CHAPTER

Assimilation of HF Radar
Observations in the
Chesapeake—Delaware
Bay Region Using the
Navy Coastal Ocean
Model (NCOM) and the
Four-Dimensional
Variational (4DVAR)
Method

Hans Ngodock'**, Philip Muscarella’, Matthew Carrier’,
Innocent Souopgui®, Scott Smith’
Naval Research Laboratory, Stennis Space Center, Mississippi, USA?; Department of Marine

Science, University of Southern Mississippi, Stennis Space Center, Mississippi, USA®
*Corresponding author: E-mail: hans.ngodock@nrlssc.navy.mil

CHAPTER OUTLINE

L IAROHDCRION s covonitrommeui e b e e v T s e S Ly s A e s 373
2. HF Radar DBServationS: o i rimmaersiimsiaosmsinissiinmtmses i soiensnaadvnsinss 375
B T 11T L PN 376
A ThezASSImilatiDMSYSIBIEL . .. ... cceissesvsmiisnsmnsun issxmmsmssendinkansesassesim eisaiins nd Smtm s amesracion 377
5. Experiments:and RESUIES ... iaraviiiisiserisisiesstovsissnsiis issasnmssvseusaaess sissevs vins 379
By VAlOAMON couvuisimsiissmvmvimasssviinniss s sisis i an i e smars s smvssinstessevivsss 381
T COMCIUSION sounonanunmmnmasi s s N s 088

ACKNOWIBURIMENES (i iviiascsiaiaimasnsnsisnisiims s sl i e w989
] (] T4 U 390

1. INTRODUCTION

Consistent and accurate coastal ocean monitoring necessitates the availability of
three key components: (1) an observing network that adequately samples the moni-
tored domain, (2) a coastal ocean circulation model with a sufficiently high
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resolution that takes into account the often complex geometry and dynamics that
occur near the coastline, and (3) an analysis system that is able to accurately assim-
ilate the sampled observations to initialize the coastal model for forecasting. Modern
analysis systems can also provide an observation impact assessment for the design,
evaluation, and possibly reassignment of observing resources.

Coastal current measurement types are limited to moored buoys and ADCPs,
which do not provide adequate spatial distribution/resolution, surface drifters, which
tend to leave the deployment area relatively quickly, and shipboard ADCPs, which
are relatively expensive to operate. The continuous monitoring of coastal waters for
circulation properties requires long-term station observations. High-frequency (HF)
radar units are unique observation platforms that provide surface current measure-
ments at horizontal resolutions of 1 to 6 km ranging from 25 to 200 km off the coast.
This amount of spatial coverage would be unattainable with current meter stations.
In addition, HF radar units are installed by various universities and institutions along
much of the coastline of the continental United States. HF radar observations have
been assimilated into ocean models mostly using sequential methods (e.g., Refs
|—4). However, there are a few assimilation examples using a 4DVAR method.” ™’

Regional ocean models for coastal circulation monitoring require initial and
boundary conditions from larger or global domain models that are usually run
with much coarser horizontal resolution, as well as surface forcing fields from atmo-
spheric models. To a large extent, the accuracy of the coastal models depends on
(1) the accuracy of the larger domain model providing initial and boundary condi-
tions, (2) the accuracy of the atmospheric model providing surface forcing fields,
and equally important, (3) the accuracy of the parameterization of the physics due
to increased resolution. The increased resolution can also become a liability for
the assimilation as the model resolves small-scale circulation features that cannot
be constrained by the available observations. Usually, only coarse observation
coverage is available for assimilation into the larger domain (with the exception
of sea surface temperature (SST)), making it difficult to provide accurate initial
and boundary conditions for the coastal model. Also, atmospheric models can
contain errors in the coastal oceans due to the coarse resolution often used and
the complex land—sea boundary, not to mention the lack of frequent feedback
from the ocean to the atmosphere in these areas. Failure to do this also translates
to errors in the atmospheric fields in these areas. In addition, the ocean model’s hor-
izontal resolution may not be high enough to capture all the details of the coastline
and the bathymetry. All these elements contribute to the discrepancies that are seen
when coastal ocean model solutions are compared to observations. This is where the
data assimilation plays the critical role of combining the ocean model and available
observations in a dynamically consistent way to not only provide a better initial con-
dition for the prediction of the ocean environment, but also to correct at least some
components of the model error, e.g., errors in the atmospheric forcing fields.

