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ABSTRACT

The Lagrangian predictability of general circulation models is limited by the need for high-resolution data

streams to constrain small-scale dynamical features. Here velocity observations from Lagrangian drifters

deployed in theGulf ofMexico during the summer 2012GrandLagrangianDeployment (GLAD) experiment

are assimilated into the Naval Coastal Ocean Model (NCOM) 4D variational (4DVAR) analysis system to

examine their impact on Lagrangian predictability. NCOM-4DVAR is a weak-constraint assimilation system

using the indirect representer method. Velocities derived from drifter trajectories, as well as satellite and in

situ observations, are assimilated. Lagrangian forecast skill is assessed using separation distance and angular

differences between simulated and observed trajectory positions. Results show that assimilating drifter

velocities substantially improves the model forecast shape and position of a Loop Current ring. These gains in

mesoscale Eulerian forecast skill also improve Lagrangian forecasts, reducing the growth rate of separation

distances between observed and simulated drifters by approximately 7.3 km day21 on average, when com-

pared with forecasts that assimilate only temperature and salinity observations. Trajectory angular differ-

ences are also reduced.

1. Introduction

The importance of Lagrangian forecasts was seen

in the wake of the Deepwater Horizon oil spill in the

northern Gulf of Mexico (GOM). The agencies

responding to this disaster required information about

the transport and dispersion of water parcels and in turn

oil. Unfortunately, while numerical models and data

assimilation methods continue to improve, trajectory

forecasts remain challenging.

A number of studies have investigated Lagrangian

predictability using model velocities and observed

drifter trajectories (Thompson et al. 2003; Özgökmen
et al. 2003; Barron et al. 2007; Huntley et al. 2011). These

studies show that model trajectory uncertainties typi-

cally grow rapidly, often on the order of 0.5–1 kmh21.

This is likely due to small model velocity uncertainties

that accumulate during trajectory integration (Huntley

et al. 2011). Model forecast velocities remain prone to

errors due to the lack of observations available for as-

similation and validation. Increasing model resolution

aggravates this problem, since even more observations

are needed to constrain the smaller scales that are re-

solved. As more observations become available in the

future, the constraints they provide through assimilation

should directly translate into improved trajectory fore-

cast skill.

The types of observations assimilated and their spatial

and temporal resolution also play an important role.

Temperature, salinity, and sea surface height (SSH,

measured along-track by satellite altimeters) observa-

tions are typically assimilated in operational ocean

models. However, it should be noted that along-track

SSH observations are not assimilated directly; they are

used to calculate synthetic profiles of temperature and

salinity, and it is these synthetic profiles that are assim-

ilated. Since these observations directly constrain only

the model mass field, thus influencing only the baro-

tropic component of the flow, their impact on trajectory

forecast skill is unclear. In addition, SSH measurements
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are highly resolved in space and time along the satellite

track, but are coarsely resolved in the cross-track di-

rection with track repeat intervals as long as 10 days.

When assimilated, the disparity in space and time scales

of the altimeter measurements lead to biases in the

mesoscale forecasts that are very difficult to quantify

(Jacobs et al. 2014a). These biases certainly impact the

skill of model trajectory forecasts.

When adding assimilation of Lagrangian trajectories

(or their derived velocities) to the typical assimilation

constraints on the model mass fields, the trajectory

forecast skill improves. A variety of methods have been

explored for assimilating Lagrangian information into

ocean models. Toner et al. (2001) used a normal mode

analysis method with constrained optimization to mini-

mize changes in model velocities while matching ve-

locities along trajectories. Kuznetsov et al. (2003) and

Ide et al. (2002) presented a method for the direct as-

similation of Lagrangian data using augmented tracer

advection equations that track the correlations between

the flow and the tracers using an extended Kalman filter.

Molcard et al. (2005) used a statistical method to cor-

relate model and drifter velocities. Taillandier et al.

(2006) describe the Lagrangian variational analysis

(LAVA) method that minimizes the distance between

observed and model drifter positions. Additionally,

Nodet (2006) presents an identical twin experiment us-

ing four-dimensional variational data assimilation

(4DVAR) in an idealized wind-driven midlatitude box

model. These previous studies focused on sequential

methods or variational techniques applied to simplified

or idealized ocean models with simulated data.

