In the following, we refer to this imagi-

nary line as, for instance, ‘‘the June location of the

September minimum sea-ice edge.’’ In doing this, we

ensure that ice is always present along the back trajec-

tories, and that no trajectory ends prematurely in water

due to errors in the satellite-derived drift velocities and

concentrations. We then calculate the change in area

between consecutive weeks during the backtracking

procedure. This change in area is purely dynamic in

nature and is associated with the advection of ice during

the backtracking time period. The mean error of a tra-

jectory is 13 km after a back-trajectory period of one

month, and 83km after a back-trajectory period of one

year [see DeRepentigny et al. (2016) for details]. Note

that the random errors in the individual trajectories tend

to cancel as we calculate the net change in area over a

longer time period.

Three closed polygons emerge from this exercise

(Fig. 1). The difference in surface area between poly-

gons A and C represents the net sea ice exported from

the source region of the transpolar drift stream (TDS),

while the surface area of polygon B represents the Fram

Strait export area (FSEA). Polygons A, B, and C are

readily identifiable in all years. The area enclosed by the

September minimum sea ice extent (red contour) is

largely balanced by the area enclosed within the back-

tracked contour (blue contour) or area A 2 area C ’
area B. That is, to first order, the area of ice exported

from the Eurasian peripheral seas (e.g., Timohkov 1994;

Reimnitz et al. 1994; Alexandrov et al. 2000; Rigor et al.

2002; Krumpen et al. 2013) is of the same order of

magnitude as the Fram Strait sea ice export (e.g., Rigor

et al. 2002; Kwok 2009; Smedsrud et al. 2011). The de-

parture from this first-order balance is the net di-

vergence within the perennial Arctic pack ice. This can

be shown by a simple application of the divergence

theorem. In the following, we refer to the difference in

surface area between areas A and C as the dynamic

preconditioning area (DPA). The DPA is therefore the

net area of ice exported from the Arctic peripheral seas

into the central Arctic as demarcated by the back-

tracked contour (area A2 area C). All polygon analysis

is computed using theUniversity ofManchesterGeneral

Polygon Clipper library (http://www.cs.man.ac.uk/;
toby/alan/software/).

To study the impact of interannual variability in dy-

namic preconditioning on the sea ice extent, we first

detrend the DPA and FSEA. To this end we calculate

the ‘‘weekly DPA’’ by backtracking the ice edge from

one week to the prior from the time of the September

minimum to 1 November of the previous year for all

years between 1993 and 2014. We calculate the linear

trend for each individual week, and subtract the ap-

propriate trend line from each weekly DPA to form the

weekly DPA anomaly. This procedure filters out both

the average seasonal cycle and the long-term trend,

highlighting the interannual variability.

4. Results

a. Backtracking the September SIE

The correlation between the weekly DPA and FSEA

anomaly, integrated from the week of the SIE minimum

to each prior week, and the anomaly of the September

SIE minimum are computed for the 1993–2014 period.

The sea ice export from the peripheral seas of the Arctic

as measured by the integrated DPA anomaly is well

correlated to the anomalous September SIE (Fig. 2). For

the summer months, the correlation (r520:45) be-

tween the integrated DPA anomaly and the SIE mini-

mum anomaly (Fig. 2, black curve) is the result of open

water created dynamically. Open water can be created

directly by ice export through Fram Strait and/or com-

paction of sea ice within the Arctic Ocean or indirectly

through thermodynamic feedback mechanisms. In this

FIG. 1. Lagrangian trajectories of the 2007 minimum sea ice

extent (red curve), and the 1 Nov 2006 position of the following

September minimum sea ice edge (blue curve). The difference

between area A (sea ice retreat) and area C (sea ice advance) is the

dynamic preconditioning area (DPA). Area B is the Fram Strait

export area (FSEA).
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paper, we do not attempt to assess the potential pre-

dictability of summer processes. In the late winter, the

magnitude of the correlation increases (r520:66) until

the third week of January. The integrated FSEA

anomaly (Fig. 2, red curve) is also significantly corre-

lated (r’20:7) with the following September minimum

SIE for all spring and winter months. That is, anoma-

lously low minimum September SIE and anomalously

high FSEA typically occur the same year.