Due to the high temporal variability of surface currents in the coastal areas, a
necessary requirement of the assimilation system is the ability to take into account
the temporal dimension in the observations. Such capability is inherent to 4DVAR.



2. HF Radar Observations

Contrary to the often used sequential methods that assimilate observations at a given
time (thus correcting the model state at fixed time stamps), e.g., the three-
dimensional variational data assimilation (3DVAR), or the methods based on the
Kalman filter, 4DVAR seeks to correct the entire model trajectory for a given
time window by assimilating all the observations (distributed in time and space)
that were sampled during that time window. In this process, 4DVAR (1) uses obser-
vations at almost the exact times that they are sampled, which suits most asynoptic
data, (2) implicitly uses flow-dependent background errors, which ensures the anal-
ysis quality for rapidly changing environments, and (3) uses a forecast model as a
constraint, which ensures the dynamic balance of the final analysis.

It was recently shown that the assimilation of surface velocity observations
derived from drifters, using a 4DVAR with the Naval Coastal Ocean Model
(NCOM-4DVAR?), improved ocean model forecasts of sea surface height, surface
and subsurface velocity, temperature, and salinity in the Gulf of Mexico.” Unfortu-
nately, this study was limited in time due to the deployment and lifespan of the
drifters. This paper aims to expand on the previous study by assimilating a sustained
and dense source of surface velocity observations from HF radars in the Chesapeake—
Delaware Bay region to show that they are a viable dataset for constraining and
forecasting the coastal circulation.

2. HF RADAR OBSERVATIONS

The surface current observations used for this study come from a network of three
SeaSonde HF radar units that are deployed in the mid-Atlantic region of the East
Coast of the United States (black stars on Figure 1). The northernmost site is on
Assateague Island, Maryland, the central site is at Cedar Island, Virginia, and the
southernmost site is at Little Island Park, Virginia. Throughout the study period,
data is available from these sites during 93%, 99.9%, and 100% of the time, respec-
tively. These HF radar units produced by CODAR ocean sensors scatter radio waves
off the ocean surface and infer movement of near surface currents. During July 2013,
the three stations were operating at 4.5 MHz that resonantly scatter off surface grav-
ity waves of approximately 30-m wavelength. For these so-called long-range site
observations are provided hourly on a polar-coordinate grid with a range step of
6 km and a bearing step of 5°. Additionally, the horizontal range of a single site
is approximately 200 km offshore.

Roarty et al.'” discusses the operation and maintenance of the mid-Atlantic HF
radar observing network; this includes the three sites used in this study. Because the
HF radar data is used by the U.S. Coast Guard Search and Rescue Optimal Planning
System (SAROPS), there is an implemented procedure for quality control and assur-
ance of the observations collected by these sites. Additionally, they go on to report
RMS differences between in situ measurements of both acoustic doppler current pro-
filers (ADCPs) and drifters of 7.4 to 9.8 cm/s using an unweighted least squares
method.'' This unweighted least squares approach merges the single-site radial
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FIGURE 1

The model domain: the outer box is the 3-km parent nest, and the inner and expanded box is
the actual 1-km domain with a sample coverage of HR radar observations on July 01, 2013,
overlaid on the colored bathymetry. The radar stations are represented by the stars.

velocities located within a search radius around each grid point. This processing step
uses a Matlab toolbox called HFR_Progs to create total current vectors. For the
three-site setup used here, the search radius is 10 km with a minimum of two radials
from at least two sites required to create a total. In theory, accurate surface velocities
are recovered when two HR radar beams form an angle of 90°. In practice, however,
accurate velocities can still be constructed from beams forming an angle as low as
15°, which has become a standard for operational processing of HF radar observa-
tions, at least in the mid-Atlantic Bight HF radar observing network.'? The HF radar
observations assimilated here were processed with the 15° minimum angle
threshold. The HF radar measurements are sensitive to environmental factors that
can affect the spatial extent of the velocity footprint. This usually results in occa-
sional gaps within a coverage area. For more information see Ref. 12.

