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ABSTRACT

A variational data assimilation algorithm is developed for the ocean wave prediction model [Wave Model

(WAM)]. The algorithm employs the adjoint-free technique and was tested in a series of data assimilation

experiments with synthetic observations in the Chukchi Sea region from various platforms. The types of

considered observations are directional spectra estimated from point measurements by stationary buoys,

significant wave height (SWH) observations by coastal high-frequency radars (HFRs) within a geographic

sector, and SWH from satellite altimeter along a geographic track. Numerical experiments demonstrate

computational feasibility and robustness of the adjoint-free variational algorithm with the regional configu-

ration of WAM. The largest improvement of the model forecast skill is provided by assimilating HFR data

(the most numerous among the considered types). Assimilating observations of the wave spectrum from a

moored platform provides only moderate improvement of the skill, which disappears after 3 h of running

WAM in the forecastmode, whereas skill improvement provided byHFRs is shown to persist up to 9 h. Space-

borne observations, being the least numerous, do not have a significant impact on the forecast skill but appear

to have a noticeable effect when assimilated in combination with other types of data. In particular, when

spectral data from a single mooring are used, the satellite data are found to be the most beneficial as a

supplemental data type, suggesting the importance of spatial coverage of the domain by observations.

1. Introduction

In the last decades, significant progress has beenmade

in numerical modeling of oceanic waves (Cavaleri et al.

2007; Janssen 2008). With the advent of massive obser-

vations of sea surface roughness from satellites, the

forecast skill of the wave models (WMs) acquired new

prospects for further improvement through optimiza-

tion of the poorly knownmodel parameters with respect

to the observations.

The early attempts to improve WM performance

through data assimilation employed the nudging tech-

nique to reduce the misfit between the integral charac-

teristics of the model spectra, such as significant wave

height (SWH), and observations (Francis and Stratton

1990; Bauer et al. 1992; Breivik and Reistad 1994;

Wittmann and Cummings 2004). More sophisticated as-

similation schemes updated the model using optimal in-

terpolation of several spectral characteristics (Lionello

et al. 1992; Dunlap et al. 1998; Greenslade 2001). The

approach was generalized to the spectral partitioning

technique (Voorrips et al. 1997; Aouf and Lefevre 2006;

Abdalla et al. 2006), which appeared to provide a rea-

sonably good improvement of the forecast skill.

An interesting approach was proposed by Bauer et al.

(1996), who explicitly inverted the linearized Wave

Model (WAM; WAMDI Group 1988; Monbaliu et al.

2000) operator to obtain corrections to the wind fields

induced by observations of the wave spectra. This

method was constrained by a rather strong assumption

that the response of the linearized model is localized

both in space and time. Holthuijsen et al. (1997)

explored a similar technique using a limited number of

nonlocal perturbations that were derived from statistical

analysis of the wind forcing error fields. The method

demonstrated a 20%–25% reduction of the forecast

errors at time scales less than a day.
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Voorrips et al. (1999) were among the first to explore

the performance of the extended Kalman filter (KF) in

application to WAM using simulations in simple ge-

ometries. The extended KF, its reduced-order ap-

proximation, and fixed-lag Kalman smoother were

tested and they demonstrated better performance than

optimal interpolation (Hasselmann et al. 1997), espe-

cially in estimating the wave field away from observa-

tions and in past wind corrections. More recently,

Sannasiraj et al. (2006) proposed a hybrid assimilation

scheme that combined a statistical error model at the

observation points with spatial interpolation using the

Kalman gain matrix. Their method was capable of re-

ducing the forecast errors by 30%–60% over 12–24-h

forecast periods. Operationally oriented sequential KF

methods were also considered by Emmanouil et al.

(2010, 2012), who employedWAM in combination with

the second-order KF and optimal interpolation

schemes to improve the model’s performance in the

North Atlantic.

Variational methods involving the adjoint models

have been in use in WM data assimilation for more

than two decades (Snyder et al. 1992; Barzel and Long

1994; De Las Heras et al. 1994, 1995; Hersbach 1997;

Veeramony et al. 2010). One of the difficulties with

this approach is in the numerical complexity of the

WMs, which employ sophisticated nonlocal parame-

terizations of the source terms and operate in spatially

variable spectral space. De Las Heras et al. (1994) used

an approximation to the adjoint WAM, neglecting

spatial derivatives in the evolution equation. Orzech

et al. (2013) took an alternative approach of de-

veloping the adjoint for spectral advection and

performed a series of experiments controlling steady-

state open boundary conditions of the linearized ver-

sion of spectral WMs for nearshore [Simulating Waves

Nearshore (SWAN)] applications. Similar experi-

ments were performed by Veeramony et al. (2010),

who used the analytical adjoint developed by Walker

(2006). Recently, Orzech et al. (2014) employed the

adjoint of SWAN to optimize the offshore SWH

observations.

In the present study we explore the feasibility of the

new variational data assimilation technique (Yaremchuk

et al. 2009; Trevisan et al. 2010) in application toWAM.