Using synthetic data from a model control run,

Vernieres et al. (2011) showed that the assimilation of

trajectory data is surprisingly effective in constraining

the model SSH field to capture eddy shedding events,

much more so than the assimilation of comparable

Eulerian velocity data. Assimilating trajectory positions

carries with it the challenge of estimating appropriate

covariances. This problem is circumvented if derived

velocities are used instead. Carrier et al. (2014) dem-

onstrated significant improvements in forecast skill in

model velocity, salinity, and SSH fields when velocities

derived from drifters were assimilated in addition to

Eulerian observations. This study goes a step further and

seeks to quantify how Lagrangian forecast skill is af-

fected by the assimilation of drifter-derived velocities.

For this purpose, the series of experiments conducted by

Carrier et al. (2014), using a dynamically consistent 4D

variational approach to assimilate velocities derived

from roughly 300 observed drifters in the northern

GOM into an operational ocean model, is analyzed for

their skill in predicting future drifter trajectories.

Additionally, a first step toward determining the spatial

extent of these Lagrangian prediction improvements is

undertaken with a drastic data-denial experiment.

This paper is organized as follows. In section 2

the model and assimilation system are described. In

section 3 the observations and the data processing are

discussed. The methods used computing model trajec-

tories and their comparison with observations is dis-

cussed in section 4. Trajectory forecast skill results are

described in section 5. Finally, section 6 provides a

summary and conclusions.

2. Model and data assimilation system

The model used here is a GOM regional version of

the U.S. Navy Coastal Ocean Model (NCOM), a free-

surface primitive equation model that uses hybrid gen-

eralized vertical coordinates (Martin 2000). NCOM is

used operationally to produce forecasts of temperature,

salinity, velocity, and SSH for numerous global and re-

gional applications.

The GOM regional NCOM domain spans 188–318N
latitude and 798–988W longitude with a horizontal

resolution of 6 km. Of the 50 vertical layers, the top 10

are free sigma followed by 40 z levels extending down to

5500m. The initial and boundary conditions are taken

from a global NCOM model with 1/88 resolution. Atmo-

spheric forcing fields (wind stress, atmospheric pressure,

and heat flux) are taken from the Navy Operational

Global Atmospheric Prediction System (NOGAPS) with

0.58 horizontal resolution (Rosmond et al. 2002).

The assimilation system used here, NCOM-4DVAR,

is dynamically consistent with the physics and numerics

of NCOM. NCOM-4DVAR uses the indirect repre-

senter method developed by Egbert et al. (1994), Chua

and Bennett (2001), and Bennett (2002). See Ngodock

(2005) andNgodock and Carrier (2013) for more details.

The velocity and mass field corrections to the forward

model are connected by a barotropic model with line-

arized covariance matrix operators.

Here, NCOM-4DVAR is run in a weak-constraint

mode, so that possible errors in the model dynamics are

included in the assimilation, in addition to initial con-

dition errors (Ngodock and Carrier 2014). The initial

errors at the surface are set to 28C for temperature,

0.5 psu for salinity, 0.2m s21 for u and y velocity, and

0.1m for SSH. These errors are attenuated with in-

creasing depth (Yu et al. 2012). This specification is

appropriate because maximum errors are expected at

the surface due to uncertainties in atmospheric forcing.

The error magnitudes represent 10% of the average

surface forcing fields over the assimilation window. This

choice is consistent with that of Carrier et al. (2014). The
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choice of 10% is deemed acceptable as ocean surface

currents are strongly influenced by surface wind stress.

The horizontal attenuation length scales of both the

initial and model errors range from 30 to 40km, corre-

sponding to the Rossby radius of deformation in the

GOM. While the background error scales are static

through time, the flow-dependent, time-evolving scales

are applied by the dynamics from the tangent linear and

adjoint models of NCOM.

Each observation is also assigned an error value.