3. THE MODEL

The ocean model used in this study is the Navy coastal ocean model (NCOM).
NCOM is a free-surface model that has been described in the literature.'”'* The
model domain (and bathymetry) shown in Figure 1 spans longitudes 76.6°W to
73.6°W and latitudes 36.75°N to 39.2°N at 1-km horizontal resolution with 50



vertical levels. The initial conditions were obtained from downscaling the opera-
tional 1/8° resolution global NCOM (GNCOM) to an intermediate model with hor-
izontal resolution of 3 km, and then to a high-resolution 1-km model. Horizontal
viscosities and diffusivities are computed using either the grid-cell Reynolds number
(Re) or the Smagorinsky schemes, both of which tend to decrease as resolution is
increased. The grid-cell Re scheme sets the mixing coefficient K to maintain a
grid cell Re number below a specified value, e.g., if Re =u * dx/K = 30, then
K =u *dx/30. Hence, as dx decreases, K decreases proportionally. A similar
computation is performed for the Smagorinsky scheme.

The surface atmospheric forcing, including wind stress, atmospheric pressure,
and surface heat flux, is provided by the Navy Global Atmospheric Prediction Sys-
tem (NOGAPS'"~'") with a horizontal resolution of 0.5°. River forcing is provided
at all river in-flow locations in this mid-Atlantic domain. Additionally, eight tidal
constituents (K1, O1, P1, Q1, K2, M2, N2, and S2) are forcing the domain through
the open boundaries. Open boundary conditions use a combination of radiative
models and prescribed values provided by the parent 3-km nest. Different radiative
options are used at the open boundaries depending on the model state variables: a
modified Orlanski radiative model is used for the tracer fields (temperature and

_salinity), an advective model for the zonal velocity (u), a zero gradient condition
for the meridional velocity (v) as well as the barotropic velocities, and the Flather
boundary condition for elevation.

4. THE ASSIMILATION SYSTEM

The assimilation system used here is described in more detail in Ref. 8. The brief
presentation that follows only serves to elucidate the focus of this study. For a given
model, the following is presented:

0xX
E:F(X)—%—f,OgrgT W
X(t=0)=1I(x)+i(x)

where X stands for all the dependent model state variables, i.e., the two-dimensional
SSH and barotropic velocities, and the three-dimensional temperature, salinity, and
baroclinic velocities; F includes the model tendency and forcing terms, f is the
model error with covariance Cy, I(x) is the prior initial condition, and i(x) is the initial
condition error with covariance Cj; x and ¢ represent the position in the three-
dimensional space and time, respectively. Given a vector ¥ of M observations of
the model state in the space—time domain, with the associated vector of observation
errors £ (with covariance C,), the following is shown:

Ym=HpX+éen, 1<m<M (2)

4. The Assimilation System 377
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where H,, is the observation operator associated with the mth observation. One can
define a weighted cost function as follows:

T T
J:][//f(x:I)Wf(x:f,x’,t’)f(x’,t’)dx’a’t’dxd:
20 0

0

(3)
+/ / YW (x,x)i(X VX dx + €' We

Q

where O denotes the model domain, the weights Wyand W; are defined as inverses of
Crand C; in a convolution sense, and W, is the matrix inverse of C,. Boundary
condition errors are omitted from Eqns (1) and (3) only for the sake of clarity.
The solution of the assimilation problem, i.e., the minimization of the cost function
(Eqn (3)), is achieved by solving the following Euler-Lagrange (EL) system:

ax
5 =F)+Crd 0<i<T,

X(t = 0) = I(x) + C;oA(x, 0)

ar aF M M
*E = 6X }‘ + Z Z Ws,mn(ym = X)é(x —xm)é(t fm): 0<t<T

m=1 n=1

A(T) =

“)
where 2 is the adjoint variable defined as the weighted residual:
T
Ax, 1) = [ [ Wy (x, t,x' o) (' yax' dr’ (5)
00

and 6 denotes the Dirac delta function, W,,, are the matrix elements of W, the
superscript 7 denotes the transposition, and the covariance multiplication with the
adjoint variable is the convolution:

T
Cr-Ax, 1) = / [Cf(x‘t,x"t')k(x’,(’)dx’dt', 6)
00
and

CioA(x,0) :fCi(x,x’)A(x',O)dx' (7
Q

for the model and initial condition errors, respectively.



5. Experiments and Resulis

It can be seen in Eqn (4) that the adjoint model is forced by the innovations
(model-data misfits at the observation locations), and its solution initializes and/or
forces the forward model, depending on whether a strong or weak constraints
assumption is adopted.