This approach employs a sequence of low-dimensional

subspaces that are iteratively updated in the process of

finding a cost function minimum. A distinctive feature

of the method is that it does not require development

of the tangent linear and adjoint codes for imple-

mentation, which is important for WM applications. In

addition, the adjoint-free four-dimensional variational

data assimilation (a4DVAR) method is less vulnerable

to the instabilities that develop in the adjoint versions

of the numerical models due to the breakdown of the

tangent linear approximation in strongly nonlinear re-

gimes. It was also shown that the a4DVAR technique

appears to be advantageous when observations are

sparse and noisy.

We explore the performance of the a4DVAR tech-

nique with WAM configured in the 800 km 3 800 km

region of the Chukchi Sea (Fig. 1). In recent years this

sector of the Arctic Ocean was subject to significant

summer/fall storm activity due to the rapid loss of the ice

cover, but its wave conditions remain largely un-

explored. The choice of the region was partly motivated

by the anticipated increase of shipping through the Be-

ring Strait. This may require monitoring and forecasting

of the wave conditions, which could be better done with

data assimilation. Presented data assimilation (DA)

experiments are performed with several types of ob-

servations that include SWHdata from satellites, coastal

HF radars, and spectral characteristics obtained from

in situ observations at moored buoys.

In the following section, we present the details of ex-

perimental setting after a brief description of the

a4DVAR assimilation technique. In section 3, the re-

sults of synthetic data experiments are presented and

compared with the results of the traditional optimal in-

terpolation (OI) method, observability of the wave field

from different platforms is discussed, and the compu-

tational cost of the a4DVAR is considered. Additional

discussion is offered in section 4, preceded by a brief

summary and overall conclusions.

FIG. 1.Wind speed (white arrows) and SWH (contours, m) of the

model solution at 0000UTC 20 Sep 2011 (t5 0). Mooring positions

are shown by black squares. HFR location and coverage area are

given by the black circle with a sector. SWH data are acquired

along the radar beams shown by dotted lines within the sector.

Dashed lines are the tested tracks of Envisat.
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2. Methodology

a. a4DVAR technique

A variational DA algorithm performs a dynamically

constrained search for a minimum of the cost function J,

which quantifies the distance between observations and

the numerical model solution used to assimilate the data.

This minimization is performed with respect to a set of

poorly knownmodel parameters (e.g., the set of gridpoint

values of the model fields at the start of time integration)

that constitute the control vector c. Assuming the dif-

ferentiability of J with respect to c, in the vicinity of the

minimum the cost function is represented by

J5 Jo 1
1

2
(c2 co)

TJ(c2 co) , (1)

where Jo and co are the values of J and c at theminimum,

respectively, and J is the Hessian matrix of the assimi-

lation problem.

Assume now for simplicity a linear framework and

minimization of the following cost function with respect

to the model state x at the initial time t5 0 x0 [ c:

J5
1

2
(c2 cb)TB21(c2 cb)

1
1

2

�
�
n
(Hnxn2 dn* )TR21(Hnxn2 dn* )

�
. (2)

Here cb is the first guess (background)model state at t5 0;

B is its error covariance; summation is made over obser-

vation times tn, when the data dn* are available; R is the

observation error covariance; operators Hn project the

respectivemodel states xn onto the vectors dn* of observed

quantities; and the superscriptedT stands for transposition.

The cost function (2) can be rewritten in terms of

deviations ~x5 x2 xb of the model states from their

background values:

J5
1

2

�
~xT0B

21~x01 �
n
(~Hn

~xn 2
~dn)

2

�
, (3)

with ~Hn 5R21/2H and ~dn 5R21/2dn 2 ~Hnx
b
n. Introducing

the notation Mn for the model operator mapping c onto

xn and omitting tildes for convenience yields the explicit

expression for J in terms of c:

J5
1

2

�
cTB21c1 �

n
(HnM

nc2dn)
2

�
. (4)

Equation (4) can be represented in the complete

square form:

J5
1

2
(Sc2 b)2 , (5)

where

S5

2
66664

B21/2

H1M
1

..

.

HnM
n

3
77775; b5

2
66664

0

d1

..

.

dn

3
77775 , (6)

and S is the square root of the Hessian matrix J5STS.

To find the minimum, one has to solve the normal

equation

STSc5STb . (7)

The solution of (7) can be obtained by considering the

equivalent left-preconditioned system

PTSc5PTb (8)

with the only requirement for the preconditioner P is to

have the same range withS (e.g., Hayami et al. 2007). As

seen in (8), the best preconditioner is P*5SJ21, which

delivers convergence in one iteration. In practice, how-

ever, (pseudo) inversion of the Hessian is computa-

tionally unfeasible, and various approximations to P*

are considered. The major principle of a preconditioned

iterative solver is to implicitly build the solution of the

form

co 5 cb 1 �
m
am(P

TS)mPTr0 ; r0 5Scb 2 b , (9)

which can be performed by a variety of methods in-

volving Krylov subspaces K (e.g., Vuik et al. 1996). In

particular, the well-known conjugate gradient minimi-

zation algorithm can be viewed as a version of the

Krylov subspace technique with P5S; that is, J21 is

replaced by the identity operator I.