The first-order sea ice area balance laid out above

implies that the net DPA and FSEA are not in-

dependent time series. Furthermore, we find that the

winter anomalies in FSEA and DPA are well correlated

(r5 0:79) (Fig. 3). The anomalies in both variables are

correlated with the phase of the December–April

(DJFMA) AO index; r5 0:55 and r5 0:59 for the

FSEA and DPA, respectively. This is because a positive

AO is associated with deeper and more frequent pene-

tration of cyclones in the eastern Arctic, which provide

the wind forcing necessary to enhance the transpolar

drift stream (Zhang et al. 2004). These correlations

indicate a coherent transpolar drift stream strength

anomaly during winter, with anomalous FSEA and

anomalous export from the Eurasian peripheral seas

occurring in the same years. During the summermonths,

the integrated anomalies of the FSEA and the DPA are

not significantly correlated (r5 0:31). The summer in-

tegrated FSEA is small both compared to the integrated

winter FSEA (Kwok 2009) and integrated summerDPA

(results not shown). We find that the summer anomaly

of FSEA is also small compared to the summer anomaly

of DPA. This implies that the first-order balance dis-

cussed above breaks down during the melt season as the

DPA is no longer compensated for by FSEA.

The correlation between the winter (DJFMA) mean

AO index and the following September SIE anomaly is

r520:56 (Fig. 4). One clear outlier is the year 2010.

First, there was a large departure from the mean nega-

tive AO atmospheric circulation, with anomalously high

advection of MYI from the Beaufort into the Chukchi

Sea, where the long-term SIE decline is largest. Second,

the Arctic mean ice volume was at a record low, creating

unfavorable conditions for a high September SIE

(Stroeve et al. 2011). Another outlier is 2014. During

that year, the AO was positive and summer ice loss was

large in the Laptev and Kara Seas (Fetterer et al. 2002,

updated daily). The pack ice during the summer, how-

ever, was advected into the Barents Sea in August, re-

sulting in an overall anomalously high September SIE in

that region.

Note that the connection between the AO and min-

imum SIE is only present from 1993 onward, after the

large MYI export from the Arctic during the late 1980s

and early 1990s (Tucker et al. 2001; Rigor and Wallace

2004). Before that time, the phase of the AO did not

significantly affect the variability in peripheral sea ice

export on a pan-Arctic scale, presumably because the

pack ice was on average thicker than at present. This

increase in sea ice mobility in 1993 can also be seen in

the results of Rampal et al. (2009), who show a strong

positive anomaly in mean sea ice drift speed from buoy

data between 1990 and 1994. For 1979–93, the

FIG. 2. Correlation between the anomaly of the September SIE

minimum and the DPA (black) and FSEA (red) integrated from

September to a prior time t on the x axis. All time series were first

detrended using a linear best fit calculated over the time period

1993–2014. The dash-dotted line is the 95% confidence level.

FIG. 3. Scatterplot of the anomalies of the FSEA and DPA in-

tegrated from November until June. The correlation coefficient is

r5 0:79 and it is significant at greater than 99% confidence. Area

anomalies are reported in units of millions of square kilometers.
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correlation (r520:10) between the wintertime AO

(DJFMA) and the following September SIE anomaly is

not statistically significant (not shown). This change in

the nature of the correlation between the winter mean

AO and minimum SIE in the early 1990s is robust

whether we use two different linear trends for the time

periods 1979–92 and 1993–2014, or if we fit an expo-

nential decay to the September SIE time series. This

result is in contrast with Holland and Stroeve (2011),

who argue that the correlation between the detrended

minimum SIE and the winter (January–April) mean

AO is only marginally significant in recent years. The

difference between our analysis and that of Holland

and Stroeve (2011) is that they included 1979–92 when

the correlation between the AO and the minimum SIE

is not significant. Our results using the late winter DPA

as a characterization of sea ice thickness in the Arctic

peripheral seas are in line with their result showing the

increasing importance of thin ice area on the Septem-

ber SIE anomaly.