A standard approach to solving the Euler-Lagrange system (Eqn (4)) is the
strong constraints 4dvar that assumes that only the initial condition is erroneous,
i.e., the model has no errors (Cy= 0). The solution of Eqn (4) is found iteratively
as follows: (1) a first guess initial condition is used to solve the nonlinear
model, (2) the nonlinear solution is used to compute the model-data misfits that
appear in the right-hand side of the adjoint model, (3) the adjoint model is solved
and used to compute the correction to the initial condition, and (4) the process is
repeated until the minimum of the cost function or a preselected convergence cri-
terion is reached.

The weak constraints 4dvar approach takes into account the model errors and,
thus, increases the dimension of the control space, which now becomes the entire
model trajectory for the selected assimilation window. This rather huge control
space also increases the computational cost of the assimilation, and it usually renders
the minimization (of the cost function) process poorly conditioned. This difficulty
can be avoided if the minimization is done in the data space, which does not depend
on and is usually much smaller than the control space. That is possible through the
representer algorithm,'®'” which expresses the solution of Eqn (4) as the sum of a
first guess and a finite linear combination of representer functions, one per datum.
Being a linear expansion, the representer algorithm cannot be applied to Eqn (4)
directly, mainly because of its nonlinear property. However, following Refs 8,20
the representer algorithm can be applied to a linearized form of Eqn (4).

5. EXPERIMENTS AND RESULTS

For this study, the initial condition error for the experiment is set as 1.0 °C for tem-
perature, 0.1 practical salinity unit (psu) for salinity, and 0.5 m/s for velocity. These
errors are set by examining the innovation values between a free-running NCOM
and available observations. The error values are uniformly prescribed across the
domain and reduced at depth. This is deemed acceptable because we are mostly
interested in the accuracy of surface currents. It is also important to note the model
errors in this study are attributed to errors in the specified atmospheric surface forc-
ing. This a reasonable assumption as ocean surface currents are strongly influence by
surface wind stress. The model errors are (.05 °C for temperature, 0.005 practical
salinity unit (psu) for salinity, and 0.05 m/s for velocity. The model errors represent
5% of the magnitudes of the atmospheric forcing in respective equations, with
the exception of the free surface, and are converted from fluxes units to units of
the ocean state variables using the relationships imposed by the discretization
of the model (see Refs 21,8). The horizontal correlation scales of the initial and
model errors are taken to be 20 km (approximately the Rossby radius of deformation
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in the domain) and fixed in time. When these isotropic covariances are convolved
with the adjoint solution and included in the forward model as dictated by Eqn
(4), the 4dvar system produces analysis increments that are flow dependent, thanks
to the dynamics of the tangent linear and adjoint models, and also the nonlinear
model trajectory around which the system is linearized.

Each of the observation data types is also assigned errors. The observation errors
are usually a combination of the estimated instrument error and the representative-
ness error. Here, the temperature error is 0.35 °C, 0.035 practical salinity unit (psu),
and 0.05 m/s for velocity. The experiment carried out here takes place from July 1 to
31,2013, in sequential assimilation windows of three days, with observations binned
hourly and subsampled to keep only one observation per 20-km correlation scale in
both meridional and zonal directions. With the exception of the first cycle, the back-
ground (i.e., the solution that the assimilation is trying to correct) for each cycle is
the forecast obtained by running the nonlinear with the final condition from the anal-
ysis in the previous cycle.

In order to assess the fit to the observations over time in the whole assimilation
window, we define the following “fit to the observations™ metric:

H,,X°
Jer = Z Iym gmm | (8)

l'.'l

In Egn (8), v, is the mth observation, M is the total number of observations, H,, is
the observation operator, X% is the assimilated solution or analysis, and ,, is the
observation error or standard deviation. The right-hand side of Eqn (8) can be
computed as a time series and also evaluated for the free-run selution and the first
guess. Because the assimilation is expected to fit the observations to within the
observation standard deviation at the observation locations, the metric Jgyr in
Eqgn (8) is expected to be less or equal to one for the analysis. One only hopes
that the same is true for the subsequent forecasts as a result of fitting the observations
in previous cycles.