The adjoint-free variational methodology (Yaremchuk

et al. 2009) avoids the use of the adjoint modelMnT in the

construction of the preconditioner but employs explicit

computation of the columns of S to invert J in K and

performs consecutive orthogonalization of the search

subspaces with respect to the inner product induced by

the Hessian matrix in the control space (see the

appendix).

In principle, the availability of the algorithm for in-

version of J in a sequence of J-orthogonal subspaces is a

necessary condition for the monotonic decrease of the

cost function with iterations, but it is not sufficient to

achieve the global minimum in the linear case due to a

possibility of the breakdown of the process. The latter

occurs when the new search directions become (almost)

linearly dependent on the directions generated at the
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previous iterations. In the realistic nonlinear applications,

however, the number of iterations rarely exceeds a few

hundred due to computational constraints. Therefore, the

key practical requirement to the algorithm for the itera-

tive update of the search directions is its ability to quickly

generate subspaces spanned by the leading projections of

the initial residual r0 on the eigenvectors of the inverse

Hessian matrix, which defines the solution copt 5 J21STb

to (7). If the final residual is sufficiently small (i.e., the

model–data misfit is smaller than the observation error),

the solution is assumed to be acceptable. An ad hoc

method is to employ the sequence fMnrmg, as it contains
projections of the residual rm at the mth iteration on the

most persistent dynamical modes of the system and may

therefore capture a significant part of copt.

In the present study we employ the technique of

building the search subspaces K on the sequences

fMncmg. This approach provided acceptable solutions

after 100 iterations and therefore proved to be satis-

factory in the experiments with WAM.

The a4DVAR algorithm was coded as the following

sequence of operations:

1) Specify the background initial conditions c and run

the model, writing down model states xn and their

deviations from the data Hnxn 2 dn* at the observa-

tion sampling frequency (15min). Using the model

run output, compute the cost function value J0 and

the auxiliary vector Sc.

2) Extract the m leading EOFs ej, j5 1, . . . , m from the

sequence fxng to form the basis in the search subspace.

3) Perturb the initial condition cj / c1 «ej («5 0:001)

and perform (in parallel) the ensemble of the per-

turbed model runs, computing the respective per-

turbed values of Jj and Scj.

4) J-orthogonalize the search basis fejg with respect to

at most k bases obtained on the previous iterations

and compute the optimal correction dc to the initial

condition by minimizing J in the subspace spanned

by the perturbations (see the appendix).

5) Update the initial condition c) c1 dc and compute

theupdatedvalues ofxn, J, andScby running themodel.

6) If the stopping criterion is satisfied (either the

magnitude of the cost function gradient normalized

by its initial value is less than 1023J0 or the number of

iterations exceeds 100), exit. Otherwise, go to 1 to

start the next iteration.

b. Setting the experiments

1) WAM

WAM performs a time integration of the balance

equation describing spectral density F(x, k, t) for the

wave component with the wavenumber k5 (kx, ky) at

the location x5 (x, y):

›F

›t
1$ � (yF)5S(F, x, k, t) , (10)

where S is the sum of source functions, primarily

composed of wind-forced generation, dissipation, and

redistribution of the wave spectrum by nonlinear wave–

wave interactions (WAMDI Group 1988); $5 f$x, $kg
stands for the gradient in the horizontal and wave-

number coordinates; and y is the four-component vector

of the respective wave-propagation velocities depending

on the ambient current and constrained by the disper-

sion relationship for linear surface waves:

s25 gjkj tanhjkjh , (11)

where s is the wave angular frequency and h(x) is the

water depth.

Given the appropriate initial/boundary conditions,

ambient current, and wind forcing, (10) is integrated

numerically to produce the evolution of the wave spec-

trum in the space–time domain of the model.

An important diagnostic formula available in the

WAM package relates the squared SWH Q2 with

the spectral density through the following linear

relationship:

Q2(x, t)5 Q̂N5 16�
k
F(x, k, t) dk , (12)

where dk denotes the gridcell area in the wavenumber

space and summation is done over the entire grid.

The model was configured in the domain shown in

Fig. 1 with the spatial resolution of dx5 9 km. There

were mx 5 4412 active grid points in horizontal and

mk 5 600 grid points (24 directions at 158 resolution and

25 logarithmically spaced frequencies between 0.0314

and 0.3091Hz) in the wavenumber space. The total

length of the state vector was M5mx 3mk 5 2 647 200.

Distance between the model states was assessed in

terms of the correlation coefficient C and the normal-

ized rms difference S between the spectra:

C(F)5
hF 0

1F
0
2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hF 02
1 ihF 0

2i
q ; N05N2 hNi (13)

S(F)5

2
64h(F12F2)

2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hF 02

1 ihF 02
2 i

q
3
75
1/2

, (14)

where angular brackets denote averaging in space, time,

and over the wavenumbers. Similar coefficients were
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calculated to assess the differences between the scalar

(SWH) and vector (wind speed) fields, with averaging

performed just in space and time.

