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a b s t r a c t

A suite of real-time ocean model forecasts was carried out successfully at NRL to provide modeling
support and guidance to the CARTHE GLAD at-sea experiment during summer 2012. The forecast systems
include two RELO ensembles and three single models using NCOM and HYCOM with different resolu-
tions. All of these forecast outputs are archived and made available on web servers for the CARTHE
scientists. The detailed descriptions of these forecast systems and the products presented in this paper
provide a much-needed background to the scientists in CARTHE and others who will use our forecasts
and GLAD drifter observations to do further research after the future public release of the CARTHE
GLAD data.

A calibrated ensemble system with enhanced spread and reliability is proposed in this project. It is
found that this calibrated ensemble outperforms the un-calibrated ensemble in terms of quantitative
forecasting accuracy, skill and reliability for all the variables and observation spaces we have evaluated.
The metrics used include RMS error, anomaly correlation, spread-reliability and Talagrand rank histo-
gram. Both ensembles are compared with three single-model forecasts with NCOM and HYCOM with
different resolutions. The advantages of ensembles are demonstrated.

RELO ensembles have been applied to Lagrangian trajectory prediction, and it is demonstrated
that either ensemble can provide valuable uncertainty information in addition to predicting the particle
trajectory with highest probability in comparison with a single ocean model forecast. The calibrated
ensemble with more reliability is able to capture some trajectories in different, even opposite directions
which are missed by the un-calibrated ensemble. When the ensembles are applied to computing the
LCS (Lagrangian Coherent Structure), the uncertainties of the LCSs, which cannot be estimated from a
single model forecast, are identified. Another finding is that the LCS depends on the model resolution.
The model with highest resolution produces the finest small-scale LCS structures, while the model with
lowest resolution generates only large scale LCSs. The work on using ocean ensembles in Lagrangian
ocean dynamics presented in this paper represents our initial attempt in this field. It is expected that this
work will lead to more extensive new research in this area in the near future.

Published by Elsevier Ltd.

1. Introduction

The Grand Lagrangian Deployment (GLAD) is an at-sea experi-
ment that was supported by the Consortium for Advanced Research
on Transport of Hydrocarbon in the Environment (CARTHE, http://
www.carthe.org/, and other papers in this special issue) and the Gulf
of Mexico Research Initiative (GoMRI, http://gulfresearchinitiative.
org/). GoMRI is funded by BP following the Deep Water Horizon

(DWH) drilling rig explosion approximately 60 km off the coast of
Louisiana on April 20, 2010. CARTHE is one of the consortia of GoMRI
and it comprises 26 principal investigators from 12 universities and
research institutions including the Naval Research Laboratory (NRL)
distributed across four Gulf of Mexico states and four other states.
The GLAD experiment was conducted in the northern Gulf of Mexico
(GOM) from 17 July to 3 August 2012 by the members of the GoMRI
CARTHE consortium. During the experiment, 317 near-surface drif-
ters were released to directly measure transport and dispersion
processes down to spatial scales as small as 100 m. More details
about the GLAD experiment can be found in the articles of this
special issue.
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As the modeling team for CARTHE, here at NRL we are focusing
on the numerical modeling, data assimilation (DA) and forecasting
to support and provide numerical guidance to the GLAD experi-
ment. To accomplish this mission, we have successfully run two
RELO (Relocatable Circulation Prediction System) ensembles, each
with 32 members, and three single-model deterministic forecasts
using the Navy Coastal Ocean Model (NCOM Martin, 2000; Barron
et al., 2006) and the Hybrid Coordinate Ocean Model (HYCOM,
http://www.hycom.org, Bleck (2002), Chassignet et al. (2003),
Halliwell (2004)) with different resolutions. All of these five ocean
forecast systems were run in real-time, assimilating routine in situ
and satellite observations processed at the U.S. Naval Oceano-
graphic Office (NAVOCEANO), located at Stennis Space Center, MS.

To prepare for these important numerical and in situ experi-
ments, all forecast experiments started from May 16, 2012 to
initialize the ocean models and test the support software needed
to distribute real-time forecasts. The forecast outputs are post-
processed, archived and made available on NRL web servers for
the scientists and students in CARTHE. Raw forecast data are
also available on request by the CARTHE participants. Every day,
real-time model outputs were first post-processed and evaluated
by the scientists at NRL. Any important information and findings
were provided to the CARTHE scientists in other organizations via
email or regular tele-conferences. The implementation and opera-
tion of these forecast systems were conducted smoothly without
significant delays in delivery. These products provided real-time
guidance to the GLAD drifter deployment. One of the goals of this
paper is to describe the details of these numerical forecast systems
and the corresponding products including the RELO ensembles,
and particularly the calibrated ensemble which is proposed
for this mission. After the CARTHE GLAD data are released to the
public in the future, it is expected that other scientists will use the
GLAD drifter data set and our real-time forecasts to do further
research. The material presented in this paper will be valuable for
scientists from both inside and outside the CARTHE project.

In recent years, advances have been made in ensemble fore-
casting in both numerical weather prediction (NWP) and ocean
prediction. In fact, ensemble products have become essential
components of the daily operational products at all major NWP
centers. The ensemble method uses a sample of numerical fore-
casts that represents our best knowledge about the possible
evolution of a dynamical system. Ideally an ensemble forecast
system (EFS) should include forecast uncertainties related to
both the initial analysis values and the numerical model. The first
generation of EFSs was implemented at the major meteorological
centers about 20 years ago, and the details have been described in
many publications, e.g. Toth and Kalnay (1993), Houtekamer et al.
(1996), Molteni et al. (1996). These EFSs have been improved
regularly over the past years in areas such as initial perturba-
tion generation methods, methods for representing model related
uncertainties, and computational efficiency. The performance of
different ensemble methods or systems has been studied and
compared in the literature, e.g. Wei and Toth (2003), Buizza et al.
(2005), Bowler (2006), Wei et al. (2006). A more recent summary
and discussion of newer ensemble methods can be found in Wei
et al. (2008). The basic properties, advantages and disadvantages
of different methods are summarized in Tables 1 and 2 of Wei et al.
(2008).

Ensemble prediction method has also been frequently applied
to ocean modeling (Evensen, 1994). A real-time realistic ensemble
ocean prediction with data assimilation and adaptive sampling
was completed with CMRE in 1996 (Lermusiaux, 1999). Further
work using the ensemble technique for ocean forecast and
uncertainty estimation can be found in Lermusiaux et al. (2006a,
2006b). Yin and Oey (2007) employed 20 members using the
breeding method to study an eddy shedding event in the Gulf of

Mexico. The authors successfully estimated the locations and
strengths of the Loop Current and ring for July to September
2005. Counillon and Bertino (2009) studied eddy shedding and
meso scale dynamics in the GOM by using a 10-member ensemble
based on HYCOM with 5 km resolution. They used different values
of a parameter in the optimal interpolation DA to generate the
initial perturbations, while the atmospheric and lateral boundary
conditions are perturbed randomly. The Loop Current and eddy
fronts from observations were successfully predicted by their
ensemble forecast, although the ensemble spread is two to three
times smaller than forecast error. An ocean ensemble prediction
system using breeding method to perturb all the model variables,
and using the observations from operational OceanMAPS forecast-
ing system has been developed by O'Kane et al. (2011) at the
Australian Bureau of Meteorology.

At NRL Stennis Space Center, the RELO ensemble forecast
system has been developed to provide a capability for a rapidly
relocatable ocean ensemble forecast and data assimilation system
for use in operational forecast support for the U.S. Navy's missions
(Rowley, 2008, 2010; Rowley et al., 2012; Wei et al., 2013).
A schematic showing the configuration of the RELO system with
32 ensemble members as used in this paper is presented in Fig. 1
of Wei et al. (2013). The forecast component in RELO ensemble
is NCOM, (Martin, 2000; Barron et al., 2006). NCOM is a primitive-
equation ocean model developed at NRL for local, regional,
and global forecasting of temperature, salinity, sound speed, and
currents. The data assimilation component is the Navy Coupled
Ocean Data Assimilation System (NCODA; Cummings, 2005),
which is based on a 3D-Var formulation. The observational data
used for assimilation include satellite sea surface temperature
(SST), satellite sea surface height anomaly (SSHA, or altimetry),
satellite microwave-derived sea ice concentration, and in situ sur-
face and profile data from ships, drifters, fixed buoys, profiling
floats, XBTs, CTDs, and gliders. Both NCOM and NCODA are used
operationally at two U.S. Navy operational centers, namely the
Fleet Numerical Meteorology and Oceanography Center (FNMOC),
located in Monterey, CA, and the U.S. Naval Oceanographic Office
(NAVOCEANO), located at Stennis Space Center, MS.

It is known that an ideal EFS should have a spread that has
amplitude comparable to the ensemble mean error and grow at a
similar rate (Buizza et al., 2005; Wei et al., 2006, 2008). Since the
method presently used in NCODA to estimate model forecast error
underestimates the analysis error used to generate the initial
perturbations through the Ensemble Transform (ET) process, the
initial perturbations are small and cannot match the real analysis
error variance. As a result, the RELO ensemble is under-dispersive,
and the spread is smaller than the ensemble mean error. Although
estimating analysis error in a 3D-Var based DA system such as
NCODA is challenging (Lermusiaux et al., 2000; Lermusiaux, 2002),
the Lanczos method with proper calibration can be used to
produce reasonably good analysis error variance with extra com-
putational cost (Wei et al., 2012). Another simpler poor-man's
method is to use multi-analysis data from different DA systems or
operational centers as demonstrated in Wei et al. (2010).

Another logical step to enhance the ensemble spread is to
account for the model related uncertainties in the RELO ensemble.
To achieve this, Wei et al. (2013) proposed and examined three
different schemes for perturbing the horizontal and vertical
mixing parameters. It is found that the RELO ensemble spread
is enhanced to a limited extent. The results show that the
scheme with perturbing both horizontal and vertical mixing para-
meters based on Gaussian distribution produces the largest spread
increment. This scheme will be used in this paper. However,
results also show that the RELO ensemble is still under-dispersive,
even with this parameter perturbation scheme. To further improve
the RELO ensemble for the CARTHE GLAD experiment, we propose
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a calibration to enhance the initial spread inside the ET based on
previous estimates of the ensemble spread and the forecast error.
The superiority of the calibrated ensemble will be explored and
demonstrated. Some other methods, such as stochastic forcing
(Lermusiaux, 2006), can potentially enhance the spread and will
be explored in the future.

We will compare the two RELO ensembles with three single-
model deterministic forecasts with different resolutions. The impact
of model resolution will be examined. In addition, we will apply the
RELO ensembles to Lagrangian dynamics and prediction, including
particle trajectory prediction and the Lagrangian Coherent Struc-
ture (LCS). The advantages of using the ensemble, especially the
calibrated, more reliable ensemble, will be demonstrated in all of
these cases.

