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a b s t r a c t

In the summer and fall of 2012, during the GLAD experiment in the Gulf of Mexico, the Consortium for
Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE) used several ocean
models to assist the deployment of more than 300 surface drifters. The Navy Coastal Ocean Model
(NCOM) at 1 km and 3 km resolutions, the US Navy operational NCOM at 3 km resolution (AMSEAS),
and two versions of the Hybrid Coordinates Ocean Model (HYCOM) set at 4 km were running daily
and delivering 72-h range forecasts. They all assimilated remote sensing and local profile data but they
were not assimilating the drifter’s observations. This work presents a non-intrusive methodology named
Multi-Model Ensemble Kalman Filter that allows assimilating the local drifter data into such a set of mod-
els, to produce improved ocean currents forecasts. The filter is to be used when several modeling systems
or ensembles are available and/or observations are not entirely handled by the operational data assimi-
lation process. It allows using generic in situ measurements over short time windows to improve the
predictability of local ocean dynamics and associated high-resolution parameters of interest for which
a forward model exists (e.g. oil spill plumes). Results can be used for operational applications or to derive
enhanced background fields for other data assimilation systems, thus providing an expedite method to
non-intrusively assimilate local observations of variables with complex operators. Results for the GLAD
experiment show the method can improve water velocity predictions along the observed drifter trajec-
tories, hence enhancing the skills of the models to predict individual trajectories.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The skills of local and regional high-resolution (i.e. order 1 km
resolution) ocean model forecasts running in real-time can be
improved by assimilating local and remote observations. The intru-
sive assimilation process typically consists on the generation of an
analysis with corrected model states that are then used to initialize
the next forecast cycles (e.g. Lermusiaux and Robinson, 1999;
Cummings, 2005; Ngodock et al., 2007; Lunde and Coelho, 2009).
The residual errors of these improved analysis along with other
sources of uncertainty in boundary conditions, forcing, and model
parameters can be used to construct ensembles with multiple runs
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Table 1
Performance metrics for model velocity forecasts for 0–24 h. The models NCOM 1 km,
NCOM 3 km, AMSEAS, HYCOM and HYC T are described in the text and correspond to
those used by the MEKF. The row ‘‘persistency’’ shows the results using the first
measured velocity within the forecast cycle, for each track, taken as constant for the
full forecast range. The row ‘‘mean’’ corresponds to the 5 models un-weighted mean.
The row ‘‘LSF’’ shows the un-weighted mean of the models after a least-square fit to
the data using the data within the first 24 h and the row ‘‘consensus’’ shows the MEKF
results based on the global fits during the first 24 h. As such both the ‘‘LSF’’ and
‘‘consensus’’ should be interpreted as an analysis during the period 0–24 h. The ‘‘RMS’’
column corresponds to the root mean square of the model-observations mismatches
in m/s. ‘‘Mean Err.’’ shows the mean model-observation mismatch in m/s. ‘‘SNR’’
corresponds to the signal to noise ratio estimated as the product between the
observed velocity standard deviation and the RMS, such that for values above 1 we
could expect added value from the forecast. ‘‘Corr. Mag.’’ shows the magnitude of the
correlation between predicted and observed velocity taken as a complex variables.
The column ‘‘Corr. Angle’’ shows the angle in degrees of the correlation predictions.
Note that the small angle by the HYC T might not be relevant since the magnitude of
the velocity correlation is very small. The two best values in each column are
highlighted in bold. The worst value in each column is marked with italics.

Model RMS Mean Err. SNR Corr. Mag. Corr. Angle

NCOM 1 km 0.40 0.34 1.03 0.47 �6
NCOM 3 km 0.38 0.33 1.07 0.54 �9
AMSEAS 0.41 0.35 1.01 0.54 �13
HYCOM 0.40 0.35 1.02 0.46 �8
HYC T 0.47 0.40 0.87 0.32 0
Persistency 0.41 0.32 1.01 0.52 �8
Mean 0.34 0.30 1.20 0.59 �8
LSF 0.34 0.30 1.23 0.60 �11
Consensus 0.32 0.27 1.29 0.64 �3

Table 2
Same as Table 1 but for the forecast period 24–48 h.

Model RMS Mean Err. SNR Corr. Mag. Corr. Angle

NCOM 1 km 0.41 0.36 1.00 0.43 �8
NCOM 3 km 0.39 0.34 1.04 0.51 �12
AMSEAS 0.42 0.36 0.98 0.51 �14
HYCOM 0.42 0.37 0.98 0.42 �9
HYC T 0.48 0.41 0.86 0.30 0
Persistency 0.48 0.40 0.85 0.34 �23
Mean 0.36 0.31 1.15 0.56 �9
LSF 0.37 0.31 1.15 0.55 �14
Consensus 0.35 0.29 1.19 0.57 �6

Table 3
Same as Table 1 but for the forecast period 48–72 h.