2) COST FUNCTION

The general form of the cost function used in the data

assimilation experiments was identical to (4) with the

M-dimensional vector c5N(t0)2Nb(t0) describing the

difference between the gridded model state F(x, k, t0)

and the background (first guess) state Fb(x, k, t0) at the

start of model integration t0. The first term in (4) was

specified by

cTB21c5W�
x
[(I2 a2=2

x)Q̂c]2 (15)

and was kept intact through all the experiments. In the

aforementioned equation, W is the regularization

weight; I is the mx 3mx identity matrix; and the pa-

rameter a defines the high-frequency cutoff in horizontal

coordinates, which enforces spatial smoothness in the

deviations of the optimal state SWH from the back-

ground. By setting a5 2dx throughout the experiments,

SWH variability at spatial scales below a was heavily

penalized. The regularizationweightWwas chosen to be

inversely proportional to the squared mean of SWH in

the background solution with the proportionality co-

efficient «x 5 0:01.

As seen in (15), the parameter a can also be in-

terpreted as the horizontal decorrelation scale of the

SWH errors: The respective inverse error correlation is

proportional to (I2 a2=2
x)

2 and has the kernel that ex-

ponentially decays with the distance between the cor-

related points at the length scale of 4
ffiffiffiffiffiffiffiffi
2/p

p
a; 60km

(e.g., Yaremchuk and Smith 2011). Since B21 is also

proportional to (I2 a2=2
x)

2, a similar spatial structure is

induced in the spatial correlations between the spectral

components of c. Apparently, our choice of the decor-

relation scale could be refined (see, e.g, Waters et al.

2013), but we consider it to be a reasonable approxi-

mation to reality given the objectives of our study. In the

spectral subspace, (15) defines the inverse error co-

variance to have only one linearly independent column

(specified by the components of Q̂). As a consequence,

spectral correlations at a given point are represented by

anmk 3mk correlationmatrix whose elements are equal

to 1 (thus implying 100% correlation between all the

spectral components). This assumption has been rou-

tinely used in the sequential algorithms assimilating

SWH (e.g., Wittmann and Cummings 2004).

The observation part of the cost function (4) is de-

fined by the structure of the observation operators Hn

and the respective error variances Rn described in

section 2b(4).

To compare the results with the traditional OI

method, we used the 2D OI approach (e.g., Wittmann

and Cummings 2004; Waters et al. 2013) in application

to the SWH data: at the observation times, the WAM

state was sequentially updated by the OI analysis of the

SWH field, which was projected onto the spectral com-

ponents by multiplying the spectrum at a grid point by

the ratio of the updated to predicted SWH values. The

OI algorithm was configured with the same background

error covariance B, Rn, Hn and using the same true and

background solutions as the a4DVAR method.

3) TRUE AND BACKGROUND SOLUTIONS

To perform the experiments, the true evolution of

the wave field was generated by integratingWAM from

the state of rest for 10 days under Oceanweather Inc.

(OWI) wind forcing. The high-resolution OWI winds

were developed by Oceanweather, Inc. using the

methodology of Cardone et al. (1995, 1996). The winds

were taken for the period 11–20 September 2011 and

were updated every hour during the integration. The

true stateNt(x, k, t) shown in Fig. 2 was picked from the

last 9 h of the model run (0000–0900 UTC 20 September

2011). Synthetic data (described in the next subsection)

were picked from the true solution and then used for

its reconstruction through minimization of the cost

function (4).

Minimization started from the background run of the

model, which was obtained as follows: The true model

solution was averaged in time and space and the

resulting spatially homogeneous spectrum was used as

the initial condition for the background model run. The

run was forced by the winds, which were different from

those forcing the true solution. First, the true winds were

horizontally smoothed to mimic the errors typical for

reanalysis winds from meteorological centers that are

usually available at a coarser (0.258–18) resolution and

have to be interpolated on the fine resolution of grid of a

regional ocean model. In the case considered, the

smoothing was done by the isotropic Gaussian filter with

the half-width of 25 km. After smoothing, the winds

were rotated 358 counterclockwise to increase their

distance from the truth to Swind 5 0.67 [(14)]. The larger

distance from the true forcing was needed for better

assessment of the observation impact on the re-

construction of initial conditions, whose signature usu-

ally persists for 3–5h in a typical wave model

integration.

4) SYNTHETIC OBSERVATIONS

In this study two types of data are considered: moored

observations of the wave spectra and SWH measure-

ments from coastal HF radars and satellites. Each data
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type had a specific structure of the observation operator,

noise, and data generation procedure.

Two tested mooring sites are shown in Fig. 1: one was

positioned in the open Chukchi Sea 150km northwest of

Cape Hope and the location of the second mooring

corresponds to the real instrument maintained in the

Bay of Kotzebu from July to December 2007 (Francis

et al. 2011). Observations d* by each mooring were

generated by multiplying the true spectrum at any mo-

ment by the random factor 11 «n, where n is the white

noise with unit variance and «m 5 0:01. The observa-

tional error covariance matrices R for both moorings

were diagonal with time-independent diagonal elements

equal to h«Nti2. The respective observational operators

H were time independent and picked the time-varying

WAM spectra every 15min from the grid point nearest

to the buoy location, providing 4mk 5 2400 observations

per hour.