Section 2 provides brief descriptions of the ET formulation for
initial perturbations, the time-deformation technique to generate
surface forcing perturbations from an atmospheric model for the
RELO ensembles, the methodology for perturbing the mixing
parameters, the configurations for the RELO ensembles, NCOM,
and HYCOM, and the experimental setup. The major results
from two RELO ensembles and three single-model forecasts with
different resolutions in terms of various metrics for accuracy,
reliability and forecast skill are presented in Section 3. Also shown
in Section 3 are the results from applications of the ensembles to
Lagrangian dynamics and particle trajectory prediction. A discus-
sion and conclusions are presented in Section 4.

2. Methodologies, RELO ensembles, NCOM and HYCOM, and
experimental setup

Before we provide our main experimental results in Section 3,
we briefly describe the methodologies used in our RELO ensemble
and the calibrated ensemble. Brief descriptions of NCOM and
HYCOM with different resolutions for generating single determi-
nistic forecasts are given. The RELO configuration and the experi-
ment design will also be described.

2.1. Initial perturbations for RELO ensemble

The NRL RELO ensemble prediction system uses the Ensemble
Transform (ET) method, which transfers forecast perturbations
from the previous cycle into new perturbations that have the
estimated initial analysis error variance. It is then followed by a
rescaling using the same initial analysis error variance informa-
tion. The details and properties of the method are described in Wei
et al. (2005, 2008, 2013) and McLay et al. (2007). Only a very brief
description is provided here. Let

Zf ¼ 1ffiffiffiffiffiffiffiffiffi
k�1

p ½zf1; zf2;…; zfk�; Za ¼ 1ffiffiffiffiffiffiffiffiffi
k�1

p ½za1; za2;…; zak�; ð1Þ

where the n dimensional state vectors zfi ¼ xf
i�xf and zai ¼

xa
i �xa ði¼ 1;2;…kÞ are k ensemble forecast and analysis pertur-

bations for all model variables, respectively. Here xf is the mean
of k ensemble forecasts from NCOM, and xa is the analysis from
the independent NCODA DA system. Unless stated otherwise,
the lower and upper case bold letters indicate vectors and
matrices, respectively. In the ensemble representation, the n�n
forecast and analysis covariance matrices are approximated,
respectively, as

Pf ¼ ZfZf T and Pa ¼ ZaZaT ; ð2Þ

where superscript T indicates the matrix transpose. For a given set
of forecast perturbations Zf at time t, the analysis perturbations Za

are obtained through an ensemble transformation T such that

Za ¼ ZfΤ ð3Þ
In RELO, the best estimate of the analysis error variance is

derived from NCODA. Suppose the diagonal matrix Pa is composed
of the analysis error variances obtained from the operational
NCODA system. The ET transformation matrix T can be constructed
as follows. For an ensemble forecast system, the forecast perturba-
tions Zf can be generated by Eq. (1). One can solve the following
eigenvalue problem.

Zf TPa�1Zf ¼ CΓC�1; ð4Þ
where C contains column orthonormal eigenvectors (ci) of
Zf TPa�1Zf (also the singular vectors of Pa�1=2Zf ), and Γ is a diagonal
matrix containing the associated eigenvalues (λi) with magnitude
in decreasing order. The ET transformation matrix can be con-
structed as Τ¼ CG�1=2, where G¼ diagðλ1; λ2;…; λk�1; αÞ and α is a
non-zero constant. According to Eq. (3), the analysis perturbations
are given by Za

p ¼ ZfCG�1=2. It can be shown that these pertur-
bations are not centered. The final new analysis perturbations
with simplex transformation imposed can be constructed through
transformation

Za ¼ Za
pC

T ¼ ZfCG�1=2CT ð5Þ

It can be shown that the new analysis perturbations in Eq. (5)
are centered. In addition, this method has the advantage that the
ensemble perturbations span a subspace that has a maximum
number of degrees of freedom. Wei et al. (2008) also showed that
the orthogonality of the initial perturbations will increase as the
number of ensemble members increases. If the number of ensem-
ble members approaches infinity, then the transformed perturba-
tions will be orthogonal under the inverse of the analysis error
variance norm. In addition to the flow dependent spatial structure,
the covariance constructed from the initial perturbations is appro-
ximately consistent with the analysis covariance from the DA, if
the number of ensemble members is large.

2.2. Surface forcing perturbations for RELO ensembles using
time-deformation technique

The surface forcing perturbations for the RELO ensemble are
generated from real-time meteorological model forecast fields
obtained from FNMOC, which produces operational forecast
fields using the Navy Operational Global Prediction Center System
(NOGAPS, for global) and the Coupled Ocean Atmosphere Mesos-
cale Prediction System (COAMPS, for regional) forecast systems.
The atmospheric model fields are used to produce surface forcing
fields for the RELO and NCOM. The ocean surface forcing fields
include wind stress, surface pressure, shortwave and longwave
radiation, air temperature, and specific humidity. Throughout our
experiments, COAMPS atmospheric data fields, which are available
at a 3 h interval and updated every 12 h, are used to produce
surface forcing for single and ensemble forecasts of the ocean.

For the RELO ensemble, perturbed surface forcing fields for
different ensemble members are drawn from the single-model
prepared forcing using a time-deformation with random shifting
technique. A number of the completely independent random fields
are generated every 24 h with a desired de-correlation length.
For each ensemble member, forcing is prepared at the same 3 h
interval, but with the values computed at shifted times, by linear
interpolation of the forcing originally prepared for the single
model forecast. The time shifts are defined using a set of indepen-
dent random fields generated every 24 h with a defined spatial
de-correlation, so that any interpolated field is not correlated
with any other interpolated field 24 h away, and the atmospheric
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forcing for each ensemble member will be independent. More
detailed mathematical formulae are given in Wei et al. (2013).

2.3. Mixing parameter perturbations in RELO ensemble

The impacts of perturbing model parameters on the RELO
ensemble spread, reliability, accuracy, and forecasting skill were
investigated in Wei et al. (2013). In that study, two parameters that
play critical roles in describing the horizontal and vertical mixing
in NCOM (Martin, 2000; Barron et al., 2006) were chosen. The
parameterization formulae in atmospheric and ocean models are
in fact approximate representations of unresolved ocean mixing
processes in terms of model variables at the resolved scales. The
different perturbation schemes described in Wei et al. (2013) are
just attempts to describe phenomena at scales smaller than those
resolved by the model.

By default, the NCOM used in RELO ensemble uses the
Smagorinsky formulation for horizontal mixing parameterization
(Smagorinsky, 1963); the control run scaling uses the parameter
smag¼0.1 as the default value. The Smagorinsky scheme scales the
rate of mixing according to the horizontal velocity shear and is
considered more physically based than other available options. The
eddy coefficients are isotropic and are independent of coordinate
rotation. For vertical mixing parameterization, NCOM also has
multiple options. The default choice is the Mellor-Yamada Level
2 turbulence closure scheme (MYL2, Mellor and Yamada, 1974;
Mellor and Durbin, 1975). MYL2 is a simplified scheme that assumes
there is an approximate local balance between shear production,
buoyancy production, and dissipation in the turbulent kinetic
energy (TKE) equation, allowing the TKE to be calculated algebrai-
cally from the mean vertical density and velocity gradients, and the
turbulence length scale to be estimated by an empirical formula.
Ocean forecasts produced at the Navy operational centers typically
use the MYL2 formulation due to the overriding importance of
efficiently using computational resources. The RELO experiments
reported here use the default MYL2 for vertical mixing parameter-
ization, with the ensemble experiments examining variations in the
parameter b1_myl2 that scales the TKE in the MYL2 scheme and
affects the predicted depth of mixing. The default operational
value b1_myl2¼15.0 is used in the control run. Advantages and
disadvantages of MYL2 in comparison with the other options were
discussed in Martin (2000).

Three different parameter perturbation schemes were tested
in Wei et al. (2013). In this study, we use the scheme that pro-
duced the largest spread increment for the RELO ensemble, i.e.,
the scheme in which these two critical parameters in the hori-
zontal and vertical mixing turbulence parameterization, smag and
b1_myl2, are perturbed using a Gaussian distribution. The mean
and standard deviation of smag are chosen as 0.125 and 0.01875,
while for b1_myl2, the values are 17.5 and 0.625 respectively.
With these selected values, 99.99% of the random values generated
by Gaussian distributions for smag and b1_myl2 will be in the
range of

smag_range¼mean74std¼ ½0:05;0:2�;

b1_myl2_range¼mean74std¼ ½15:0;20:0�:
Under these distributions, values of these two randomly gene-

rated parameters are expected to fall within reasonable ranges
and allow NCOM to run smoothly. The RELO ensemble based
on this choice of parameter perturbation is denoted by gom32r
(or r in figures).

Because the technique employed in the NCODA DA system
underestimates the initial analysis error, the initial perturbations
generated by the ET method in RELO ensemble are small. With
the introduction of parameter perturbations in gom32r to account

for the model uncertainties from mixing parameterizations, the
spread has been improved to some degrees. However, the initial
ensemble spread in scheme gom32r is still smaller than the
ensemble mean error as shown in Wei et al. (2013). In an effort
to adjust the initial spread to be more representative of the
ensemble mean error, we take an ad hoc approach to calibrate
the initial spread magnitude based on the difference between the
RMS error of ensemble mean and the spread. This kind of ad hoc
approach has proven to be effective in operational ensemble
systems at major NWP centers (Houtekamer et al., 1996; Buizza
et al., 2005; Bowler et al., 2009; Wei et al., 2008). In this study, we
configure another new RELO ensemble with a calibrated ensem-
ble spread, in which the magnitudes of initial perturbations
generated in the ET in gom32r are increased by 50% immedi-
ately. This system is denoted as gom32q (or q in figures). The
results using different various verification metrics in later
sections will demonstrate that this calibration process has
enhanced the initial spread, forecast accuracy, skill and relia-
bility in comparison with gom32r. One of the advantages of this
ad hoc calibration is that the spatial structure of the initial
perturbations is not altered.

2.4. RELO configuration, NCOM, HYCOM and experimental design

To prepare for the GLAD at-sea experiment, we have carried
out a series of real-time ocean prediction experiments since
May 16, 2012. These include the two RELO ensembles, gom32r
and gom32q described in above section, each with 32 ensemble
members, two single NCOMs at 3 km and 1 km resolutions, and
HYCOM with 4 km resolution. At the time of writing, we have
completed the real-time forecasts starting from September 17,
2012. Therefore, for validation we choose the forecast series
from June 1 to September 17, 2012, totaling 109 days. The
forecast length during the experiment is 72 h, with output
every 6 h. The configuration of the RELO experiments, consist-
ing of 32-member ensembles using the NCOM and NCODA DA
system, is depicted in Fig. 1 of Wei et al. (2013). The future
developments include a stochastic physics parameterization to
account for more sources of model error, and using the ensem-
ble to provide the background error covariance information for
the NCODA analysis.