Observation errors include both estimated instrument

error and representative error. Representative errors

account for processes unresolved by the model. A

comparison between our experiments and a higher-

resolution (3 km) reanalysis (named RT3km_v2 in

Jacobs et al. 2014b) shows that the variance of the dif-

ference of surface velocities is approximately 0.03m s21

and is subsumed into the larger observational error.

Observation errors are assumed to be constant in time,

with values of 0.28C for temperature, 0.1 psu for salinity,

and 0.05m s21 for velocity. These temperature and

salinity errors are representative of values used by the

operational data processing system used by the U.S.

Navy. As noted by Carrier et al. (2014), the assumed

velocity observation error results from drifter position

uncertainties (10m) and the time interval between

positions (15min). The velocity observation error

(0.02m s21) was conservatively estimated as the worst

case, with maximum error in both drifter positions

totaling 20m.

3. Observations and data processing

During the Grand Lagrangian Deployment (GLAD),

the Consortium for Advanced Research on Transport

of Hydrocarbons in the Environment (CARTHE)

deployed roughly 300 CODE-type surface drifters

(drogued at 1m) in the northernGOMat the end of July

2012 (Poje et al. 2014). These drifters were tracked using

commercially available GPS units, and reported their

positions via satellite roughly every 5min.

For this analysis, GLAD drifter positions were as-

sumed to be accurate to within 10m. The GPS manu-

facturer specifies an accuracy of 6.4m. A dock-side test

verified that 98% of reported positions were within 10m

of the mean measurement for each of 10 drifters over

a 12-h period. Initial position uncertainty of this mag-

nitude leads to endpoint uncertainty for model trajec-

tories after 96 h on the order of 200m. Thus, both

observed and modeled position uncertainties are negli-

gible relative to the model errors discussed below.

A drifter position record was terminated at the point

where the signal was lost for more than 24h, if the drifter

was known to be picked up by a boat, or if it traveled

more than 80km in a 12-h period (implying a mean

speed of 1.85m s21 over 12 h).

Infrequent large errors were found in the GLAD

drifter position records, typically due to poor GPS sat-

ellite reception. These outliers were identified and re-

moved by a three-step procedure: 1) positions that

implied instantaneous drifter speeds greater than

3ms21 were deleted, 2) positions that implied a drifter

track that rotated through more than 360 compass de-

grees within 3 hours were deleted, and 3) each remaining

position was estimated with a local spline interpolation

using past and future—but not the current—positions

from the same drifter. Measured positions that deviated

more than 100m from the corresponding spline estimate

were deleted.

When all outliers were removed, record gaps were

filled by spline interpolation of the remaining valid po-

sitions to uniform 5-min intervals. Estimates of u (east–

west) and y (north–south) velocities were computed

from these 5-min records using second-order, centered

finite differences.

To reduce noise, the 5-min position and velocity re-

cords were filtered using a fourth-order Butterworth

low-pass filter with a 1-h period cutoff. Finally, the low-

pass-filtered records were subsampled at uniform

15-min intervals beginning on whole hours. The GLAD

trajectory dataset used here is publicly available (https://

data.gulfresearchinitiative.org/data/R1.x134.073:0004/).

Figure 1 shows a time series of the number of GLAD

trajectories available for each 12-h window during the

study period.

Additional assimilated observations include GOES-

East sea surface temperature (SST), ARGO profiling

floats (Roemmich et al. 2001), and expendable bathy-

thermographs (XBT). These represent typical observa-

tion types and distributions for the region of interest.

The quality control and preparation of these observa-

tions is performed by the NCODA system (Cummings

2005). Note that the vast majority of these observations

are SST data.

The time period for the analysis presented here is 1

August–30 September 2012. During this period, a large

Loop Current eddy (evident in the 23 August SSH field

shown in Fig. 2) was present in the mid-GOM. Figure 3

shows that the GLAD trajectories covered much of the

northeastern GOM during this period, with several

preferred pathways evident. Velocities derived from

these drifter trajectories help to constrain the mesoscale

features of the model forecasts. An important event

during the study period was the passage of Hurricane

Isaac, a category 1 hurricane, during 26–30 August 2012.