It should be noted that directional buoys provide

only a few moments of the full spectrum and therefore

constrain much smaller degrees of freedom of a model

than mk (usually, 2–3 times the number of frequencies,

i.e., 50–80 in our case). These moments, however, are

linear functions in the model state, and their calculation

in terms of spectral components does not principally

differ from Eq. 12. Assimilation of buoy moments

would, of course, be a better approach in practice [like

extending the method of Voorrips et al. (1997) to all the

measured components of the directional spectrum], but

in context of our study, this would fall somewhere in

FIG. 2. Evolution of the horizontally averaged (left) true and (right) background spectra.
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between assimilating the full spectrum and its first mo-

ment (SWH) and would not be a useful addition to our

analysis. We should also keep in mind that a user can

assimilate postprocessed buoy data in the form of the

full spectrum computed by the estimator available in the

software provided with an instrument.

SWH observations were simulated by integrating the

true spectrum field (Eq. 12) into the apexes of the grid

cell containing a high-frequency radar (HFR) observa-

tion point followed by linear interpolation onto that

point. After that, the SWH value was contaminated by

random noise with the rms variance of 30 cm. HF radar

observation points were located along the beams of the

radar considered for placement at the Cape Hope site to

monitor wave conditions north of the Bering Strait

(Fig. 1). The above-described HFR observation opera-

tor computed SWH values along the 25 beams every

15min, providing information to 535 model grid points

within the sector shown in Fig. 1 (2140 observations

per hour).

Synthetic satellite observations of sea surface rough-

ness provided SWH data along the Environmental Sat-

ellite (Envisat) tracks shown in Fig. 1 with 9-km

discretization (55 and 73 points for tracks A and B, re-

spectively). These data were assumed instantaneous and

satellite passage occurred for both tracks after 2 h of

model integration. The respective observation operator

was similar to the one used for HFR, except that it

picked SWH values at the sequence ofWAMgrid points

closest to the sampling points along the tracks (i.e., no

spatial interpolation was used). Satellite SWH obser-

vations were contaminated similarly to HFRs with the

rms error variance of 30 cm.

3. Results

Synthetic observations of SWH and wave spectra

were assimilated into WAM using the adjoint-free var-

iational technique. The model was constrained by data

during the first 3 h of model integration and then in-

tegrated for 6 h to assess the improvement of the fore-

cast skill. Performance of the method was quantified by

calculating C (Eq. 13) and S (Eq. 14) between the op-

timized and true solutions. These quantities were com-

puted with time averaging over three time intervals: 0–3h

(assimilation period), and two forecast periods of 3–6h

and 6–9h. Five ensemble members were used for span-

ning the search subspace on every iteration. More de-

tails on building and orthogonalization of the ensemble

members are given in the appendix. The 3-h ensemble

model runs were executed in parallel and required 62 s

of wall time per a4DVAR iteration on five processors

of the 2.3-GHz cluster (1–1.5 h per experiment). The

sequential OI algorithm assimilating HFR data was ex-

ecuted in 74 s on a single processor.

A series of OI and a4DVAR experiments were con-

ducted, involving assimilation of the data from five

sources and their combinations: high-frequency radar at

Point Hope (denoted by HF), two moorings (a4DVAR

analyses only, locations shown in Fig. 1), and two En-

visat tracks (A and B; Fig. 1). For comparison purposes,

we conducted similar experiments with the OI method

assimilating only SWH data from satellites and/or HF

radar, which are abbreviated oHFA(B) and oHF, re-

spectively, in the description below. With the exception

of satellite tracks, all a4DVARassimilation experiments

demonstrated significant improvement of the model

state in terms of its proximity to the true solution. The

stopping criterion for optimization was the reduction of

the cost function gradient 1000 times, which usually

occurred after 80–100 iterations. By that time the value

of J was typically reduced 2–3 times (Fig. 3). Maps of

deviations from the truth of the spatially averaged

background and optimized spectra at t5 0 are shown in

Fig. 4. In most of the a4DVAR experiments, the initial

error has been reduced to the values compatible with the

wind forcing errors. The only exceptions were the results

of optimal interpolation (Fig. 4b) and of the a4DVAR

assimilation of SWH data from a single-satellite track

(not shown): in these cases the optimized spectrum was

only slightly different from the one produced by the

background solution. For the OI case such a small

FIG. 3. Convergence of the a4DVAR algorithm in the assimila-

tion experiments with M1B and HF data. (left) Cost function and

(right) its gradient are normalized by their values at the start of

assimilation.
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correction can be explained by the fact that SWH data

are weakly constrained by dynamics and can barely af-

fect the shape and location of the spectra because they

provide information only on their mean magnitude at a

geographical position. Small spectral improvement of

the a4DVAR experiments with a single-satellite track

could be attributed to the small amount of data (55 SWH

observations). As a consequence, the cost function is

dominated by the regularization term, which implies

100% correlations in spectral space and is therefore

capable of adjusting only the spectral magnitude.