Both RELO ensembles r and q, and the 3 km NCOM single
forecast have a horizontal domain that covers the GOM from 98
to 791W and 18 to 311N with model grid spacing 3 by 3 km. The
grid dimensions are 640 and 481 in the longitude and latitude
directions respectively. This single NCOM forecast is denoted as
ncom3km (or 3k in figures). The number of vertical levels is 49,
with 34 sigma levels in the upper ocean and z-levels starting
from level 35 to the bottom of the sea. The advantages of this
kind of hybrid sigma-z coordinate have been discussed in Martin
(2000) and Barron et al. (2006). The vertical grid extends down to
5500 m.

Another single forecast with NCOM has the horizontal resolu-
tion of 1 by 1 km (denoted by ncom1km, or 1k in figures) covering
the GOM from 97.95 to 80.251W and 18.05 to 30.791N, with
grid dimensions 1800 and 1420 in the longitude and latitude
directions respectively. The vertical coordinate and resolution are
the same as ncom3km. The only difference between ncom1km and
ncom3km is in the horizontal resolution. Tidal forcing (barotropic
tidal height and transports at the open boundary, and tidal poten-
tial in the interior) is turned on for gom32r, gom32r, ncom3km
and ncom1km.

The final single forecast is generated with the Gulf of Mexico
HYbrid Coordinate Ocean Model (HYCOM). HYCOM is on a
Mercator projection covering the region from 181N to 321N, and
from 98 to 76.41W. The horizontal grid resolution is 1/251, �4 km

M. Wei et al. / Deep-Sea Research II 129 (2016) 374–393 377



resolution (indicated by hycom4km, or 4k in figures). The model
employs 20 hybrid vertical coordinate surfaces. The vertical
coordinates can be isopycnals (density tracking, which is the
best in the deep stratified ocean), levels of equal pressure (nearly
fixed depths, which are the best used in the mixed layers) and
unstratified ocean and sigma-levels (terrain-following, are the best
choice in shallow water). HYCOM combines all three approaches
by choosing the optimal distribution at every time step. The model
makes a dynamically smooth transition between coordinate types
by using the layered continuity equation. The model is nested in a
climatology generated from a multi-year, climatologically-forced,
0.081 HYCOM Atlantic Ocean simulation. There is no tidal forcing
turned on during this run. All single forecast models and two
RELO ensembles together with their configurations are summar-
ized in Table 1.

3. Results from the RELO ensembles, NCOM and HYCOM

3.1. RELO ensemble spread with the calibrated initial perturbations

It is known that ensemble mean and ensemble spread are
the very basic attributes of an ensemble prediction system.
In general, the ensemble mean outperforms the single determi-
nistic forecast in terms of the root mean square (RMS) error and
the absolute error. The ensemble spread is closely related to the
range, reliability, and sharpness or resolution of the EFS (Wei and
Toth, 2003; Wei et al., 2006, 2008, 2012, 2013). Before the RELO
ensemble is compared with the single forecasts from NCOM and
HYCOM, we concentrate on the comparisons between the ensem-
ble r and the calibrated ensemble q in this section.

Since the GLAD at-sea experiment started from July 17, 2012,
and lasted until August 3, 2012, we choose to show the different
snapshots at 00UTC on July 17, 2012 to demonstrate the different
ensemble properties. Fig. 1 shows the ensemble plumes at 00UTC
July 17, 2012 originating on the surface from a location of 60 km off
the Louisiana coast at (88.39 W, 26.74 N) which is the location of
Deepwater Horizon (DWH) oil spill incident beginning April 20,
2010. From the top to bottom, the ensemble plumes for tempera-
ture, salinity, and the zonal and meridional velocity components u
and v are shown respectively for ensembles r and q. The black
dashed lines follow individual ensemble members, and thick dash-
dotted curves indicate the bounds one standard deviation above
and below the mean. The comparisons between the left and right
columns show clearly the impact of the calibration on the spread.
The spread has been increased for all the variables due to the
calibration. The ensemble mean and median of the two ensembles
are very similar in most cases except for salinity. It is a common
practice that the ensemble mean is regularly used to predict
forecast events, as it has been shown that the mean from a reliable

ensemble performs better than a single deterministic forecast
(Toth and Kalnay, 1993). The ensemble plumes at 1500 m also
showed similar impact from the calibration, except that the
ensemble spread is generally smaller than at the surface (not
shown).

Little if any growth as a function of forecast lead time is evident
in the ensemble spreads for temperature and meridional velocity
at the surface, while the spreads for salinity and zonal velocity
show clear growth. This result can be observed more clearly in
Fig. 2, which shows the ensemble spread started from 00UTC
July 17, 2012 as a function of the forecast lead time and depth
for ensembles r and q. Because the assimilation data stream has
very few observations in the deep water, NCODA has little new
information to produce large visible changes to the analysis. Since
the analysis error variance estimated from NCODA is small, the
initial ensemble spread at these depths is small as well. There is
little variation below 200 m for temperature and velocity, so we
restrict the plots to the upper 200 m where spread variations are
better resolved by the color range. For salinity, there is little
variation below 60 m. For temperature, the largest spread is not
at the surface but in a 50-m thick depth range centered at 50 m.

The velocity spreads are largest near the surface due to the
atmospheric forcing perturbations introduced through the time-
deformation technique. The atmospheric forcing perturbations on
the surface propagate downward very slowly as the forecast lead
time increases for most variables, though the spread for u tends to
propagate deeper as a function of time than the other variables.
The spread for u propagates to about 50 m from the surface in
48 h. The spread for salinity is also larger from the surface to 10 m,
due to fresh water mixing near the surface.

To get a better picture of the horizontal distribution of ensemble
spread and a direct comparison of these two ensembles, we show
the initial ensemble spread distributions at 00UTC July 17, 2012 for
T, S, u and v for both ensembles r and q in Fig. 3. As expected,
the calibrated ensemble spreads q are larger than the spreads from
ensemble r for all the variables. For temperature, the largest spread
reflects ocean state variability around the Yucatan Current, the
Florida Current, and advection around the Loop Current eddy. The
ensemble also shows relatively high uncertainty at the surface south
of the Mississippi River Delta, which is near the DWH site. There is
a large uncertainty in the surface salinity near the Mississippi and
Atchafalaya river outflows. The large fresh water inputs lead to low
salinity values near the coasts of Louisiana and Mississippi; this area
of mixing is where the largest surface salinity variations are located.
The ensemble spread reflects large variations in surface velocity
within 200 km of the Louisiana coast, and in regions near the Loop
Current and Yucatan Current.

The spread comparisons between ensembles r and q shown in
Figs. 1–3 are snapshots of the two ensembles at 00UTC July 17,
2012, from one particular location or vertical level. To obtain more

Table 1
RELO ensembles and single ocean model descriptions.

gom32r (r) gom32q (q) ncom3km (3k) ncom1km (1km) hycom4km (4k)

Model NCOM(32-member) NCOM(32-member) NCOM NCOM HYCOM
Resolution 3 km 3 km 3 km 1 km 4 km

49 Hybrid s-z levels 49 Hybrid 49 Hybrid 49 Hybrid 20 Hybrid levels
s-z levels s-z levels s-z levels

Tidal forcing On On On On Off
Perturbations Analysis: NCODA 3D-Var. All the components from

gom32rþadditional initial
perturbation calibration

N/A N/A N/A
Initial perturbations: ET, Surface forcing perturbs
from COAMPS atmospheric fields based
on time-deformation technique.
Model error: Perturbing vertical and horizontal
turbulence mixing parameters with Gaussian distribution.
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statistically meaningful comparisons, in Fig. 4 we plot the ensem-
ble spreads at 00UTC on each day during our experimental period
from June 1 to September 17, 2012, totaling 109 cycles. The spreads
of temperature and salinity for ensembles r and q are shown for
forecast lead times of 24, 48 and 72 h respectively from top to
bottom. In our computation of various verification metrics, we
have interpolated all ensemble forecasts onto the observation
locations. The routine in situ and remote sensing observations
from the NAVOCEANO operational NCODA DA system are used,
so numbers and locations of observations on each day vary. To
have the best statistical meaning, all spread values are averaged
over the full observation space. It is clear that the spreads for
the calibrated ensemble q are consistently larger than those of

ensemble r for both temperature and salinity at 24, 48 and 72 h
forecast lead times. The results in this figure also show a large
spread variability on different dates during this period for both
variables, particularly salinity.

To look at the spread comparison from another perspective, we
plot the temperature spreads for ensembles r and q as a function of
forecast lead time in Fig. 5. All the spread values are averaged over
the 109 days from June 1 to September 17, 2012. In addition, they
are averaged over the full observation space (A), and for the layer
from 0 to 100 m (B). In this study, our evaluations are carried out
for different observation spaces, including the full observation
space, near surface (upper 1 m) and the ocean interior over a
range from 0 to 100 m. Two factors motivate the evaluations over

Fig. 1. Ensemble plumes from 00UTC July 17, 2012 at (88.391W, 28.741N, 0 m) for ensembles r (left) and q (right). Plots from top to bottom are temperature, salinity, u, and v.
Dashed lines are the 32 individual ensemble members, the ensemble mean and median are indicated by thick and thick dashed lines. The thick dash-dotted lines indicate
ensemble mean þ/� one standard deviation.
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different observation spaces. First, these layers are dynamically
distinct domains, with the surface dominated by air-sea interac-
tions and highly variable wind-driven currents, and the interior
controlled by mesoscale dynamics and internal mixing processes.
Second, the density of observations is much larger near the surface

than in the interior, so an un-weighted average over the entire
domain is strongly skewed toward the near-surface. In both
observation spaces, ensemble spreads from both systems grow
slightly within 72 h, but the enhancement of spread from the
calibrated ensemble q is evident.