The results of this assimilation experiment show that the NCOM-4DVAR is
capable of assimilating HF radar velocities by significantly reducing the discrep-
ancies between the modeled and the observed surface velocities. It can be seen
in Figure 2 that the free-running model for the 1-km resolution (black line) is in sig-
nificant disagreement with the observations, having Jgr values between 2 and 4
observation standard deviations. The assimilation (gray dashed line) is able to
reduce those discrepancies, sometimes by as much as 2 standard deviations, with
Jgr values generally between 1 and 2.4 observation standard deviations. These
values are still higher than the target value of 1, indicating that, although the assim-
ilation has done a good job of reducing the discrepancies compared to the free-
running model, the assimilated solution is still not fitting the observations accurately.
On the other hand, the first guess solution (dashed black line), which consists of the
forecast from analysis in the previous assimilation window, shows discrepancies of
the same magnitudes as the free-running solution. This indicates that the gains of the
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FIGURE 2

The Jgr metric for a free-running model (black dashed line), the 4DVAR first guess fields
(solid black line}), and the 4DVAR analysis (gray dashed line) at the observation locations.
This experiment assimilates observations hourly.

assimilation are quickly lost in the forecast, primarily due to erroneous surface forc-
ing and the high resolution of the model that resolves circulation features that are not
observed.

6. VALIDATION

The validation of any assimilation experiment requires independent observations
against which the assimilation results can be compared. Those usually consist of
buoys along the coast. However, those are not available during the time of this exper-
iment. We carried out a second assimilation experiment where observations are
assimilated every 3 h instead of every hour as in the previous experiment. The un-
assimilated observations, i.e., those that are left out every 2 h, are considered inde-
pendent for the purpose of validation, even though they may be correlated with those
that are assimilated, by reason of proximity in space and time. The same fit to the
observations metric Jgyr is also used to evaluate this assimilation experiment, not
only for the assimilated observations, but also for the withheld observations. Results
in Figure 3(a) show the Jp;r values for the assimilated solution and the first guess
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compared to assimilated observations, whereas Figure 3(b) shows similar /g7 values
for the assimilated solution and the first guess compared to withheld observations. It
can be seen that similar to the previous experiment, there is a significant reduction in
the Jpr values from the first guess (2—3.5 standard deviations) to the assimilated
solution (1.2—2.7 standard deviations). More importantly, there is a good improve-
ment of the assimilated solution versus the first guess when these two solutions are
compared to the withheld observations, an improvement that sometimes exceeds a
standard deviation.

Figure 4 shows a comparison of surface velocities maps from the observations,
the first guess, and the analysis 5 and 16 days into the assimilation, respectively.
We first note that at these two time levels, there is almost no agreement at all
between the circulation patterns shown in the observations and those in the first
guess, i.e., the model is significantly in error compared to the observations, even
after being initialized by the assimilation. For example, on day 5, the observations
describe an offshore surface circulation, whereas the model shows an alongshore
circulation. This results from the atmospheric forcing fields being erroneous
themselves, see Figure 5. The assimilation procedure alters the first guess enough
to produce an analysis that fits (looks like) the observations, albeit not perfectly:
The offshore current is reconstructed by the assimilation on day 5; and on day 16,
the northeastward coastal current that turns offshore is also recovered, though these
features were missing in the first guess. However, the analysis sometimes still has
the patterns of the first guess. This indicates that the background and model errors
prescribed for the assimilation are too small.

A major difficulty in coastal ocean modeling resides in the lack of high spatial
resolution atmospheric forcing. Atmospheric models are usually run with coarser
resolutions compared to the ocean models (especially for coastal applications),
because resolving the rather fast motion of the atmosphere with high horizontal
resolution would require very small time steps that would be computationally
prohibitive. For the case at hand, the ocean model has a horizontal resolution
of 1km, while the atmospheric forcing fields are obtained from interpolating
results from an atmospheric model that used a (.5° resolution that does not capture
the variability of the model domain. According to Ekman theory, a modest wind
stress of 5 m/s would cause the surface velocity to deflect to the right of the
wind stress direction by an angle of 45° if the water depth is at least 45 m. The
topography shown in Figure 1 indicates that this would not apply to a significant
portion of the domain where the depth is less than 45 m, and it is expected that
the surface velocity be strongly correlated to the wind stress in that part of the
domain. Figure 5 shows the direction of the wind stress compared to the direction
of the surface currents from the HF radar stations. The wind stress is generally uni-
form as a result of interpolating from a few grid points of the atmospheric model. It
can be seen that the direction of the wind is never aligned with the direction of the
observations; they are quite different. This presents a significant challenge to the
assimilation system and explains why the assimilation could not accurately fit
the observations with small initial conditions and model errors.

6. Validation
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FIGURE 5

A comparison of the direction of the surface currents (a, ¢, and e) and the direction of the
wind stress (b, d, and f} at the end of the first, the sixth, and the tenth assimilation window,
respectively.