Sea ice export from the Arctic peripheral seas can be

accounted for by export from the Arctic predominantly

through Fram Strait or by net convergence of the pack

through ridging primarily in the region north of the

Canadian Arctic Archipelago. Prior to 2007, the DPA

is typically smaller than the FSEA (Fig. 5). This indicates

that the perennial pack ice experienced net divergence

during winter and spring. In other words, for 1993–2006,

the area enclosed by the November position of the Sep-

tember SIE was smaller than the following September

SIE [i.e., (1/A)(dA/dt). 0, where A is the time-varying

area enclosed by the backtracked September SIE con-

tour; e.g., dA in Fig. 1 is the difference in area between the

region enclosed by the blue curve and the region enclosed

by the red curve]. Since 2007, the DPA has been larger

than the FSEA, implying that the perennial pack ice has

experienced net convergence. This is in accord with ob-

servations of theMYI cover north of the CanadianArctic

Archipelago that showed substantial sea ice convergence

in the freezing season following the 2007 SIE minimum

(Kwok and Cunningham 2012). The larger trend in the

DPA, associated with a transition from net divergence to

net convergence, indicates a substantially weaker ice

pack in the central Arctic, as the magnitude of the in-

tegrated DPA between June and December has more

than doubled in 20 years. The fact that both time series

exhibit significant positive trends is evidence of the in-

creasing mobility of the pack in recent decades in line

with the findings from Rampal et al. (2009).

b. Backtracking a synthetic ice edge

We repeat the same analysis using a synthetic sea ice

edge, since the location of the September sea ice extent

is not known a priori at the beginning of June, when

seasonal forecasts are typically issued. The synthetic

ice edge studied here consists of the 77.58N latitude

band passing through the peripheral seas and the 808N
line across Fram Strait (see Fig. 6, dark red curve). We

seed the back-trajectory model with points on the

synthetic ice edge on 1 June and calculate their prior

positions with a weekly temporal resolution until

1 November of the previous year as discussed in the

previous section. The DPA and FSEA recalculated

using the synthetic ice edge are again apparent in the

backtracked trajectories (Fig. 6). This yields a new

22-yr time series of DPA and FSEA for each week

(from June to November) of the 21-yr time series

(1993–2014).

Again, we detrend the DPA and FSEA anomaly time

series in the manner described above. We integrate from

1 June to any given prior week until 1 November and

correlate with the minimum SIE (Fig. 7).We note a rapid

increase in the magnitude of the correlation between the

integratedDPAanomaly between June andApril and the

September SIE anomaly. The maximum correlation (in

magnitude) is similar to that found from backtracking the

September SIE (see previous subsection). The peak cor-

relation however occurs two and a halfmonths later in the

spring when compared to the results from backtracking

the September SIE. The timing and magnitude of the

FIG. 4. Scatterplot of the winter mean AO (DJFMA) and the

anomaly of the following September minimum SIE. The correla-

tion coefficient is r520:56 and it is significant at greater than 99%

confidence.
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peak correlation are sensitive to the exact location used

for the synthetic ice edge and the integration start date. In

many years, the initial synthetic ice edge is far from the

previously computed June position of the September SIE.

This is likely to account for the disparity in correlation

between the integratedDPA anomaly and the September

SIE anomaly as seen in Figs. 2 and 7. On the other hand,

the FSEA time series is robust with respect to the choice

of the synthetic ice edge position because the synthetic ice

edge is always defined across Fram Strait at 808N.

The maximum correlation (in magnitude) between

the integrated DPA—from 1 June to the third week of

April—and the September SIE is r520:58 (Fig. 7).

The maximum correlation (in magnitude) between the

integrated FSEA—from 1 June to the third week of

January—and the minimum SIE is r520:72 (Fig. 7).

Note that the DPA and FSEA derived from the syn-

thetic ice edge no longer depend on the future (un-

known) location of the September SIE minimum and

thus can be used in a predictive model. The slope of

the best-fit lines for the period of maximum correla-

tions (in magnitude) indicates that anomalies in the

DPA or FSEA are amplified fivefold in the September

SIE anomaly (Figs. 8a,b). This is likely due to feedback

mechanisms (e.g., melt pond formation, open water

heat absorption, greenhouse effect of warm liquid wa-

ter clouds) associated with early melting out at the

beginning of the melt season. Both the DPA and the

FSEA anomalies computed from the synthetic sea ice

edge remain well correlated with the winter mean AO

index. In the following, we use the DPA anomaly in-

tegrated from the third week of April until 1 June, the

FIG. 5. Time series of the DPA (black) and FSEA (red) calculated using our Lagrangian

back-trajectory model for the time period 1993–2014. The DPA and DFEA are integrated

between the year’s September SIEminimum and 1November of the previous year. The dashed

lines show the linear trend.