Fig. 2. Ensemble spread as a function of forecast lead time and water depth from 00UTC July 17, 2012 at (88.391W, 28.741N) for ensembles r (left) and q (right). From top to
bottom the plots are for temperature, salinity, u, and v.
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3.2. Forecast accuracy and skill

The RELO ensemble is developed to predict the ocean state
with the ensemble mean and to predict the forecast uncertainty
with the ensemble spread presented in the previous section. One
of the most commonly used metrics to quantify the forecast error
is the RMS difference between the ensemble mean and sub-
sequent observations corresponding to the forecast time. It is
expected that forecast accuracy generally decreases as the forecast
lead time increases. This change in accuracy is represented as a
growth rate in the RMS forecast error. In general the estimated
uncertainty of a forecast is proportional to the ensemble spread,
and it can be shown that an ideal ensemble should have an
ensemble spread that has a similar magnitude and growth rate to
the ensemble RMS error (Wei and Toth, 2003; Buizza et al., 2005;

Wei et al., 2006, 2008). One of the main reasons for perturbing
the mixing parameters in RELO is to account for model-related
uncertainties and their contributions to ensemble spread growth
(Wei et al., 2013). Without representations of model-related
uncertainty, the ensemble will normally be under-dispersive and
underestimate the true forecast uncertainty. If some important
sources of uncertainties are neglected, the reliability of the
forecast will be reduced.

To compare the forecast accuracy of the RELO ensembles
with and without calibration, we compute the RMS error of the
ensemble means from both ensembles r and q for temperature and
salinity. In addition, the RMS errors of the single deterministic
forecasts are also calculated for the same period of time and
against the same operational observations as the ensembles, in
order to have a fair comparison with both ensembles. In this study,

Fig. 3. Initial ensemble spread for r (left panel) and q (right panel) at 00UTC July 17, 2012 at the surface for temperature, salinity, u, and v (from top to bottom).
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we have run three separate single deterministic forecasts for the
same period of experiments as described in Section 2, namely
ncom3km, ncom1km and hycom4km.

Fig. 6 shows the RMS errors of the two ensemble means and
two single forecasts for temperature and salinity as a function of
lead time. The RMS error is the difference between the model
forecast and the truth represented by unassimilated observations
valid during the forecast interval; thus it is a direct measure of
forecast accuracy. The RMS values for ensembles r, q, and single

forecasts ncom3km and ncom1km are indicated in different
line styles respectively. All the RMS values are averaged over the
109 days from June 1 to September 17, 2012. The RMS values are
averaged over the full observation space (top), and the layer
between 0 and 100 m (bottom).

For temperature, ncom1km has the lowest RMS values. This
is consistent with our expectations, as a higher resolution
model often produces more accurate forecasts than lower resolu-
tion models. In the full observation space, the ensemble with

Fig. 4. Ensemble spreads for r (thin) and q (thick) as functions of day during the experimental period from June 1 to September 17, 2012. The spreads of T (left panel)
and salinity (right panel) are shown for forecast lead times of 24, 48 and 72 h respectively from top to bottom panels. The spread values are averaged over the full
observation space.
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calibration (q) has lower RMS values than ensemble r, which is
similar to ncom3km. In the observation space of 0–100 m, ensem-
ble q also has lower RMS values than ensemble r. However,
ncom3km has a slightly lower value at the 24 h forecast time.
For salinity in both observation spaces, the calibrated ensemble
mean (q) is the most accurate, followed by the un-calibrated

ensemble (r), ncom3km and ncom1km. It is surprising to note
that ncom3km has lower RMS values than ncom1km for salinity
which will be explained later in this section. It is clear that the
calibration introduced in the initial perturbations has improved
the accuracy of ensemble mean for both temperature and salinity
in both observation spaces verified. RMS errors for hycom4km

Fig. 5. Ensemble spreads of temperature for r (thin) and q (thick) as functions of forecast lead time. The spread values are averaged over the 109 days from June 1 to
September 17, 2012, and over the full observation space (A), the layer between 0 and 100 m (B).

Fig. 6. The RMS errors of temperature (left panel) and salinity (right panel) for ensembles r (thin solid), q (thick solid), ncom3km (dashed), ncom1km (dotted) as functions
of lead time. All the RMS values are averaged over the 109 days from June 1 to September 17, 2012, and averaged over the full observation space (top panel), and the layer
between 0 and 100 m (bottom panel).
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were also computed, the values are larger than all of these
forecasts for all the forecast lead times in both observation spaces
(not shown). This is expected as hycom4km has lowest resolution.
The second factor is the tidal forcing that was not applied in
the hycom4km experiment. The third factor may come from the
interpolation in the observation space, since for verification
purpose, all the forecasts are interpolated onto the observation
space which is based on ncom3km experiment.

Similar to most operational ensemble systems in both meteoroand
oceanography, the ensemble spreads are generally under-dispersive
and grow slower than the ensemble mean errors, particularly in the
ensembles without accounting for model-related errors (Wei and Toth,
2003; Buizza et al., 2005; Wei et al., 2006, 2008; Bowler et al., 2009;
McLay et al., 2007; Reynolds et al., 2011). If we compare the RMS
errors of temperature in both observation spaces (left) with the
ensemble spreads in the same spaces in Fig. 5, even the enhanced
ensemble spreads with calibration (q, thick) are still smaller than their
corresponding RMS errors. The initially small ensemble spread is a
consequence of the underestimation of the analysis error variance
computed from the 3D-Var NCODA system. This results in a smaller
initial ensemble spread during the initial perturbation generation
process. At NRL, an effort is being made to make a better estimate
of the analysis error from NCODA; we expect this will improve our
future RELO ensembles. It is also clear that the ensemble spreads do
not grow as fast as the ensemble mean RMS error. This indicates that
just perturbing the two mixing parameters is not sufficient to account
for most of the model-related uncertainties. Our plan is to introduce
stochastic forcing at all the model grid points for all the model

variables. We expect that when the model uncertainties are more
completely accounted for, the ensemble spread will grow at a rate
similar to the ensemble mean RMS error, and raise the RELO ensemble
reliability to an even higher level.

Next, we assess the forecast skill of these two ensembles and
compare themwith the three single forecasts. To quantify the skill,
we compute the anomaly correlation (AC) of the ensemble mean
and the single forecasts. Again, the observations are used as the
truth. The AC is preferred to a simple correlation coefficient (CC),
which is defined as the correlation between the forecast and the
observed values. The CC does not take forecast bias into account.
It is possible for a forecast with large error to have a high CC value.
It is well established practice to use the AC with climatology as
a reference to account for seasonal variation (Wilks, 2006). The
AC for any forecast variable f at a particular forecast lead time is
defined as the correlation between the forecast and observation
anomalies with respect to climatology, i.e.,

AC ¼ ðf�cÞðy�cÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf�cÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy�cÞ2

q ;

where c,y are the climate data and observation fields at the same
verifying locations as the forecast, and the over-bar indicates
the geographical mean over the verifying space. Therefore, the
AC measures similarities in the pattern of departure (or anomalies)
from the climatology field; it is a pattern correlation and regarded
as a skill score relative to climatology. It is arguably the most
commonly used metric in NWP centers (Buizza et al., 2005). The

Fig. 7. The anomaly correlation of temperature (left panel) and salinity (right panel) for ensembles r (thin solid), q (thick solid), ncom3km (dashed), ncom1km (dotted) as
functions of lead time. All AC values are averaged over the 109 days from June 1 to September 17, 2012, and averaged over the full observation space (top panel), and the layer
between 0 and 100 m (bottom panel).
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climatological data we used were obtained from the Navy's ocean
operational center NAVOCEANO.

Shown in Fig. 7 are the AC values of the temperature and sali-
nity averaged over the full observation space, the space between 0 and
100 m for the two ensembles and single forecasts from ncom3km and
ncom1km. They are also averaged over the same 109-day period. In
the full observation space for temperature, the calibrated ensemble q
has highest skill score, while ensemble r and ncom3km have similar
values. Higher resolution model ncom1km has lower AC value than
ensemble r and ncom3km. In the observation space of 0–100 m,
ncom1km has higher AC values than ensemble q and ncom3km, while
the un-calibrated ensemble r has even lower AC value.

For salinity, the calibrated ensemble q is most skillful, followed
by ensemble r, ncom3km and ncom1km, in both observation
spaces. As in the accuracy comparisons displayed in Fig. 6, it is very
clear that the calibrated ensemble q is more skillful than the un-
calibrated ensemble r for both observation spaces and both vari-
ables. For both temperature and salinity in either observation space,
hycom4km has the lowest AC values (not shown). This is under-
standable for the reasons we have explained in the paragraph about
Fig. 6. A surprising result from Figs. 6 and 7 is that ncom1km
performs poorer than ncom3km in terms of RMS error and AC for
salinity. This may be due to errors introduced during the interpola-
tion of forecasts onto ncom3km observation space for verifications.
Since salinity observations are generally sparser than temperature
observations, larger interpolation errors could be incurred from a
much higher resolution ncom1km forecasts for salinity.

3.3. Ensemble reliability

As shown in the previous sections, the ensemble spread is an
important attribute of an ensemble forecast system. The spread of

a reliable ensemble forecast varies in space and time, and should
capture the forecast errors as a function of the forecast lead time.
Therefore, a reliable ensemble spread should have similar magni-
tude and growth rate to the ensemble mean error. If an ensemble
spread is too small, it will miss important dynamic events,
especially extreme ones. If an ensemble spread is too large, it will
make the ensemble less sharp and less reliable with lower
resolution. The results from the previous sections clearly show
that the calibrated ensemble q is more accurate and skillful in all
the observation spaces and for both variables we have evaluated.
In this section, we compare the two ensemble spreads by using
two other metrics which are especially designed for ensemble
systems. The first one is the spread-reliability diagram. It is com-
puted with 20 bins based on our 32-member ensembles, using
observations as the truth. The exact steps for our RELO ensembles
are outlined in Appendix A of Wei et al. (2013).

The top panel in Fig. 8 shows ensemble spread-reliability
diagrams for salinity using observations as the truth for lead times
of 24, 48, and 72 h in the full observation space. The same is
shown for the observation space between 0 and 100 m (bottom).
To have maximum statistical significance, all the values are
averaged over a large number of samples within the respective
observation spaces from 1 June to 19 September 2012. Since
ensemble spread is expected to represent the forecast uncertainty,
the spread-reliability curve over such a large sample should
coincide with the diagonal line denoting equality between ensem-
ble spreads and ensemble errors. The spread-reliability for salinity
in Fig. 8 shows that the ensemble spread of r is small or under-
dispersive for all the ranges for all forecast lead times on both
observation spaces. Ensemble r is over-confident, and under-
predicts the forecast error variance, which is consistent with the
results in Figs. 5 and 6.

Fig. 8. Ensemble forecast spread-reliability diagrams for salinity (r: thin, q: thick) using observation as truth for lead times of 24, 48, and 72 h (from left to right). Values are
averaged over the 109 days period from June 1 to September 17, 2012, and over the full observation space (top panel) and the layer between 0 and 100 m (bottom panel).
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The spread-reliability curve for the calibrated ensemble q is
closer to the diagonal line for all forecast lead times and both
observation spaces, except for the 24-h forecast in the full observ-
ation space. In this case, ensemble q is slightly over-dispersive,
and over-predicts the forecast error variance. The spread-reliabi-
lity curves for temperature at the same three forecast lead times
have been computed for the full observation space, for 0–100 m,
and the near-surface. The results show the calibrated ensemble q
is closer to the diagonal line than ensemble r for all three forecast
lead times and in all three observation spaces (not shown).