Model RMS Mean Err. SNR Corr. Mag. Corr. Angle

NCOM 1 km 0.41 0.36 0.99 0.43 �6
NCOM 3 km 0.39 0.34 1.04 0.51 �10
AMSEAS 0.43 0.36 0.97 0.49 �14
HYCOM 0.42 0.37 0.97 0.40 �10
HYC T 0.47 0.40 0.87 0.30 1
Persistency 0.52 0.43 0.79 0.23 �37
Mean 0.36 0.31 1.14 0.54 �9
LSF 0.37 0.32 1.13 0.53 �13
Consensus 0.35 0.30 1.16 0.54 �4
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that will define an error-subspace domain with the possible real-
izations for the ocean states (e.g. Coelho et al., 2009; Lunde and
Coelho, 2009; Wei et al., in press).

Generic regional implementations can include several forecast-
ing systems, some in ensemble mode as described in the previous
paragraph, or just running with different options, resolutions, forc-
ing, and boundary conditions. All together they will span a larger
set that defines a domain containing the best guesses for the ocean
state. In the past, several approaches have been used to aggregate
and track the best solutions for specific applications within these
multi-model ensemble domains (e.g. Coelho et al., 2005; Logutov
and Robinson, 2005; Rixen and Coelho, 2007; Leslie et al., 2008;
Lenartz et al., 2010, among others). The motivation for this work
is the observation that these multi-model-based forecasts gener-
ally exhibit improved predictive skills relative to any of the indi-
vidual runs.

The Consortium for Advanced Research on Transport of Hydro-
carbon in the Environment (CARTHE1) conducted the Grand
Lagrangian Deployment (GLAD) experiment, sponsored by the Gulf
of Mexico Research Initiative. Several ocean models were used to
support this deployment in the northern Gulf of Mexico (GoM) of
more than 300 surface drifters, in late July 2012. These drifters were
similar to the CODE-ARGOS systems (Poulain, 1999), drogued at a
depth around 1 m to reduce direct windage. Their positions were
tracked through the SPOT-Globalstar system every 5 min, and the
majority of drifters persisted past October 2012, limited primarily
by battery life.

Real-time ocean modeling was conducted during the period
from July to November 2012 to support the deployment and track-
ing of the drifter network. The set of available models included the
Navy Research Laboratory (NRL) Navy Coastal Ocean Model run-
ning at 1 km (NCOM 1 km) and 3 km (NCOM 3 km) resolutions,
the US Navy operational Intra-Americas Seas NCOM (AMSEAS) at
3 km resolution – all with tidal forcing, and two versions of the
NRL Hybrid Coordinates Ocean Model at 4 km, one with tidal forc-
ing (HYC-T) and one without tidal forcing (HYCOM). All these mod-
els run with time steps shorter than 300 s for numerical stability,
but results were only saved every 3 h for the NCOM grids and every
6 h for the HYCOM grids. For the present work all model data were
taken with a 6 h temporal resolution and interpolated to a com-
mon 4 km grid. All of these systems assimilated satellite altimetry,
sea surface temperature, and routine ocean temperature and salin-
ity profile observations, although each system used different
options to construct their analysis. None of the systems assimilated
data from the drifters.

The GLAD models had limited success tracking the drifter net-
work and capturing accurately the dominant features (see Tables
1–3). Carrier et al. (2014), showed the intrusive assimilation of
the GLAD drifter data into the NCOM at 3 km improved the model
estimates. In this paper we present a different approach using a
non-intrusive cycling methodology named Multi-Model Ensemble
Kalman Filter (MEKF) that combines the available models with the
drifter data to further improve the short-range forecasting skill
over that of any of the individual models or their direct aggregation
(un-weighted mean).

The method is designed to be used on-scene or to complement
routine intrusive data assimilation systems and has the advantage
of running in post-processing, hence allowing finer tailoring to spe-
cific locations and/or applications. It combines the in situ measure-
ments of surface currents estimated from surface drift trajectories
and the multiple estimates of surface velocities as delivered by the
several models to derive consistent optimal forecasts of the ocean
states. Although this work focuses on surface velocities, the
1 http://carthe.org.
method is also applicable to multi-variate analysis or to correct
variables of any kind that are directly correlated with the ocean
state and for which a forward model exists (e.g. oil spill plumes).