FIG. 6. Lagrangian trajectories of the synthetic ice-edge initial-

ized 1 Jun 2007 (dark red curve); note that the synthetic ice edge is

the 77.58N latitude contour. The monthly backtracked position

of the synthetic ice edge is shown in color, with the final curve being

the 1 November position (blue).
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FSEA anomaly integrated from the third week of

January until 1 June, and the winter (DJFMA) mean

AO index as predictor variables in a hindcast model of

the September SIE.

c. Hindcast of the September minimum SIE

We develop several hindcast models to estimate the

minimum September SIE from 1993 to 2014. The sim-

plestmodel, calledH1, is the long-term linear trend of the

September SIE, written as SIEpred 5 a1t1C, where

SIEpred is the predictand and a1 and C are constants de-

termined from a least squares fit. Three additional hind-

cast models (H2, H3, and H4) are formed by adding the

individual effect of the DPA, FSEA, or AO to the pre-

vious model (H1) in order to predict the interannual

variability of the September SIE. These models can

be written mathematically as SIEpred 5 a1t1 b1x1 1C,

where x1 is either the DPA anomaly, FSEA anomaly, or

the AO (DJFMA) and again all constants are found

from a least squares fit. Hindcast model H5 is formed by

using both the DPA anomaly and FSEA anomaly to

predict the interannual variability. This model can be

written as SIEpred 5 a1t1 b1x1 1 b2x2 1C, where x1 is the

DPA anomaly, x2 is the FSEA anomaly, and all other

symbols are as before. Finally, hindcast model H6 uses all

three variables to predict the interannual variability and

can be written as SIEpred 5 a1t1 b1x1 1b2x2 1 b3x3 1C,

where x3 is the winter (DJFMA) mean AO index and all

other variables are as in H5.

FIG. 8. Scatterplots of anomalies of (a) DPA and September SIE minimum, and (b) FSEA and September SIE minimum. The cor-

responding correlation coefficients are r520:58 in (a) and r520:72 in (b). Both correlations are significant at greater than 99% con-

fidence. All areas reported are in units of millions of square kilometers. Note that DPA and FSEA are computed from backtracking the

synthetic sea ice edge initialized at the beginning of the melt season (1 June) and then integrating the anomaly until the point of maximum

correlation as seen in Fig. 7.

FIG. 7. Correlation between the anomaly of the September SIE

minimum and the DPA (black) and FSEA (red) from the synthetic

ice-edge integrated from 1 June to a prior time t on the x axis. All

time series were first detrended using a linear best fit calculated

over the time period 1993–2014. The dash-dotted line is 95%

confidence level.
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As expected, increasing the number of predictors in-

creases the correlation coefficient and decreases the error

variance of the hindcast models (Table 1). We also com-

pute the adjusted correlation coefficient (r2) to test if the

increase in the correlation coefficient is statistically sig-

nificant compared to the addition of a random variable to

the model. The adjusted correlation coefficient increases

from H1 through H5 and remains constant between H5

andH6. This indicates that including the winter meanAO

into themodel does not statistically improve themodel for

forecasting, but rather it results in an overfitting of the

model to the hindcast data. The improvement fromH1 to

H5 is visually clear (Fig. 9) and quantifiable as a 38%

reduction in the error variance when the interannual

variability is predicted using theDPAanomaly and FSEA

anomaly (as inH5).Wealso showH4 in Fig. 9 since it does

not rely on the existence of the sea ice drift from the Polar

Pathfinder dataset. Note that this product is not yet pro-

cessed in near–real time and therefore cannot be used in

an operational forecast model. H4 shows a 21% reduction

in the error variance with respect to H1.

5. Discussion

We note that the correlations presented above are

not proof of a physical mechanism, and direct attribu-

tion of the physical mechanism giving rise to these

correlations would require analysis of a fully coupled

model in which a complete energy and mass budget can

be calculated. That said, we argue that the physical

process that gives rise to these correlations is the en-

hanced generation of FYI during the late winter be-

tween the backtracked sea ice edge and the coastline,

associated with a divergent sea ice drift field. The DPA

region accounts for the sea ice area exported from

peripheral seas of the Arctic into the central Arctic

Ocean. This export is not compensated by an influx of

ice through Bering Strait (e.g., Travers and Woodgate

2012). Therefore, there is in a net deficit in the sea ice

area budget that must be compensated by FYI forma-

tion in order to maintain a fully ice-covered Arctic in

winter (Fetterer et al. 2002, updated daily). In partic-

ular, we see large areas of DPA in many years along the

Laptev Sea polynya, a region of high localized FYI

formation (Rigor and Colony 1997; Dethleff et al.