Another popular metric to diagnose the ensemble spread
reliability and its consistency is the rank histogram or Talagrand
histogram (Talagrand et al., 1997; Wilks, 2006). The procedures for
computing this histogram for our RELO ensembles using observa-
tions as truth are described in detail in Appendix B of Wei et al.

(2013). Here, we compute the rank histograms for both tempera-
ture and salinity at three forecast lead times, namely 24, 48, and
72 h, and in three domains, including the full observation space,
the space between 0 and 100 m, and, for temperature only, the
surface. Shown in Fig. 9 are the temperature rank histograms for
ensembles r (white) and q (black) at lead times of 24, 48, and 72 h
in the full observation space, the observation space between 0 and
100 m, and the surface.

One notices immediately that the temperature rank histograms
for ensemble q are much flatter than for ensemble r for all three
forecast lead times and for all three observation spaces. This
is also reflected in the values of consistency index of the rank
histogram of both ensembles. The consistency index of ensemble
q is about 20–30% lower in comparison with ensemble r in each
of these cases. The same is computed for salinity for the full

Fig. 9. Talagrand rank histograms for temperature (r: white, q: black) using observation as truth for lead times of 24, 48, and 72 h (from left to right). All the values are
averaged over the 109 days period from June 1 to September 17, 2012, and over the full observation space (top panel), the layer between 0 and 100 m (middle panel), and the
surface (bottom panel). Consistency index is also indicated in each case for both ensembles.
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observation space and the observation space between 0 and 100 m
(not shown). Again, the rank histograms for ensemble q are much
flatter than ensemble r in all cases. The consistency index for
ensemble q is about 50% lower than that of ensemble r, and is
much closer to 1, which is the value for an ideal ensemble system,
compared with those for temperature. In summary, the calibrated
ensemble q is much more consistent than ensemble r.

3.4. Ensembles in Lagrangian prediction

During the CARTHE GLAD experiment, the NRL real-time
numerical model runs including ncom3km, ncom1km, hycom4km
and both RELO ensembles q and r provided valuable numerical
guidance for the drifter deployment from July 17, 2012. So far, the
results and findings discussed in all previous sections are based on
the Eulerian formulation, in which the ocean states are described
at fixed grid points. In this section, we describe the results from
the application of RELO ensembles to the Lagrangian dynamics and
prediction, i.e., the results from the ensembles will be based on
following particle trajectories.

A basic application of numerical model output to the Lagran-
gian dynamics is to use the forecast velocity fields to predict
the particle or drifter trajectories on the water surface. Earlier
work on the prediction and predictability of drifter trajectories in
ocean simulations includes Özgökmen et al. (2000, 2001). This is a
significant contribution ocean models make to the disaster
response community, for search and rescue, and for contaminant
monitoring and mitigation, such as that in the aftermath of
DWH oil spill. Many examples of using the numerical model
forecast velocities to predict particle trajectories are available in
the literature. The value of trajectory predictions by ocean models
have been demonstrated particularly well after the 2010 DWH
incident (Maltrud et al., 2010; Huntley et al., 2011b; Mariano et al.,
2011). A special collection of papers about Lagrangian trajectory
predictions with state-of-the-art ocean models entirely devoted to
the 2010 DWH oil spill has been published in Liu et al. (2011). Most
of these studies are based on single model forecasts; only a few
use with ensembles. However, those ensemble results are actually
composed of different forecasts from different models or organi-
zations, and they are not produced from true ensemble prediction
systems based on dynamics. As a result, the uncertainties of those
predicted trajectories are hard to assess. In this paper we will
concentrate on the application of RELO ensemble forecasts to
Lagrangian prediction. It is well known that an ensemble forecast
system provides not only more accurate ensemble mean to
describe the ocean state, but also valuable uncertainty information
which is not available from traditional single deterministic fore-
casts. For simplicity, in the following we advect particles using a
fourth-order Runge–Kutta integration with 2-dimensional inter-
polated forecast surface velocity on the ocean surface in the GOM.
There is no attempt to account for diffusive processes or subgrid-
scale uncertainties.

One example of the extra information that can be provided
only by an ensemble system is shown in Fig. 10. We choose seven
particles to represent drifters or surface oil patches from the DWH
disaster indicated by A, B, C, D, E, F, G on the surface of GOM. From
the water currents generated from any ocean prediction model
such as HYCOM or NCOM, one can forecast the particle trajectories.
To demonstrate the importance of uncertainty information pro-
vided by the calibrated ensemble, particles F and G are placed near
hyperbolic locations. For each of these particles, we integrate the
velocity fields provided by each ensemble member to obtain a
particle trajectory. Thus, there are 32 different possible trajectories
from each location from one ensemble forecast. The trajectories
of these particles from ensemble r are shown in the top panel
of Fig. 10. The corresponding trajectories generated by ensemble

q are displayed in the bottom panel of Fig. 10. Also plotted
in Fig. 10 are the sea surface height (SSH) in colored contours,
and the surface current velocity indicated by arrows. The correla-
tion between SSH and velocity is clear. In addition, the particle
trajectories tend to follow the directions of velocity as expected.

We also plot the predicted trajectory for each particle based on
the ensemble mean in thick red curve in this figure. If ensemble
spread distribution is close to Gaussian, then ensemble mean and
mode will be similar. Fig. 1 shows that this is the case for both u
and v. Therefore, the trajectory based on ensemble mean is almost
the same as the one based on mode with the highest probability,
i.e. the most likely scenario for the particle to follow. Traditionally,
the trajectories of these particles are generated by using a single
model such as ncom3km, ncom1km or hycom4km. Each model
will generate just one trajectory (one possible outcome) for each
particle. Due to the uncertainties of initial conditions, and the
chaotic nature of ocean dynamical system that is highly nonlinear,
there should be a range of possibilities of trajectories that each
particle might follow. In contrast to a single trajectory produced by
single model for a particle, either ensemble r or ensemble q can
provide 32 possible trajectories representing different possibilities.
It is not difficult to see that the information provided by ensemble
is more complete with both the most likely trajectory and uncer-
tainties. This extra information will help users or decision makers
to make more scientifically sound decisions.

As in previous sections, we are also very interested in the
impact of the calibrated ensemble on the particle trajectories in

Fig. 10. The trajectories of seven particles (A–G) predicted by ensemble members
from r (top panel) and q (bottom panel). The predicted trajectories by ensemble
means are denoted by thick red curves. Particle D is chosen to be at the location
of DWH accident. Superimposed are the SSH in color contour and surface water
velocity indicated by arrows.

M. Wei et al. / Deep-Sea Research II 129 (2016) 374–393 387



comparison with the un-calibrated ensemble. One clear difference
between the trajectories predicted by these two ensembles is the
spread of ensemble trajectories, which can be similarly defined as
the RMS distance between these trajectories predicted by different
ensemble members. For each of these seven particles, the spread
of trajectories in ensemble q (bottom) is obviously larger. This
means that ensemble q can capture a wider range of possibilities of
future movement of the particle than ensemble r (top). In another
word, when both ensembles are used to predict a particle trajec-
tory, ensemble q could capture some possible different moving
directions that might be missed by ensemble r.

To display this more clearly, we zoom in a smaller domain
containing particles F and G. This is shown in Fig. 11. All 32
members of ensemble r predict particle F moving southward.
However, among the 32 members of ensemble q, there is one
member predicting that particle F will move toward the north-
west, and another member predicting southeast movement. That
is, ensemble q predicts 1/32 probability for particle F to move
either northwest or southeast, but these probabilities are missed
by the less reliable ensemble r. For particle G, all the members of
ensemble r predict that the particle will follow the Loop Current
toward the Florida Strait. However, ensemble q predicts a non-zero
likelihood for particle G to move westward (2/32) or northward
(2/32). These uncertainties are not picked up by ensemble r due to
its lesser reliability as we discussed in previous sections. During

our real-time ensemble runs for the CARTHE GLAD at-sea experi-
ment, we have noticed other examples on other dates when the
calibrated ensemble q captures greater uncertainty than ensemble
r near those sensitive, hyperbolic locations.

3.5. Ensembles in Lagrangian coherent structure

Another important area of ensemble application is the Lagrangian
Coherent Structure (LCS). The ensemble can provide not only the
most likely LCS, but also its associated uncertainties. There have been
many applications of the LCS in computational fluid dynamics (Haller
and Yuan, 2000; Shadden et al., 2005; Haller and Sapsis, 2011). This
technique has been adopted in the ocean modeling community to
study the tracer distribution and prediction (Lekien et al., 2005;
Lermusiaux et al., 2006a, 2006b; Coulliette et al., 2007; Olascoaga
et al., 2008; Beron-Vera et al., 2008; Shadden et al., 2009; Olascoaga,
2010; Huntley et al., 2011a, 2011b; Olascoaga and Haller, 2012).
Conceptually, LCSs are the locally most strongly attracting or repelling
material surfaces in the flow. They move with the flow and provide
core surfaces organizing the advection of tracers. A common practice
to identify the LCS is to use the finite-time Lyapunov exponent (FTLE);
some slightly varying definitions can be found in the literature. In this
paper, we adopt the FTLE to define the LCS following Shadden et al.
(2005) and Haller and Sapsis (2011), in which a robust mathematical
description and definition is given. The FTLE has proven to be
an effective tool to identify LCSs, and is a measure of the finite-
time averaged maximum separation rate of two initially close fluid
particles. In this study, we concentrate on 2-dimensional surface
flow of ocean. Suppose the ocean velocity field generated by NCOM
or HYCOM is v(x,y,t)¼(u(x,y,t),v(x,y,t)). The dynamical equation is
given by

dx
dt

¼ vðx; y; tÞ:

If we follow a particle at time t0 to a later time t, the integration
of the above equation will provide a flow map F(t0,t) which maps
the particle at the initial position to the current position at time t,
i.e. x(t)¼F(t0,t)x(t0). A matrix can be formed by using the gradients
of the flow map as