The MEKF assumes that a prior system is running with several
forecast models with potentially different resolutions, parameter
choices, forcing and initialization, either through multiple inde-
pendent systems and/or by single model ensemble simulations.
The filter derives an optimal linear combination of these estimates
that minimize deviations from a prior ensemble mean and that still
provide the best fit to the data during a short time window at the
beginning of the forecast. These deviations from the prior aggrega-
tion are taken within the bounds of the several models’ covariances
and observations representation errors, together with their

http://www.carthe.org
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individual least-squares projections onto the observations. The
solution constitutes the optimal posterior consensus forecast for
the variables of interest, given the set of most recent observations,
and is valid through the remaining portion of a forecast range until
the next scheduled routine data assimilation cycle occurs. These
improved estimates can be used directly for operational applica-
tions or as new background fields for the routine assimilation
systems used by the individual ocean models.

The errors of the MEKF velocity estimates were computed along
the different GLAD Lagrangian trajectories and used to benchmark
the performance of the filter in comparison to each of the individ-
ual real-time model runs. The results demonstrate that this
non-intrusive single variable approach can improve significantly
the skill to predict ocean currents along the dynamical trajectories.
Ongoing work will expand the approach by integrating this
method with other incremental and variational data assimilation
methods and will implement a fully multivariate analysis combin-
ing profiles of ocean measurements with the surface velocity data
collected by the drifters.

Section 2 presents an overview of the GLAD experiment and
discusses some examples of Lagrangian trajectory analysis. The
Multi-Model Ensemble Kalman Filter (MEKF) is presented in
Section 3. The implementation results are examined in Section 4,
and conclusions are provided in Section 5.
Fig. 1. Drifter CARTHE-020 quality control and data processing details. This drifter repor
The blue dots and lines in all panels correspond to raw observations as directly measured
lines correspond to the final processed 15-min sampled positions. The black dots in the u
bands along the tracks based on the gaps in the raw data after the removal of bad positio
outliers were removed from the raw data (Zoom 1 and 3) and the impact of the filter sm
2. The Grand Lagrangian Deployment experiment (GLAD)

CARTHE conducted the large-scale GLAD experiment in the Gulf
of Mexico during the period July 20–31, 2012, more than 300 low-
cost custom-made drifters were deployed by the R/V Walton Smith
near the Deepwater Horizon site off the Louisiana coast. It consti-
tuted an essential first step to study the complex and elusive
surface ocean currents that transport pollutants and to character-
ize the dispersion and the complex multi-scale interactions among
mesoscale and sub-mesoscale oceanic flows (e.g. Olascoaga et al.,
2013; Poje et al., in press).

Using SPOT GPS units, the drifters were similar in design to the
CODE-ARGOS surface drifters (e.g. Poulain, 1999). They were
drogued at a depth of approximately 1 m to decouple their motion
from direct wind forcing (estimated 1–3% windage, Davis, 1985)
and damp wave induced motions without introducing a wave-
phase related bias (Davis, 1985). Positions were reported at
5-min intervals, although significant data gaps occurred mostly
due to adverse weather conditions, which required careful data
processing to produce accurate trajectory and velocity estimates.
Data processing consisted of the removal of bad data points
defined as outliers in position and/or velocity magnitude, sharp
turns and those with inconsistent short-term position sequences
near large reception gaps. Data gaps were then filled using a
ted valid data between July 21, 2012 at 12:15 UTC and September 29 at 23:45 UTC.
through the SPOT units with a 5-min instrumental sampling rate. The red dots and
pper left panel show 2-day intervals along the track. The cyan lines show the error

ns. The panels with Zoom 1, 2 and 3 show three examples of data processing, where
oothing prior to 15-min decimation for the final data set (Zoom 2).
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non-causal spline interpolation to produce regularly spaced posi-
tions at 5 min intervals. These data sets were then used to compute
the drifters’s local velocities. Finally, the position and velocity data
were low-pass filtered with a 1-h period cut-off and sampled at
uniform 15-min intervals over a uniform time grid, equal for all
drifters. Fig. 1 shows some examples of data processing results
for the drifter CARTHE-020.

During the experiment, multiple ocean models were running
with resolutions from 1 to 4 km, delivering each day ocean cur-
rents forecasts for a period equal to or larger than 72 h. These runs
were independently updated every day, by assimilating the most
Fig. 2. Ocean circulation features during GLAD. Panel A shows the deployment positions
The initial flow directions of the drifter arrays are indicated by the red arrows. The blu
inferred from independent sea surface height satellite observations. Panel B shows the sa
3 km model on July 20, 2012 at 00:00 UTC showing a reasonable agreement between th
recent in situ and satellite observations. They were used primarily
to fine-tune drifter launch positions and identify features that
could dominate local ocean dispersion.