These properties of the abovementioned assimilated

solutions translate into their lower spectral forecast skill

shown inTable 1, which also includes spectral errors from

the other assimilation experiments. Abbreviations in the

left column of Table 1 correspond to the types of data

used in the experiment (e.g., HFA corresponds to as-

similation of theHF data and SWHdata from theEnvisat

track A). As seen, 6420 observations by the HF radar

provide the largest impact on the improvement of the

wave field during the assimilation period: the correlation

coefficient C03 increases from 0.47 to 0.77, whereas S03
drops from 0.89 to 0.65. The OI method provides a rela-

tively low skill improvement similar to assimilation of a

single-satellite track (cf. row 1 and rows 5, 13, 14).

Direct measurement of the spectra by a single moor-

ing (7200 observation points, rows 6, 9) also provide

only amoderate increase ofC03 to 0.52 and a decrease of

S03 to 0.86. This can be partly explained by the fact that

assimilated spectra occupy a small part of spectral do-

main (at most 15%–20%; Fig. 2). As a consequence, the

effective number of observations with useful (nonzero)

information on the state of the wave field should be

reduced 5–7 times down to ;1500 data points on the

total, which is compatible, by the way, to assimilating 3–

7 spectral moments. Besides, mooring data do not pro-

vide any information on the spatial variability of the

spectra, which appears to be crucial for the successful

recovery of the true state.

In that respect, it is remarkable that adding much less

numerous satellite data to moored spectral observations

improves the performance of the assimilation system

considerably. Combining moored and satellite data

provides 30%–40% growth of the correlation co-

efficients and a 20%–25% drop of the normalized

standard deviations from the true spectrum (cf. rows 6

and 9 with rows 7–8 and 10–11, respectively). At the

same time, satellite SWH data do not add much new

information to that containing in HFR observations (cf.

rows 2 and 3–4), which monitor the same integral

FIG. 4. Absolute difference between the horizontally averaged true spectrum at t5 0 and

(a) background spectrum, (b) oHFA-optimized, (c) M1A-optimized, and (d) HFA-optimized

spectra.
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quantity for the whole assimilation period (3 h) and

cover a significant part of the model domain (Fig. 1).

The importance of the spatial coverage by observa-

tions is confirmed by the result of the experiment with

assimilation of the spectra from two moorings: The

values ofC and S in this case demonstrate a considerable

improvement and become compatible (row 12 in Table

1) with those achieved with the joint assimilation of

spectra from the single mooring and satellite SWH data

(rows 7–8 and 10–11).

Normalized rms deviation term S from the true solu-

tion as a function of time is shown in Fig. 5. It is note-

worthy that the moderate reduction of S acquired after

assimilating M1 data is completely lost after 2 h of in-

tegrating the model without data constraints: after t5 5

hours, deviation from the truth becomes even larger

than that of the OI solution, which is very close to the

respective deviation of the background. The situation is

much improved with satellite data being taken into ac-

count (dashed lines in Fig. 5): the value of S significantly

drops and becomes compatible with the values achieved

by assimilating HFR observations. Complementing

HFR data with satellite observations does not affect the

mean value of S during the assimilation period, but it

has a noticeable impact on the forecast skill of themodel

(quantified by S) up to the end of integration. Apparent

convergence of all the curves by hour 9 is the conse-

quence of the wind forcing, which tends to attract model

trajectories to a state whose error is compatible with that

of the wind (Swind 5 0.67).

The time dependence of the spatially averaged cor-

relation coefficientsC(t) between the true and optimized

spectra (Fig. 6) demonstrates similar behavior: assimi-

lation of theM1 spectra provides a slight improvement of

the correlation (cf. gray and thick black curve in Fig. 6),

which persists for 2 h of model integration. Adding sat-

ellite SWH data from track B instantly provides in-

formation on the higher spectral densities in the

northern part of the Chukchi Sea (Fig. 1) and rises the

correlation to 0.65–0.7 (dashed gray line in Fig. 6).

Inspection of Table 1 also shows that information

from track A also increases the efficiency of assimilating

spectra from moorings but to somewhat lesser extent.

This phenomenon can be partly explained by the fact

that track A does not cover the region of the highest

SWH and therefore provides less information on the

magnitude of spatial variability of the wave field. Simi-

larly, assimilation of the M2 data appears to be slightly

less efficient than M1, which can be partly attributed to

the M2 position at the periphery of the domain.

Table 1 also indicates that on a regional scale, in-

stantaneous Envisat observations cannot provide a sig-

nificant improvement to the background state if they are

not accompanied by in situ measurements. At the same

time, satellite data become quite valuable in com-

plementing observations if the wave conditions are

measured by a single mooring.

The forecast errors provided by the HFA data as-

similation using OI and a4DVAR techniques and

TABLE 1. Normalized S and C between the optimized and true

solutions for the experiments with various types of data. Subscripts

03, 36, and 69 correspond to time-averaging ranges of 0–3, 3–6, and

6–9 h of model integration.