C ¼ dF
dx

� �T dF
dx

� �
;

with the superscript T indicating matrix transformation. This sym-
metric matrix is called the right Cauchy–Green deformation
tensor, and is the function of t0, x0, t, and x. The largest FTLE asso-
ciated with this trajectory over the time interval t�t0 is defined as

sðx0; t0; x; tÞ ¼
1

jt�t0j
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmaxðCÞ

p
;

where λmax(C) denotes the largest eigenvalue of C. Therefore, the
FTLE is the time-averaged maximum exponential stretching about
the trajectory from time t0 to t. The ridges of the largest FTLE
indicate the LCSs. There are two types of LCSs. The first kind is
the repelling LCS, which is the material surface formed by the
trajectories of the dynamical system that repel other trajectories at
the locally highest rate for the time interval t�t0. The second is the
attracting LCS, which is the material surface that attracts nearby
trajectories at the locally highest rate for the time interval t�t0.
A common way of computing the repelling LCS at time t0 is to
integrate a set of trajectories forward starting from an array of
initial conditions up to a time t. The largest FTLE can be used to
identify the repelling LCS, which is associated with the stable
manifold. Another separate backward integration from time t to t0
is needed to locate the attracting LCS, which is associated with the
unstable manifold. More detail can be found out in Shadden et al.
(2005) and Haller and Sapsis (2011).Fig. 11. As in Fig. 10, but for the smaller domain around particles F and G.
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The attracting LCS has been used in tracer prediction and pollu-
tant dispersal modeling in Olascoaga et al. (2008), Olascoaga
(2010) and Olascoaga and Haller (2012). Beron-Vera et al. (2008)
computed attracting LCSs to identify mesoscale eddies. Repelling
LCSs are material lines that act as moving barriers to transport.
They have important impacts on the movements of particles and
pollutants on ocean surface. Lekien et al. (2005) and Lermusiaux
et al. (2006a) and Coulliette et al. (2007) have used repelling
LCSs for optimizing pollution management and release in coastal
oceans in California and Florida. The repelling LCS was also used

by Shadden et al. (2009) to help drifter release in Monterey Bay.
However, all of these studies on LCSs from numerical ocean
models are based on the single deterministic forecasts. While
identifying the LCSs in ocean is an important contribution, it is also
important to understand the uncertainties related to these LCSs.
With a single-model deterministic forecast, the uncertainties of
the LCSs cannot be estimated.

We will use our real-time ensemble data generated for the
CARTHE GLAD drafter deployment to identify the LCSs and their
uncertainties. The LCSs from ensemble will be compared with

Fig. 12. The repelling LCSs (1/day) on the ocean surface over the GOM at 00UTC, July 20, 2012, generated by ensemble mean of gom32q (A), ncom3km (B), ncom1km (C), and
hycom4km (D). The STD of LCSs from r and q are displayed in (E) and (F).
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those from single ocean models. This also provides an opportunity
to study the sensitivity of the LCS to the model and its resolution.
As an initial step to apply ensembles to LCSs in ocean simulation,
we consider only repelling LCSs in this study. Application to
attracting LCSs will be explored in the near future.

Fig. 12 shows the repelling LCS on the ocean surface at 00UTC,
July 20, 2012 which was the first date of deployment of GLAD
Large Scale Spiral (LSS) drifters. There were total 20 drifters
deployed to study the large scale dynamics of the GOM. The
repelling LCSs are computed based on the 3-day forecasts of
ensemble mean of gom32q (A), ncom3km (B), ncom1km (C), and
hycom4km (D). Since there is little difference between the LCSs
from the ensemble means of gom32r and gom32q in terms of
magnitude and scale, only the LCS from the ensemble mean of
gom32q is shown.

However, the advantage of using an ensemble lies in the fact
that it can provide valuable uncertainty information about the LCS.
The LCS of each ensemble member is computed for both ensem-
bles q and r. Each LCS of a different ensemble member represents a
possible realization of structure within this ensemble. The stan-
dard deviation (STD) of 32 LCSs based on the 32 individual
members is a good estimate of the uncertainty of LCSs described
by the ensemble. The STDs for gom32r and gom32q are shown in
Fig. 12(E) and (F) respectively

One clear difference among these repelling LCSs from different
models and the ensemble mean is the spatial scale due to different
resolutions of the models being used. The LCS generated from
ncom3km shows smaller scale structures than hycom4km which
has lower resolution. Although gom32q uses NCOM with 3 by
3 km resolution, the LCS from the ensemble mean displays larger
spatial structures than that from ncom3km. This is probably due
to the filtering effect of ensemble mean, which removes some
smaller scale features. The LCS from ncom1km in Fig. 12(C) reveals
the smallest scale features of repelling LCS. This will make
ncom1km an ideal candidate to study the sub-mesoscale eddy
structures in the GOM. The large scale repelling LCS around the
Loop Current is identified by gom32q, ncom3km and ncom1km,
but not by hycom4km, which instead shows a smaller circular
repelling LCS near the north of the Loop Current. All the models
show a long, robust large-scale repelling LCS starting from the
Yucatan Current, connecting the Loop, Florida, and the Gulf Stream
Currents. Along this large-scale repelling LCS, there also exist large
uncertainties as shown by the STD of LCSs (Fig. 12E and F). Overall,
the STD of LCSs from either ensemble shows similar, relatively
large uncertainties in similar regions, such as the northern GOM
near the DWH location, and the areas around the Loop Current.
However, the calibrated ensemble q produces more pronounced
uncertainty structures at more locations than ensemble r.

Starting from July 20, 2012, 20 GLAD LSS drifters were deployed
around the DWH location. It is interesting to see the LCSs and
their related uncertainties near these drifters. In order to look at
more detailed structures of LCSs in the areas of our interests and
experiments at the same time, a much smaller domain is needed.
Fig. 13 shows the same as Fig. 12, but with a smaller domain.
Now, much more detailed LCS structures and uncertainties can be
seen clearly from all four forecasts, particularly ncom1km, which
displays well organized small scale repelling LCSs. Again, the detail
structures of LCSs identified using numerical model output depend
on the model resolutions.

Most of the drifters were more likely deployed in the troughs of
LCSs; very few were on the ridges of LCSs. Since the repelling LCS
acts as a transport barrier, if the drifter is on the ridge of the LCS, it
could fall to either side of the LCS. Once the drifter is on one side of
the LCS, it will be trapped on that side, as it is almost impossible
for a drifter to cross the LCS barriers. Therefore, the movement of a
drifter depends greatly on how repelling LCSs change with time,

and the drifter movement is generally constrained by the repelling
LCSs. Accurately identified repelling LCSs will provide helpful
guidance to drifter deployment, and to forecasting the trajectories
of drifters (Lekien et al., 2005; Lermusiaux et al., 2006a; Coulliette
et al., 2007; Shadden et al., 2009).

As we discussed, this is only the initial step in applying
the ensembles to repelling LCS studies. Our next step will be to
compare the predicted drifter trajectories, the identified LCSs and
their associated uncertainties against the observed drifter trajec-
tories from the CARTHE GLAD data set. It is expected that the
full advantages of the ensembles will be demonstrated with this
valuable source of drifter data from the CARTHE GLAD. We will
report those results when they are available.

4. Discussion and conclusions

As the designated modeling team within CARTHE to support
and provide guidance to the GLAD at-sea experiment in the
summer of 2012, we have run several real-time ocean model
forecasts, starting on May 16, 2012, well before the GLAD drifter
deployment. These include two ensembles (gom32r and gom32q),
ncom3km, ncom1km and hycom4km. All of these forecast outputs
are archived and made available on web servers for all the CARTHE
scientists and students involved in this project. The raw forecast
data are also available if requested. The real-time forecast results
were evaluated every cycle by the local scientists at NRL, and
important information and findings were provided to CARTHE
scientists in other organizations via emails or regular tele-
conferences. The implementation and operation of these forecast
systems were conducted successfully without a glitch and pro-
vided great value and real-time guidance to the drifter deploy-
ment. In this paper, we describe the details of these numerical
forecast systems and the corresponding products including the
RELO ensembles, particularly the calibrated ensemble. The intro-
duction and description of these forecast systems will provide
background to scientists inside and outside the CARTHE project.

In addition, we examine the performance and efficiency of
these forecast systems based on our comprehensive evaluations.
We choose to verify these forecast products against Navy's opera-
tional observations used in NCODA for 109 days from 00UTC
June 1 to 00UTC September 19, 2012. Detailed comparisons of
these forecast systems are carried out based on the most com-
monly used verification metrics. The advantages and disadvan-
tages of different systems or models are studied and summarized.
We demonstrate the differences between the ensemble and single
forecasts, and in particular we propose a calibrated ensemble
(gom32q) with enhanced initial spread to overcome a difficulty in
analysis error estimation in the present 3D-Var-based NCODA DA
system. Because the calculation used in NCODA underestimates
the analysis error, the initial ensemble perturbations generated
through the ET cannot match the real analysis error variance. As
a result, our ensemble spread is smaller than the ensemble mean
error, and the reliability of the ensemble is compromised. Another
separate effort has been underway to improve the analysis error
directly in NCODA, but this will take time to develop and evaluate.
The mixing parameter perturbation scheme introduced is also
part of these efforts to improve the RELO ensemble spread. The
proposed calibration scheme in this paper is based on the RELO
ensemble with the mixing parameter perturbations, and has been
proven to be an efficient and effective method to further improve
the ensemble spread.

To understand the direct impacts of this spread calibration on
the overall performance, these two ensemble spreads are com-
pared directly from different perspectives. These include ensemble
plumes of a single location, vertical and horizontal distributions,
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long-time averages over the whole period of the experiment, and
averages over different observation spaces with different dyna-
mics. The results show that ensemble spread is clearly enhanced
from the calibration. It is found that this calibrated ensemble
gom32q is superior to the un-calibrated ensemble gom32r in
terms of quantitative forecasting accuracy, skill, and reliability.
The metrics we evaluated include RMS error, anomaly correlation,
spread-reliability, and Talagrand rank histogram.

For temperature in the full observation space and averaged
over 109 days, ncom1km has lowest RMS value due to its much

higher resolution, while the calibrated ensemble q has lower RMS
value than ensemble r. For salinity the calibrated ensemble mean q
is the most accurate, followed by the un-calibrated ensemble r,
ncom3km and ncom1km in both full observation space and upper
0–100 m. To quantify the forecast skills of different systems,
we compute AC using observations as truth, and climatology as
a reference to account for seasonal variation. For temperature,
ensemble q has the highest skill score, followed by ensemble r. For
salinity, again the calibrated ensemble q is most skillful, followed
by ensemble r, ncom3km and ncom1km in both observation

Fig. 13. As in Fig. 12, but for the smaller domain around the GLAD drifters area.

M. Wei et al. / Deep-Sea Research II 129 (2016) 374–393 391



spaces. One surprising result is that ncom1km performs poorer
than ncom3km for salinity. This is due to the larger interpolation
errors incurred during the interpolations of very high resolution
forecasts onto the very sparse observation space for verifications.