Another challenge to the assimilation resides in the resolution of the ocean model
and that of the observations. The processed observations have a spatial resolution of
about 6 km, whereas the model is run at a resolution of 1 km. As seen in Figure 6 ina
subset of the domain, the model resolves multiple small-scale features that are ab-
sent from the observations. Also, the strong flow at the southeast corner of the
domain reveals that the model boundary conditions contain an intrusion of the
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FIGURE 6

A comparison of the 1-km first guess velocity field (a} and the observations (b) on day 10ina
subset of the model domain.

Gulf Stream, another feature that is not present in the observations. Thus, the assim-
ilation could benefit from more accurate boundary conditions and, perhaps, a
slightly coarser resolution from the model, say 3 km.

A third assimilation experiment is carried out for three cycles of 3 days each,
with the same setup as the original experiment, except that the model resolution
is reduced from 1 to 3 km. Figure 7(a) shows a comparison between the analyses
of the 1 and 3 km experiments, where significant improvements in the accuracy of
the 3-km analysis can be seen, especially at the times when the 1-km analysis has
Jepr values exceeding 1.5 standard deviations. In general, Jgr values for the 3-km
analysis are lower than 1.5 standard deviations. On the other hand, a similar compar-
ison of Jgyr values for the first guesses from both 1- and 3-km experiments in
Figure 7(b) shows that the forecast from the 3-km analysis has significantly
improved compared to the 1-km forecast, with noticeable gaps between the two lines
sometimes exceeding 1 standard deviation. However, the 3-km first guess still dis-
plays large discrepancies with the observation, having Jgy values generally
exceeding 2 observation standard deviations, and only occasionally falling below
1.5 standard deviations. Once again, this loss of accuracy in the first guess is attrib-
uted to the erroneous atmospheric forcing (in this case the wind stress) because the
model resolution is now closer to that of the observations coverage, and the analysis
is also significantly closer to the observations.

Similar to Figure 4, Figure & shows a comparison of surface velocities maps from
the observations, the first guess, and the analysis 3 and 5 days into the assimilation,
respectively, for the 3-km model resolution. There is a significant difference in the
direction of the velocity between the observations and the first guess on July 3, espe-
cially at the lower-right side of the domain showing an intrusion of the Gulf Stream
in the first guess, whereas the observations locate this intrusion further to the east
and slightly to the north, compared to its location in the first guess. The assimilation
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(dashed) and 3-km (solid) model resolutions.
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7. Conclusion

procedure corrects the first guess significantly to produce an analysis that fits (looks
like) the observations, e.g., the Gulf Stream current is in better agreement with the
observations, albeit not perfectly. However, the analysis on July 3 still has some pat-
terns of the first guess, indicating that the background and model errors prescribed
for the assimilation may still be too small. The analysis on July 5 shows a much bet-
ter agreement with the observations (offshore circulation), even though the first
guess was not (coastal circulation). Thus, even in the presence of an erroneous
wind stress, the weak constraint assimilation fits the observations significantly better
when the model’s horizontal resolution is closer to that of the observations coverage.

7. CONCLUSION

Surface velocity observations from HF radar are a valuable data set for monitoring
the coastal circulation, and they can be assimilated into a coastal circulation ocean
model using the NCOM-4DVAR system, provided adequate model resolution,
initialization, boundary conditions, and atmospheric forcing. It was shown in the
experiments presented here that the assimilation cannot accurately fit the observa-
tions with rather small initial conditions and model errors. However, the biggest
challenge for the assimilation system consists in an erroneous wind stress that
consistently steers the model in a completely different direction than the observed
surface velocities. Although the assimilation was able to reduce a noticeable portion
of the model’s discrepancy to the observations, those gains were quickly lost in the
forecast stage for the following assimilation window, primarily due to the wrong
wind stress and the high resolution of the model. Reducing the model resolution
to be closer to that of the observations significantly improved the accuracy of the
analysis and the forecast. The ability of the assimilation system to accurately fit
the observations can also be improved by prescribing higher model errors. However,
we suggest that instead of increasing the error levels in the assimilation system,
which can be justified for the case at hand, the primary source of the errors must
be addressed first, i.e., providing a wind stress that drives the model to be in
more agreement with the observations. This can be achieved by a local nest of the
atmospheric model, or better yet, a fully coupled ocean—atmosphere model.
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