The storm was responsible for the sharp drop in the
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number of reporting drifters seen in Fig. 1. It also spread

the remaining drifters over a much larger area of the

GOM. While not quantifiable, it is possible that the

loss in numbers was compensated for by better spatial

coverage.

4. Methods

In this section, two NCOM-4DVAR model forecast

experiments with assimilation are compared with a free-

running NCOM model without any assimilation. The

FIG. 1. Number of GLAD drifters during the study period.

FIG. 2. Composite GOM SSH field showing the position of a Loop Current ring on 23 Aug 2012. [Courtesy

of Colorado Center for Astrodynamics Research (CCAR).]
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free running experiment is referred to as the ‘‘FREE’’

run. The first assimilative forecast uses only temperature

and salinity observations and it is referred to as the

‘‘T/S’’ run. The second assimilative forecast uses

temperature, salinity, and velocities from the GLAD

drifters and it is referred to as the ‘‘ALL’’ run. The two

assimilative forecasts were run as described in Carrier

et al. (2014). Here ‘‘assimilative forecasts’’ refers to

those forecasts initialized from the assimilation

analysis.

The T/S and ALL forecasts use 4-day assimilation

windows throughout the study period. After each 4-day

assimilation cycle, 4-day forecasts are produced by

the forward model using the corrected end state of

the previous assimilation cycle as the initial condi-

tion. The 4-day forecasts are later used as the back-

ground for the next 4-day assimilation window. As

described by Carrier et al. (2014), data injection every

hour during the assimilation period produced the best

fit to the observations. All data each hour was spa-

tially subsampled to match the spatial correlation

length. The relatively long forecast window of 4 days

was chosen to achieve a reasonable level of in-

dependence between assimilated and evaluation

data.

Simulated trajectories are computed for each NCOM

forecast using simple advection. No attempt is made to

account for subgrid scale or diffusion effects. Simulated

drifters are advected with hourly model surface veloci-

ties (linearly interpolated in space and time) using an

explicit, adaptive time-step fourth-order Runge–Kutta

scheme. The initial locations of the simulated drifters

are set as the locations of the GLAD drifters at the start

time of each 4-day forecast.

Two metrics are used to compare GLAD trajectories

with simulated trajectories from all three NCOM fore-

casts. The first metric is separation distance, computed as

the distance (in kilometers) between an observed and

simulated drifter at a specified time. This metric is fre-

quently used to assess trajectory forecast skill (e.g., see

Huntley et al. 2011). The second metric is angular dif-

ference, used to investigate possible direction biases in

model forecasts. A drifter angle is defined as the compass

angle of the line drawn between the drifter launch posi-

tion and its position at a specified time. The angular dif-

ference is defined as the difference (in degrees) between

observed and simulated drifter angles. These metrics are

computed using all available GLAD trajectories.

5. Results

Figure 4 shows a time series of mean separation dis-

tance (computed using all available GLAD trajectories)

24 h into the 4-day forecast for all three NCOM runs

over the 14 assimilation intervals in the study period.

Over the entire study period, the ALL run produces the

smallest separation distances, with a mean value of ap-

proximately 10 km. Separation distance for the ALL run

also decreases with time as the model is repeatedly

corrected with the observed velocities. Separation dis-

tances after 48, 72, and 96h (not shown) show similar

behavior over time, with larger magnitudes. It is also

interesting to note that the assimilation of just temper-

ature and salinity does not outperform the FREE run in

FIG. 3. GLAD drifter trajectories for the period 1 Aug–30 Sep 2012.
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predicting velocity trajectories (especially toward the

later part of the experiment). This decrease in forecast

skill, due to the low predictability of the ocean response

to hurricanes, coupled with the ageostrophic conditions

that persist in the wake of a passing hurricane, make the

constraining of surface velocities with temperature and

salinity observations difficult.

Separation distances for the FREE run and T/S

forecasts peak on 21 August, after the fourth assimila-

tion cycle (Fig. 4). For the ALL forecast, which assimi-

lates GLAD velocities, this peak is reduced markedly.