To compare the reliability and consistency of two ensembles,
we use spread-reliability diagram and Talagrand rank histogram.
The spread-reliability curves at three forecast lead times (24, 48,
and 72 h) for temperature are computed for full observation
space, 0–100 m and surface. The results indicate that the cali-
brated ensemble q is closer to the diagonal line (more reliable)
than ensemble r for all three forecast lead times and in all three
observation spaces. For salinity, ensemble q is closer to diagonal
line for all forecast lead times and both observation spaces, except
for the 24-h forecast in the full observation space. In this case, both
ensembles are relatively close to the diagonal line, but ensemble q
is slightly over-dispersive, and over-predicts the forecast error
variance.

The rank histograms, which describe both reliability and
consistency of an ensemble, are computed and compared. For
temperature, ensemble q has a much flatter distribution than
ensemble r for all three forecast lead times and for all three
observation spaces. The associated consistency index of ensemble
q is about 20–30% lower than ensemble r in each of these cases.
For salinity in the full observation space and the observation
space between 0 and 100 m, ensemble q has much flatter rank
histograms than ensemble r in all cases. The consistency index
for ensemble q is about 50% lower than that of ensemble r. The
index values are much closer to 1, which is the value for an ideal
ensemble system.

Another contribution from the ensemble forecasts discussed in
this paper is the application of ensembles to Lagrangian trajectory
prediction. It is demonstrated that the ensemble can generate
important uncertainty information in addition to predicting the
particle trajectory with the highest probability, in contrast to a
single ocean model forecast. In addition, we show the impact
of ensemble spread on the trajectory prediction. The calibrated
ensemble q with more reliability can pick up completely diffe-
rent trajectory directions which are missed by the less reliable
ensemble r.

Finally, we apply the ensemble to computing LCSs for the GOM.
The repelling LCSs identified by ensembles q and r are compared
with those generated by the single models with different resolu-
tions (ncom3km, ncom1km, hycom4km). As expected, the LCSs
based on ensemble means of both ensembles q and r are similar.
Each ensemble is composed of 32 ncom3km model runs with the
initial perturbations generated based on the analysis error from
NCODA. It is interesting to note that the LCSs identified by the
ensemble means have larger spatial scales than those produced
by ncom3km. This is due to the filtering effect of ensemble mean
which removes some small scale features. This can be an advan-
tage in situations where only larger scales of transport barriers are
needed, such as tracer prediction in longer time scales.

Our results also show that the repelling LCSs are sensitive
to model resolution. The LCSs produced by hycom4km have the
largest scales, while ncom1km, which has highest resolution in
our experiments, is able to produce the finest small-scale LCS
structures that cannot be generated by using lower resolution
models such as ncom3km, hycom4km or the ensemble mean.
However, the uncertainties of LCSs generated by all these single
models cannot be estimated. The real advantage of the ensemble
in this application is the capability for estimating these uncertain-
ties (Lermusiaux et al., 2006a); the uncertainties of LCSs provided
by these two ensembles are different due to different ensemble
spreads.

We plan to continue to explore the application of ensembles
to Lagrangian trajectory and LCS prediction. It is well known that

ensemble techniques have been used at major NWP centers for
about 20 years. Almost all the major operational meteorological
centers have adopted ensemble forecast systems, and ensemble
products have already become essential components in those
centers. The benefits over single forecast have been widely
recognized and accepted by the public, not just researchers. The
application of ensemble approaches in the Lagrangian framework
of ocean prediction is still largely unexplored. The work presented
in this paper is our first step in this direction. Our next immediate
tasks include improving the efficiency of computing the dominant
FTLE values for ensemble systems, and improving the computa-
tional efficiency of attracting LCSs in ensembles.

Acknowledgments

This research was made possible in part by a grant from BP/The
Gulf of Mexico Research Initiative (GoMRI) through the Consor-
tium for Advanced Research on Transport of Hydrocarbon in the
Environment (CARTHE). It was also partly funded through the
PRACTICE 6.2 project at NRL and supported by the Office of Naval
Research (Program Element 0602435N). We thank our colleagues
at NRL at Stennis Space Center for their assistance, particularly
Germana Peggion, Jan Dastugue, David Sitton, Michael Phelps and
the scientists from other organizations in CARTHE.

References

Barron, C.N., Kara, A., Martin, P., Rhodes, R., Smedstad, L., 2006. Formulation,
implementation and examination of vertical coordinate choices in the Global
Navy Coastal Ocean Model (NCOM). Ocean Model. 11, 347–375.

Beron-Vera, F.J., Olascoaga, M.J., Goni, G.J., 2008. Oceanic mesoscale eddies as
revealed by Lagrangian coherent structures. Geophys. Res. Lett. 35, L12603,
http://dx.doi.org/10.1029/2008GL033957.

Bleck, R., 2002. An oceanic general circulation model framed in hybrid isopycnic-
Cartesian coordinates. Ocean Model. 4, 55–88.

Bowler, N.E., 2006. Comparison of error breeding, singular vectors, random
perturbations and ensemble Kalman filter perturbation strategies on a simple
model. Tellus 58A, 538–548.

Bowler, N.E., Arribas, A., Beare, S., Mylne, K., Shutts, G., 2009. The local ETKF and
SKEB:upgrade to the MOGREPS short-range ensemble prediction system. Quart.
J. R. Meteorol. Soc. 135, 767–776.

Buizza, R., Houtekamer, P., Toth, Z., Pellerin, P., Wei, M., Zhu, Y., 2005. A comparison
of the ECMWF MSC and NCEP global ensemble prediction systems. Mon.
Weather Rev. 133, 1076–1097.

Chassignet, E.P., Smith, L.T., Halliwell, G.R., Bleck, R., 2003. North Atlantic simula-
tions with the HYbrid Coordinate Ocean Model (HYCOM): impact of the vertical
coordinate choice, reference pressure, and thermobaricity. J. Phys. Oceanogr.
33 (12), 2504–2526.

Coulliette, C., Lekien, F., Paduano, J., Haller, G., Marsden, J., 2007. Optimal pollution
mitigation in Monterey Bay based on coastal radar data and nonlinear
dynamics. Environ. Sci. Technol. 41, 6562–6572.

Counillon, F, Bertino, L., 2009. High-resolution ensemble forecast for the Gulf of
Mexico eddies and fronts. Ocean Dyn. 59, 83–95.

Cummings, J., 2005. Operational multivariate ocean data assimilation. Quart. J. R.
Meteorol. Soc. 131, 3583–3604.

Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi-geostrohpic
model using Monte Carlo methods to forecast error statistics. No. C5.
J. Geophys. Res. 99, 10143–10162.

Haller, G., Yuan, G., 2000. Lagrangian coherent structures and mixing in two-
dimensional Turbulence. Physica D 147, 352–370.

Haller, G., Sapsis, T., 2011. Lagrangian coherent structures and the smallest finite-
time Lyapunov exponent. Chaos 21, 1–5.

Halliwell, G.R., 2004. Evaluation of vertical coordinate and vertical mixing algo-
rithms in the HYbrid Coordinate Ocean Model (HYCOM). Ocean Model. 7 (3–4),
285–322.

Houtekamer, P., Lefaivrem, L., Derome, J., Ritchie, H., Mitchell, H., 1996. A system
simulation approach to ensemble prediction. Mon. Weather Rev. 124,
1225–1242.

Huntley, H.S., Lipphardt, B.L., Kirwan, A.D., 2011a. Lagrangian predictability assessed
in the East China Sea. Ocean Model. 36, 163–178.

Huntley, H.S., Lipphardt, B.L., Kirwan, A.D., 2011b. Surface drift predictions of the
deepwater horizon spill: the Lagrangian perspective. In: Liu, Y., MacFadyen, A.,
Ji, Z.-G., Weisberg, R.H. (Eds.), Monitoring and Modeling the Deepwater Horizon
Oil Spill: A Record-Breaking Enterprise. Geophysical Monograph Series, vol. 195.
AGU, Washington, D.C., pp. 179–195.

M. Wei et al. / Deep-Sea Research II 129 (2016) 374–393392

http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref1
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref1
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref1
http://dx.doi.org/10.1029/2008GL033957
http://dx.doi.org/10.1029/2008GL033957
http://dx.doi.org/10.1029/2008GL033957
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref3
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref3
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref4
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref4
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref4
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref5
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref5
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref5
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref6
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref6
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref6
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref7
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref7
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref7
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref7
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref8
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref8
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref8
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref9
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref9
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref10
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref10
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref11
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref11
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref11
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref12
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref12
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref13
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref13
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref14
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref14
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref14
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref15
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref15
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref15
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref16
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref16
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref17
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref17
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref17
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref17
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref17


Lekien, F., Coulliette, C., Mariano, A.J., Ryan, E., Shay, L.K., Haller, G., Marsden, J.,
2005. Pollution release tied to invariant manifolds: a case study for the coast of
Florida. Physica D 210, 1–20.

Lermusiaux, P.F.J., 1999. Estimation and study of mesoscale variability in the Strait
of Sicily. Dyn. Atmos. Oceans 29, 255–303.

Lermusiaux, P.F.J., Anderson, D.G.M., Lozano, C.J., 2000. On the mapping of multi-
variate geophysical fields: error and variability subspace estimates. Quart. J. R.
Meteorol. Soc. B 126, 1387–1430.

Lermusiaux, P.F.J., 2002. On the mapping of multivariate geophysical fields: sensiti-
vity to size, scales and dynamics. J. Atmos. Oceanic Technol. 19, 1602–1637.

Lermusiaux, P.F.J., 2006. Uncertainty estimation and prediction for interdisciplinary
ocean dynamics. special issue on “uncertainty quantification”. J. Comput. Phys.
217, 176–199.

Lermusiaux, P.F.J., Chiu, C.-S., Gawarkiewicz, G.G., Abbot, P., Robinson, A.R., Miller, R.N.,
Haley, P.J., Leslie, W.G., Majumdar, S.J., Pang, A., Lekien, F., 2006a. Quantifying
Uncertainties in Ocean Predictions. In: Paluszkiewicz, T., Harper, S. (Eds.), Special
Issue on Advances in Computational Oceanography. Office of Naval Research,
vol. 19 (1), pp. 92–105. http://dx.doi.org/10.5670/oceanog.2006.93.

Lermusiaux, P.F.J., Malanotte-Rizzoli, P., Stammer, D., Carton, J., Cummings, J.,
Moore, A.M., 2006b. Progress and Prospects of U.S. Data Assimilation in Ocean
Research. Oceanography, In: Paluszkiewicz, T., Harper, S., (Eds.), Special Issue on
Advances in Computational Oceanography. vol. 19(1), pp. 172–183.