1998). The timing of this FYI formation is important,

with FYI formed from the third week of January

through May giving rise to the highest correlation with

the following September SIE. This is in accord with

Nikolaeva and Sesterikov (1970), who find that sea ice

forming in the Laptev Sea after 1 February is unlikely

to grow thick enough to survive the following summer

melt. This leads to an earlier melt onset in late spring

and early summer allowing for the ice-albedo feedback

to operate at a time when the sun is high above the

horizon (Perovich et al. 2007). This is also observed in

idealized coupled modeling experiments by Chevallier

and Salas-Mélia (2012) showing that the thin ice frac-

tion late in the winter is a good predictor for a seasonal

forecast of the following September SIE.

We find that the integrated winter FSEA is of the

same order as the integrated winter DPA. This is in

accord with previous estimates of Eurasian peripheral

sea ice export (e.g., Timohkov 1994; Reimnitz et al.

1994; Alexandrov et al. 2000; Rigor et al. 2002;

Krumpen et al. 2013) and Fram Strait sea ice export

(e.g., Rigor et al. 2002; Kwok 2009; Smedsrud et al.

2011). The implication is that a large fraction of the sea

ice exported through Fram Strait is replaced by FYI

along the Eurasian and Alaskan coastlines (Reimnitz

et al. 1994). Furthermore, we find that the anomalous

winter FSEA is strongly correlated with the anomalous

winter DPA, indicating that the FSEA and the DPA

covary on the interannual time scale.

TABLE 1. Correlation coefficients (r2), adjusted correlation co-

efficients (r2), and standard deviation of the hindcast error (serr) in

units of millions of square kilometers for our six hindcast models of

the September SIE from 1993 to 2012.

Label Predictors r2 r2 serr

H1 Year 0.680 0.663 0.528

H2 Year, DPA 0.785 0.763 0.432

H3 Year, FSEA 0.844 0.828 0.367

H4 Year, AO 0.779 0.755 0.439

H5 Year, DPA, FSEA 0.875 0.854 0.330

H6 Year, DPA, FSEA, AO 0.882 0.854 0.320

FIG. 9. Three prediction models of the observed September SIE

(black) from 1993 to 2014: H1 (green), H4 (red), and H5 (blue).

Table 1 shows the results of each hindcast model as well as the

predictor variables used in each hindcast.
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Internal pack ice divergence during winter has been

shown by Hutchings and Perovich (2015) to be an im-

portant factor for determining the following September

minimum SIE, particularly in 2007. The FSEA (both in

mean and anomaly) is largely balanced by the DPA with

the departure from this balance being associated with

perennial pack ice divergence. Therefore the FSEA ac-

counts for both the first- and second-order processes that

can each dynamically precondition the sea ice cover for

anomalous September minimum SIE. Presumably, this is

why we find the FSEA to be the best single predictor of

the September SIE anomaly found in this study.

Rigor et al. (2002) show that the winter sea ice drift

regressed on winter-meanAO is linked with the summer

sea ice extent along the Eurasian coastline. We confirm

this result with an independentmethod: the formation of

the DPA region based on Lagrangian back-trajectory

analysis. In addition we find that the timing of the

thinning in the peripheral seas is important and that it is

DPA formed after late January (Fig. 2), which is well

correlated with the following September SIE. We find

that the FSEA anomaly is better correlated with the

September SIE anomaly than the DPA or the AO in-

dividually. This is in contrast with Rigor et al. (2002),

who take the higher correlation between the September

SIE and the AO index, as opposed to the NAO index, to

be evidence of the greater importance of divergence in

the eastern Arctic than the FSEA. We argue that the

FSEA is a better predictor of the summer SIE because it

provides a good estimate for the sum of the sea ice ex-

port from the peripheral seas and the net perennial pack

ice divergence.

The dynamic processes during winter determine, to a

large degree, which locations within the Arctic will have

thicker sea ice at the onset of melt. Therefore, the sea ice

thickness field is very important for initializing a numer-

ical prediction model, such as those participating in the

sea ice outlook. A perfect numerical forecast model ini-

tialized at the beginning of the melt season should in

principle perform equally well on average as the methods

shown here due to the predictive knowledge encoded in

the initial conditions. The recently available thin sea ice

thickness fields from the ESA’s Soil Moisture and Ocean

Salinity (SMOS) satellite (Tain-Kunze et al. 2014) and

the upcoming sea ice thickness data from NASA’s Ice,

Cloud and Land Elevation Satellite 2 (ICESat-2) satellite

could allow for better initialization of numerical models,

as well as the further study of the role of sea ice dynamics

on the sea ice thickness distribution spatial and temporal

evolution.