No. Expt C03 S03 C36 S36 C69 S69

1 BG 0.47 0.89 0.48 0.87 0.59 0.80

2 HF 0.77 0.65 0.72 0.69 0.71 0.70

3 HFA 0.75 0.66 0.72 0.68 0.70 0.70

4 HFB 0.76 0.64 0.76 0.65 0.75 0.67

5 oHFA 0.48 0.87 0.49 0.86 0.59 0.79

6 M1 0.53 0.85 0.47 0.87 0.50 0.86

7 M1A 0.70 0.71 0.70 0.71 0.68 0.73

8 M1B 0.71 0.70 0.70 0.71 0.69 0.72

9 M2 0.52 0.87 0.50 0.87 0.57 0.86

10 M2A 0.65 0.76 0.69 0.72 0.67 0.73

11 M2B 0.69 0.75 0.69 0.72 0.68 0.73

12 M1M2 0.71 0.73 0.67 0.75 0.68 0.73

13 A 0.47 0.89 0.48 0.88 0.57 0.79

14 B 0.48 0.88 0.48 0.87 0.58 0.78

FIG. 5. Normalized rms deviations from the truth of the oHFA,

HF-optimized, and M1-optimized spectra. Dashed lines corre-

spond to augmenting the a4DVAR-assimilated data with satellite

SWH observations from satellite passing through track B (experi-

ments HFA andHFB). Thick gray line corresponds to theM1–M2-

optimized a4DVAR solution. Vertical line marks the end of

assimilation period.
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averaged over the period of 3–9 h are compared in Fig. 7

in terms of the horizontal distributions of the SWH,

peak period, and wave direction errors. that The

a4DVAR technique provides 30%–50% better forecast

skill in terms of the SWH (0.28 vs 0.37m) and peak

period (0.63 vs 0.91 s). Although discrepancies in the

peak period near the southern and eastern boundaries

are comparable in both solutions, the a4DVARmethod

demonstrates a significant advantage over OI in the

northern Chukchi Sea and south of Cape Hope, result-

ing in approximately 10-cm smaller SWH errors

throughout the entire domain. A local maximum in the

a4DVAR peak period errors is also observed southwest

of Cape Hope (Fig. 7b) that can be partly explained by a

sharper gradient in the peak period field of the true so-

lution (Fig. 7a).

TheOI solution demonstrates a slightly better skill in

forecasting the wave direction (the mean difference of

13.18 vs 16.98). However, in the OI assimilation exper-

iments with other types of SWH data this number

varied within 138–13.38 and was quite close to the re-

spective characteristic (13.28) of the background

solution.

In general, our experiments have shown that the OI

method tends to improve the amplitude of the spectrum

and that it has only a slight impact on its shape and

position in the frequency-direction coordinates. In

contrast, the a4DVAR technique is capable of improv-

ing these characteristics as well, since it performs opti-

mization along the most persistent dynamical modes of

the governing (10). This important property of the

a4DVAR algorithm provides a significantly better ap-

proximation of the true solution and an improved

forecast skill.

FIG. 6. As in Fig. 5, but for correlations.

FIG. 7. Time-averaged (3–9 h) values of SWH (contours, m),

peak period (shading, s), and wave direction (arrows) of (a) the

true state and the respective absolute differences of the (b) HF-

optimized and (c) oHF solutions from the true state. Domain-

averaged values of the fields are shown on the right.
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4. Conclusions and discussion

In this study, the adjoint-free variational data as-

similation algorithm of Yaremchuk et al. (2009) has

been applied to the fully nonlinear regional WAM

configured in the Chukchi Sea. Performance of the

method was tested in a series of twin-data experiments

with an objective to assess the efficiency of various

wave-observing platforms in reconstruction of the

surface waves on a regional scale. Results indicate that

an HF radar monitoring of the SWH field is more ef-

ficient than a mooring measuring the wave spectrum

at a single point. However, augmenting spectral ob-

servations from the mooring with satellite SWH data

boosts the system’s efficiency to the level of an HF

radar, which does not gain as much new information

from satellite data.

Application of the adjoint-free variational method to

optimization of the initial conditions is a new de-

velopment in oceanic wave modeling that provides a

pathway to bypass the burden of development and

maintenance of the tangent linear and adjoint code.

Besides, the adjoint-free approach is insusceptible to

intrinsic instabilities arising in the adjoint model when

the parent model solution is contains nonlinear in-

stabilities. The a4DVAR method is based on probing

the shape of the cost function by a sequence of ensem-

bles updated in the iterative process. In this study we

utilized the simplest possible technique of generating

the ensemble members by the EOF analysis of model

solutions. Although our experiments demonstrated a

reasonably good performance of the method, more ad-

vanced schemes, such as building the search subspaces

(spanned by the ensemble members) on the cost func-

tion gradients, could be developed to achieve faster

convergence.

An extremely important issue of the a4DVAR de-

velopment in application to wave modeling is optimi-

zation of the wind forcing, whose uncertainties provide

the major contribution to model errors at time scales

larger than a few hours. One possible solution is to

employ wind error statistics and augment the search

subspaces (ensembles) by new dimensions spanned by

the leading EOFs of the wind error fields. However,

extension of the a4DVAR technique to wind correction

capability is a separate theoretical issue lying beyond the

scope of the present paper.