The peak on 21 August is due to forecast errors (most

noticeable in the T/S and FREE runs) in the position

and shape of the Loop Current ring. Figures 5a and 5b

show the mean FREE and T/S forecast SSH field com-

puted over the period 21–25 August 2012, as well as

some example GLAD and model trajectories. There is

an obvious mismatch between the GLAD trajectories

and the mean FREE and T/S forecast SSH. Figure 5c

shows the mean ALL forecast SSH field computed over

the same time period. The ALL forecast produces

a better realization of the Loop Current ring yielding

much better agreement between the GLAD and simu-

lated drifters. For the ALL forecast (Fig. 5c) both the

observed and simulated trajectories follow the ring

boundary, consistent with geostrophic flow. The Loop

Current ring shape in Fig. 5c agrees very well with the

composite altimetry map for 23 August shown in Fig. 2.

The assimilation of the velocity data improves the SSH

field due to the dynamical connection between the mass

and velocity fields provided by the barotropic model.

The extent of this Eulerian improvement is explored

more fully in a companion paper (Carrier et al. 2014).

Time series of separation distance, computed hourly

as the average over all available drifters, for the 96-h

forecast of each assimilation cycle are shown for the

FREE forecasts (Fig. 6a), the T/S forecasts (Fig. 6b), and

the ALL forecasts (Fig. 6c). In these figures, one curve is

shown for each of the 14 assimilation cycles during the

study period. The ALL forecasts (Fig. 6c) consistently

produce better trajectory forecasts, with much lower

separation distances over all cycles when compared to

the FREE (Fig. 6a) and T/S forecasts (Fig. 6b). When

the 14 curves in Figs. 6a–c are averaged, linear fits to the

curve show a 12.5 kmday21 increase in separation dis-

tance for the ALL forecasts compared to 19.8 km for the

T/S forecasts and an 18.6 kmday21 for the FREE fore-

casts. Figure 6 also shows the increased spread of the

separation distance enveloped for the FREE and T/S

forecasts when compared to the ALL forecasts.

Time series of the distributions of angular differences

are best presented as two-dimensional histograms. His-

tograms of angular differences after 24-h forecasts are

shown for the FREE forecasts (Fig. 7a), T/S forecasts

(Fig. 7b), and the ALL forecasts (Fig. 7C). For these

histograms, angular differences were binned in 158 in-
tervals. A comparison among Figs. 7a–c shows that the

ALL forecasts produce smaller angular differences, with

most angular differences ranging from approximately

2608 to 608. The FREE and T/S experiments (Figs. 7a

and 7b) have more drifters with larger angular differ-

ences. The histograms in Fig. 7 do not show any obvious

preferred directional mismatch, with most angular dif-

ferences ranging from approximately 2458 to 458.
To assess the potential spatial range of our model

corrections for improving Lagrangian predictability, a

data-denial experiment was performed, where approxi-

mately 50% of the original drifter record was left out for

validation. Figure 8 shows the trajectories of the in-

cluded drifters as well as a 50-km-radius circle. Any

FIG. 4. Mean separation distance (km) after 24 h between the GLAD and simulated drifters for

each assimilation cycle. The average is taken over all the available drifters at each time.
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drifter that entered that circle during the 2-month study

period was removed from the assimilation. This location

was chosen to make this test as rigorous as possible by

removing a large number of drifters that observe the

mesoscale eddy that is a main circulation feature in this

domain.

Figure 9a shows the separation distance time series

similar to Fig. 4 except that the separation distance is

FIG. 5. Mean SSH (m) for the (a) FREE experiment, (b) T/S experiment, and (c) ALL

experiment for 0000 UTC 21 Aug–0000 UTC 25 Aug 2012. Black crosses indicate observed

positions at 0000 UTC 21 Aug 2012 for six GLAD drifters. Observed (green) and simulated

(purple) trajectories using (a) FREE, (b) T/S, and (c) ALL forecast velocities are also shown.
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calculated only at the locations of the removed drifters

and the data-denial experiment is included as well. The

data-denial experiment produces significantly lower

separation distances than the FREE and T/S runs until

the beginning of September. Thereafter the separation

distances for the data-denial experiment are of the same

order as the FREE and T/S runs, with the ALL experi-

ment producing the lowest distances. As mentioned

earlier the removed drifters were in the region of the

large eddy whose misplacement causes the large peak in

the separation distances of the FREE and T/S runs.