Liu, Y., MacFadyen, A., Ji, Z.-G., Weisberg, R.H. (Eds.), 2011. Monitoring and Modeling
the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise. Geophysical
Monograph Series, vol. 195. AGU, Washington D.C., p. 271.

Mariano, A.J., Kourafalou, V.H., Srinivasan, A., Kang, H., Halliwell, G.R., Ryan, E.,
Roffer, M., 2011. On the modeling of the 2010 Gulf of Mexico oil spill. Dyn.
Atmos. Oceans 52, 322–340.

Martin, P.J., 2000. A description of the Navy Coastal Ocean Model Version 1. Naval
Research Laboratory, Stennis Space Center, MS p. 42. (Technical Report NRL/FR/
7322-00-9962).

Maltrud, M., Peacock, S., Visbeck, M., 2010. On the possible long-term fate of oil
released in the Deepwater Horizon incident, estimated using ensembles of dye
release simulations. Environ. Res. Lett. 5, 1–7.

McLay, J., Bishop, C., Reynolds, C.A., 2007. The ensemble-transform scheme adapted
for the generation of stochastic forecast perturbations. Quart. J. R. Meteorol.
Soc. 133, 1257–1266.

Mellor, G.L., Yamada, T., 1974. A hierarchy of turbulence closure models for
planetary boundary layers. J. Atmos. Sci. 31, 1791–1806.

Mellor, G.L., Durbin, P., 1975. The structure and dynamics of the ocean surface
mixed layer. J. Phys. Oceanogr. 5, 718–728.

Molteni, F., Buizza, R., Palmer, T., Petroliagis, T., 1996. The ECMWF ensemble predic-
tion system: methodology and validation. Quart. J. R. Meteorol. Soc. 122,
73–119.

O'Kane, T., Oke, P., Sandery, P., 2011. Prediction the East Australian Current. Ocean
Model. 38, 251–266.

Olascoaga, M.J., Beron-Vera, F.J., Brand, L.E., Kocak, H., 2008. Tracing the early
development of harmful algal blooms with the aid of lagrangian coherent
structure. J. Geophys. Res. 113, C12014,1–10, http://dx.doi.org/10.1029/
2007JC004533.

Olascoaga, M.J., 2010. Isolation on the West Florida Shelf with implication for red
tides and pollutant dispersal in the Gulf of Mexico. Nonlinear Process. Geophys.
17, 685–696.

Olascoaga, M.J., Haller, G., 2012. Forecasting sudden changes in environmental
contamination patterns. Proc. Natl. Acad. Sci. 109, 4738–4743.

Özgökmen, T.M., Griffa, A., Mariano, A.J., Piterbarg, L.I., 2000. On the predictability
of Lagrangian trajectories in the ocean. J. Atmos. Oceanic Technol. 17, 366–383.

Özgökmen, T.M., Piterbarg, L.I., Mariano, A.J., Ryan, E., 2001. Predictability of drifter
trajectories in the tropical Pacific Ocean. J. Phys. Oceanogr. 31, 2691–2720.

Reynolds, C.A., Ridout, J., McLay, J., 2011. Examination of parameter variations in the
US Navy global ensemble. Tellus 63A, 841–857.

Rowley, C., 2008. RELO SYSTEM USER GUIDE. Oceanography Division Naval
Research Laboratory. Stennis Space Center, MS USA p. 59.

Rowley, C., 2010. Validation Test Report for the RELO System. Naval Research
Laboratory, Stennis Space Center, MS p. 69. (Oceanography Division, NRL Report
NRL/MR/7320–10-9216).

Rowley, C., Richman, J., Emanuel, C., 2012. Boundary Condition Uncertainty in the
NRL Relocatable Ocean Ensemble Forecast System. AGU Ocean Science Meeting,
Salt Lake City, UT 20–25 Feburary 2012.

Shadden, S.C., Lekien, F., Marsden, J.E., 2005. Definition and properties of Lagrangian
coherent structures from finite-time Lyapunov exponents in two-dimensional
aperiodic flows. Physica D 212, 271–304.

Shadden, S.C., Lekien, F., Paduan, J.D., Chavez, F., Marsden, J.E., 2009. The corre-
lation between surface drifters and coherent structures based on HF radar in
Monterey Bay. Deep-Sea Res. Part II: Top. Stud. Oceanogr. 56, 161–172.

Smagorinsky, J., 1963. General circulation experiments with the primitive equa-
tions. I: The basic experiment. Mon. Weather Rev. 91, 99–164.

Talagrand, O., Vautard, R., Strauss, B., 1997. Evaluation of Probabilistic System. In:
Proceedings of the Workshop on Predictability, ECMWF. Reading, UK, pp. 1–25.

Toth, Z., Kalnay, E., 1993. Ensemble forecasting at NMC: the generation of
perturbations. Bull. Am. Meterol. Soc. 174, 2317–2330.

Wei, M., Toth, Z., 2003. A new measure of ensemble performance: perturbations
versus error correlation analysis (PECA). Mon. Weather Rev. 131, 1549–1565.

Wei, M., Toth, Z., Wobus, R., Zhu, Y., Bishop, C., 2005. Initial perturbations for NCEP
ensemble forecast system. In: Thorpex Symposium Proceedings for the
First THORPEX Internal Science Symposium, 6–10 December 2004, Montreal,
Canada. The Symposium Proceedings in a WMO Publication 2005, WMO TD no.
1237, WWRP THORPEX no. 6, 2005, pp. 227–230.

Wei, M., Toth, Z., Wobus, R., Zhu, Y., Bishop, C., Wang, X., 2006. Ensemble transform
Kalman Filter-based ensemble perturbations in an operational global prediction
system at NCEP. Tellus 58A, 28–44.

Wei, M., Toth, Z., Wobus, R., Zhu, Y., 2008. Initial perturbations based on the
ensemble transform (ET) technique in the NCEP global ensemble forecast
system. Tellus 60A, 62–79.

Wei, M., Toth, Z., Zhu, Y., 2010. Analysis differences and error variance estimates
from multi-center analysis data. Aust. Meteorol. Oceanogr. J. 59, 25–34.

Wei, M., Pondeca, M., Toth, Z., Parrish, D., 2012. Estimation and calibration of
observation impact signals using the Lanczos method in NOAA/NCEP data
assimilation system. Nonlinear Process. Geophys. 19, 541–557.

Wei, M., Rowley, C., Martin, P., Barron, C., Jacobs, G., 2013. The U.S. Navy's RELO
ensemble prediction system and its performance in the Gulf of Mexico. Quart.
J. R. Meteorol. Soc. 139A, http://dx.doi.org/10.1002/qj.2199.

Wilks, D.S., 2006. Statistical Methods in the Atmospheric Sciences. Cambridge Press,,
San Diego, USA p. 627.

Yin, X-Q., Oey, L-Y., 2007. Bred ensemble forecast of loop current and rings. Ocean
Model. 17, 300–326.

M. Wei et al. / Deep-Sea Research II 129 (2016) 374–393 393

http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref19
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref19
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref19
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref20
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref20
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref21
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref21
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref21
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref22
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref22
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref23
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref23
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref23
http://refhub.elsevier.com/S0967-0645(13)00320-2/othref0005
http://refhub.elsevier.com/S0967-0645(13)00320-2/othref0005
http://refhub.elsevier.com/S0967-0645(13)00320-2/othref0005
http://refhub.elsevier.com/S0967-0645(13)00320-2/othref0005
http://dx.doi.org/10.5670/oceanog.2006.93
http://refhub.elsevier.com/S0967-0645(13)00320-2/othref0010
http://refhub.elsevier.com/S0967-0645(13)00320-2/othref0010
http://refhub.elsevier.com/S0967-0645(13)00320-2/othref0010
http://refhub.elsevier.com/S0967-0645(13)00320-2/othref0010
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref24
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref24
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref24
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref25
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref25
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref25
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref26
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref26
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref26
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref27
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref27
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref27
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref28
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref28
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref28
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref29
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref29
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref30
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref30
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref31
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref31
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref31
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref32
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref32
http://dx.doi.org/10.1029/2007JC004533
http://dx.doi.org/10.1029/2007JC004533
http://dx.doi.org/10.1029/2007JC004533
http://dx.doi.org/10.1029/2007JC004533
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref34
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref34
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref34
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref35
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref35
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref36
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref36
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref37
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref37
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref38
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref38
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref39
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref39
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref40
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref40
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref40
http://refhub.elsevier.com/S0967-0645(13)00320-2/othref0015
http://refhub.elsevier.com/S0967-0645(13)00320-2/othref0015
http://refhub.elsevier.com/S0967-0645(13)00320-2/othref0015
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref41
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref41
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref41
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref42
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref42
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref42
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref43
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref43
http://refhub.elsevier.com/S0967-0645(13)00320-2/othref0020
http://refhub.elsevier.com/S0967-0645(13)00320-2/othref0020
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref44
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref44
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref45
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref45
http://refhub.elsevier.com/S0967-0645(13)00320-2/othref0025
http://refhub.elsevier.com/S0967-0645(13)00320-2/othref0025
http://refhub.elsevier.com/S0967-0645(13)00320-2/othref0025
http://refhub.elsevier.com/S0967-0645(13)00320-2/othref0025
http://refhub.elsevier.com/S0967-0645(13)00320-2/othref0025
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref46
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref46
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref46
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref47
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref47
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref47
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref48
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref48
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref49
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref49
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref49
http://dx.doi.org/10.1002/qj.2199
http://dx.doi.org/10.1002/qj.2199
http://dx.doi.org/10.1002/qj.2199
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref51
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref51
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref52
http://refhub.elsevier.com/S0967-0645(13)00320-2/sbref52

	The performance of the US Navy's RELO ensemble, NCOM, HYCOM during the period of GLAD at-sea experiment in the Gulf of...
	Introduction
	Methodologies, RELO ensembles, NCOM and HYCOM, and experimental setup
	Initial perturbations for RELO ensemble
	Surface forcing perturbations for RELO ensembles using time-deformation technique
	Mixing parameter perturbations in RELO ensemble
	RELO configuration, NCOM, HYCOM and experimental design

	Results from the RELO ensembles, NCOM and HYCOM
	RELO ensemble spread with the calibrated initial perturbations
	Forecast accuracy and skill
	Ensemble reliability
	Ensembles in Lagrangian prediction
	Ensembles in Lagrangian coherent structure

	Discussion and conclusions
	Acknowledgments
	References