Studies of the sea ice energy budget prior to the onset

of melt based on in situ data by Persson (2012) and Else

et al. (2014) show that the local onset of melt is

triggered by a reduction in the longwave radiation

deficit at the ice surface. The surface longwave deficit is

associated with the passing of synoptic weather systems

resulting in increased downwelling longwave radiation

due to cloud cover. This indicates potential for pre-

dictive skill of the localized melt onset date using ob-

servation of the synoptic weather conditions in the late

May or early June. By incorporating predictors of the

melt onset date in the model, a more skillful seasonal

forecast of the minimum sea ice extent could be ob-

tained. Prediction of the summer processes that are not

influenced by the initial sea ice conditions at the be-

ginning of the melt season is not currently possible (and

may not be possible in general due to the chaotic nature

of the atmospheric forcing). For example, Stroeve et al.

(2014) show that ensemble predictions of the Septem-

ber minimum SIE issued on 1 July or 1 August do not

statistically improve when compared with predictions

made on 1 June.

Schröder et al. (2014) find that the most skillful pre-

dictor of theminimum sea ice extent is the area covered by

melt ponds in a numerical sea ice model between 1 May

and 25 June. In their study, including the melt pond area

after 25 June decreases the predictive skill of the forecast.

Liu et al. (2015), however, find that the predictive skill of a

forecast of the September SIE based on a 12-yr time series

of melt pond area from the Moderate Resolution Imaging

Spectroradiometer (MODIS) increases significantly after

25 June and continues to increase until September. The

uncertainty of the MODIS-derived melt pond area, how-

ever, is largely due to cloudmasking as well as to difficulty

distinguishing between thin ice and melt ponds (Rösel
et al. 2012). We also note that many of the model pixels

used in Schröder et al. (2014) that exhibit a significant

correlation between the simulated melt-pond area cover-

age and the minimum sea ice extent are located in geo-

graphical areas that are outside of the seasonal ice zone.

These include large areas of Baffin Bay, where ice is not

present at the end of the melt season, and the central

Arctic and Canadian Arctic Archipelago where ice is al-

most always present at end the of the melt season. We

hypothesize that the melt-pond fraction at these points

covaries with other factors that are important for the

September sea ice extent. For instance, the first year ice

areal extent in Baffin Bay at the onset of themelt season is

correlated with the winter-mean NAO and AO

(Deser et al. 2000).

6. Conclusions

We have run a Lagrangian back-trajectory model

based on satellite-derived sea ice drifts for the years

1993–2014. From the back-trajectory analysis, we
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compute time series of the dynamic preconditioning

area (DPA) and the Fram Strait export area (FSEA).

We have shown that the integrated winter anomaly of

sea ice export from the peripheral seas of the Arctic as

characterized by the DPA as well as the integrated

winter FSEA anomaly are both significantly correlated

to the following September SIE. We find that the DPA

and FSEA are not independent time series and their

anomalies are strongly correlated (r5 0:79). Both the

FSEA and the DPA anomaly are correlated to the AO

index during winter (r5 0:55 and r5 0:59, re-

spectively). It follows that the winter mean AO index

during this time period is also correlated to the fol-

lowing September SIE anomaly (r520:56). During

the period 1979–92, we note the lack of a significant

correlation between the AO and the September SIE

anomaly because the sea ice cover was likely strong

enough to resist the anomalous wind forcing associated

with the phase of the AO.

We analyzed several hindcast models of the Sep-

tember SIE based on winter preconditioning of the

pack. These models do not rely on a priori knowledge

of the future conditions, as they are formed by

backtracking a synthetic ice edge (located at 77.58N)

through winter. We find that a multivariate statistical

model using the long-term trend, the DPA anomaly,

and the FSEA anomaly provides the lowest RMSE

(0.33 3 106 km2) without overfitting to the observed

September minimum SIE. This model would be avail-

able on 1 June giving a 3.5-month lead time before the

September minimum SIE. Using the mean DJFMA

AO index to characterize the interannual variability

increases the RMSE (0.433 106 km2) but adds a gain of

one month in the forecast lead time. A regional or pan-

Arctic forecast based on the FSEA or DPA as calcu-

lated above requires the real-time (or near real time)

production of sea ice velocity vectors. We expect an

observation-based seasonal forecast derived from the

results presented could be used operationally with

success.
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