Even though the majority of the remaining drifters did

not directly sample this eddy, the data-denial experi-

ment still successfully reduces the separation distances

because sufficient drifters remained to constrain this

eddy feature.

FIG. 6. Mean separation distance as a function of forecast length

for each of the 14 assimilation cycles during the two-month study

period (gray lines) for the (a) FREE experiment, (b) T/S experi-

ment, and (c) ALL experiment, with the linear fit to all the cycles

(black line). The average is taken over all the available drifters for

each time step.

FIG. 7. Two-dimensional histograms showing the percentage of

drifters with a given mean angular model-observation mismatch

after 24 h for each assimilation cycle. (a) FREEexperiment, (b) T/S

experiment, and (c) ALL experiment.
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The improvement of the Lagrangian predictability for

the data-denial experiment over the FREE and T/S runs

disappears in September (Fig. 9a). This result can be

explained by the fact that in this month the distance

between unassimilated and assimilated drifters signifi-

cantly increased. Figure 9b shows the time series of the

mean over all unassimilated drifters of the distance to

the nearest assimilated drifter for each time step. The

large peak near the end of August coincides with the

failure of a single assimilated drifter on 27August, which

had been constraining a large number of unassimilated

drifters. The hurricane passage around the same time

also spread the drifters out spatially. Thus, the period of

improved predictability (9–27 August) is marked by an

average distance to an assimilated drifter of roughly 15–

40 km, whereas during the following period (28 August–

29 September) the average distance to an assimilated

drifter is much larger, around 60–80 km.

These results suggest that a critical distance above

which an assimilated drifter will not sufficiently con-

strain an unassimilated one is around 40–60 km. It

should be cautioned, however, that this critical distance

is likely to depend strongly on the flow regime and the

dominant scales of circulation features in the area of

interest. Moreover, it is likely to be nonisotropic.

Clearly, more analysis is needed for a more compre-

hensive assessment of the spatial scales of a drifter’s

impact on nearby trajectories, which we hope to report

on in follow-on papers.

6. Summary

A previous study (Carrier et al. 2014) showed that

assimilating velocity data inferred from drifters using

4DVAR can markedly improve model temperature,

salinity, SSH, and velocity Eulerian forecast skill. Here,

analysis of the same forecasts described by Carrier et al.

(2014) shows that assimilating these drifter velocities

also markedly improves trajectory forecast skill over

a 24-h period (see Fig. 4). Averages over the fourteen

4-day assimilation cycles studied here show that assim-

ilating drifter velocities reduces trajectory forecast error

growth rates by 7.3 kmday21, a substantial improvement

(see Fig. 6). Trajectory direction differences also de-

crease markedly when drifter velocities are assimilated.

The data-denial experiment is a first step toward de-

termining the spatial extent of the improvements to

Lagrangian predictability. The results show that the

FIG. 8. GLAD drifter trajectories assimilated for the period 1 Aug–30 Sep 2012 for the data-

denial experiment. All drifters that ever entered the black circle were removed from the

original record.
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Lagrangian predictability significantly falls off away

from the assimilated drifters for distances greater than

about 40 km. Note that the correlation scale selected for

these Gulf of Mexico experiments is also 40 km.

Here, the dramatic improvements in mean trajec-

tory forecast skill were due to increased accuracy of

the mesoscale forecast position and shape of a large

Loop Current ring in the mid-GOM (see Fig. 5). The

added constraints provided by assimilated drifter ve-

locities not only improved forecast trajectories, but

also provided important corrections to the forecast

SSH field.

The tracking and prediction of oil transport at the

ocean surface remains a challenging problem for ocean-

ographers. The assimilation of these high-resolution

drifter velocities is shown to provide an important cor-

rection to the model mesoscale forecast that leads to

a substantial improvement in trajectory forecast skill. This

result underscores the importance of drifter observations,

and their ability to substantially improvemodel trajectory

forecasts in response to future oil spills.
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(b) The minimum distance of each unassimilated drifter to the nearest assimilated drifter, averaged over all the
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