An interesting finding of the experiments with syn-

thetic data is the important role of satellite data (spo-

radic in the setting considered) in complementing

spectral observations at a single or sparsely located

moorings. At the same time, the revealed inadequacy

of assimilating solely Envisat data (rows 13 and 14 in

Table 1) is apparently an artifact of the space–time size

of the domain and substantial wind forcing errors. In a

series of experiments with Swind5 0:1, satellite data pro-

vided much better improvement of the initial conditions,

although not at the levels of HFR observations.

In the experiments we did not consider all types of

data available for regional modeling. In particular, di-

rectional spectra (with a coarser resolution and larger

uncertainties) can be obtained from high-frequency ra-

dars (Graber and Heron 1997; Hisaki 2005) and space-

borne (Tison et al. 2008; Ren et al. 2010) platforms.

Simplifying assumptions have been also made in con-

figuring WAM: the background currents (;0.2–

0.4m s21) were assumed to be negligible in comparison

with the wave velocities (;5–10ms21) of the major

spectral peak and stationary conditions at the open

boundaries were specified due to relatively short period

of model integration. These assumptions can be relaxed

in the experiments with real data spanning longer time

periods in smaller domains.

The 4D variational (either adjoint or adjoint free)

methods of data assimilation require multiple model

runs and are certainly more expensive than sequential

methods (e.g., based on optimal interpolation), which

update the model state in the process of single in-

tegration. The 4DVAR methods do, however, deliver

better forecast skill and are therefore competitive with

sequential algorithms when the computational cost is

not a primary issue. In our case, one assimilation run was

performed at the expense of approximately 500 direct

model runs, which is compatible to the cost of a typical

adjoint 4DVAR run. The major advantage of the pro-

posed adjoint-free technique is the absence of necessity

to develop and maintain the adjoint and tangent linear

codes for the assimilative model.

Results of the present study can be used in the design of

thewavemonitoring systems supported by the variational

data assimilation into state-of-the-art wavemodels (Booij

et al. 1996; Tolman and the WAVEWATCH III

Development Group 2014) lacking the comprehensive

adjoint and tangent linear codes. Nowadays, de-

velopment of such systems becomes particularly im-

portant in the Arctic seas, which experience a significant

surge in SWH variability associated with ongoing ice

retreat induced by climate change (e.g., Francis and

Atkinson 2012; Thomson and Rogers 2014).
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APPENDIX

Hessian Projection and Orthogonalization

In the present study, each iteration of the a4DVAR

minimization starts with the reference model run from

the initial condition c obtained at the previous iteration.

This run produces the a sequence of model states subject

to principal orthogonal decomposition analysis. The

leading modes en, n5 1, . . . , N (N5 5) of the analysis

are utilized to perturb the reference initial condition

c / c1 «en, to execute N parallel model runs, and to

compute the vectors zn 5Sen, whose mutual scalar

products zTn zk [ eTnJek can be used to perform Gram–

Schmidt orthogonalization in the control space (span-

ned by ek) with respect to the inner product induced by

the Hessian matrix J.

The perturbation vectors dcn 5 «en span the search

subspace, which can be parameterized by the N-

dimensional vector a such that

dc5Ea , (A1)

where en constitute the columns of the N3M matrix E

projecting the Hessian on the search subspace. Multi-

plying (7) byET, and taking (A1) into account, yields the

projection of the normal equations on search subspace:

ETSTSEa5ETSTb . (A2)

To solve (A2) it is necessary to compute both the Hes-

sian projection ETSTSE and the result of action of its

square root ETST on b. These computations are

straightforward.

The matrix SE is computed explicitly columnwise by

taking the differences between the perturbed and un-

perturbed residuals S(c1 «en)2Sc5 «Sen. Dividing the

resultingN vectors zn 5 «Sen by «, the columns of SE are

obtained. Explicit computation of ETSTSE[ (SE)TSE

is straightforward: one has to compute N(N1 1)/2

inner products of all the possible pairs of zn (e.g.,

Zupanski 2005).

In the similar manner, the perturbation vectors en can

be orthogonalized with respect to the inner product in-

duced by J if the vectors zn obtained on the previous

iterations are kept in memory.

To assess ETSTb, consider a small perturbation of J,

induced by en:

dJn 5
1

2
(dcTnS

TSdcn2 dcTnS
Tb2 bTSdcn1 bTb)2

bTb

2

5
1

2
dcTnS

TSdcn 2 dcTnS
Tb .

(A3)

The first term on the rhs of (A3) is negligible because

dcn 5 «en and « � 1. As a consequence,

dJn 52«eTnS
Tb . (A4)

Collecting dJn into a single vector dJ and dividing by

« yields the rhs of (A2):

2dJ/«5ETSTb . (A5)

As a result, the system of normal equations in the search

subspace can be solved at a relatively low cost if the

vectors zn and the respective perturbations of the cost

function dJn are available. In the a4DVAR algorithm,

these quantities are computed independently during the

parallel runs of the perturbed model.
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