The drifters deployment scheme is summarized in Fig. 2. It con-
sisted of a large-scale survey (LSS) with 20 drifters launched across
the northern GoM on July 20–21, in an inward spiral toward the
region of concentrated drifter deployments. This was followed by
four tight groups of dozens of drifters each, spaced from 100 to
15 km apart. An additional four drifters were released on the shelf.
The deployments following the LSS were designed to sample
sub-mesoscale dispersion characteristics in different flow regimes.
of the drifter arrays at the locations S1, S2, T1, and L1L2 overlaid on the bathymetry.
e arrows show the general circulation and mesoscale features during this time as
me information overlaid on the surface temperature estimated by the RELO-NCOM
e initial drifter movements and the alignment of the predicted frontal systems.
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In the first intensive deployment (S1) on July 22, centered at
28.8�N 88.1�W, 90 drifters were launched in an S-shaped formation
within a 12 km by 9 km area. The second intensive deployment of
90 drifters on July 26 (S2) targeted the eastern edge of the Missis-
sippi River outflow at 29.2�N 87.6�W, crossing the salinity front
observed from the ship. A third deployment of 27 drifters (T1) on
July 29, occurred at the head of the DeSoto Canyon at 29.0�N
87.5�W. Meanwhile, a small cyclone was observed in satellite SST
and some of the model simulations at 27.8�N 89.2�W. This region
was then selected for the deployment of the remaining 63 drifters
(L1L2) on July 30–31 in an L-shaped configuration.

The Loop Current during July 2012 had extended far northwest
into the GoM, and a Loop Current Eddy (LCE) had detached from it
just prior to the GLAD drifter deployments. This LCE constrained
the southern boundary of the drifter trajectories (about 27�N)
throughout the experiment. The general flow north of the LCE con-
sisted of a coastal jet flowing eastward inshore of the 50 m isobath.
The jet extended from the Louisiana shelf, past the Mississippi
River outflow, eastward past the Mississippi and Alabama coasts,
and southeast along the Florida coast. This coastal jet persisted
throughout late October. The sea surface salinity from the model
runs also suggested a significant advection of Mississippi River
fresh water to the east from the Atchafalaya basin and from the
Mississippi delta.

Until early September, the drifter trajectories evolved along
these complex coastal dynamics influenced by the two coastal
cyclonic eddies strongly interacting with each other and with the
LCE and by a northeast anti-cyclonic eddy that evolved in shape.
By late August some of the drifters were caught in a feature current
that developed between the LCE and an enhanced secondary
cyclone to the northeast.

The different models displayed somewhat different structures
as seen in Fig. 3, even though they all assimilated the same obser-
vations. To illustrate the complexity of the observed coastal
dynamics and the challenges that remain in predicting Lagrangian
trajectories when multiple systems are available, Fig. 3 shows the
trajectory of the drifter CARTHE 001 for 10 days prior to August 19,
2012 overlaid on the mean surface temperature fields and mean
surface velocities as predicted by each of the model runs. Overall
Fig. 3. Surface temperature and currents averaged between August 10 and August 19, 20
black line overlay on the plots shows the CARTHE-001 drifter trajectory for the same pe
the models seem to capture a well-defined frontal system along
or near the observed trajectory. As a result we can see a good gen-
eral alignment of the temperature fronts and velocity directions
with the observed drifter progression during most of the track.
The drifter trajectory was however occasionally crossing tempera-
ture gradients as predicted by the models and showing misalign-
ments relative to the velocity estimates, making difficult the
determination of what model or models could be delivering the
best forecasts of the surface velocity.

In late August, Tropical Storm Isaac crossed the experiment
area, bringing winds above 25 m/s and producing very high mea-
sured drifter velocities, above 2 m/s. Some of the drifters were
stranded onshore, and those in deeper water were dispersed off-
shore as can be seen in Figs. 4A–4C.

Many of the drifters lasted more than 80 days until late October,
and only a few were entrained by the Florida Current and exited
the Gulf. The vast majority of the drifters remained within the cen-
tral and northeastern Gulf.

3. The Multi-Model Ensemble Kalman Filter (MEKF)

When multiple forecasting systems are available with different
set-up options, resolutions, initialization, forcing and boundary
conditions, one can use them to define a probability space as the
span of the detected realizations of the ocean state. Typically these
domains will contain only a small number of realizations when
compared to the total number of state variables being predicted.
Also, some of these model estimates might be strongly correlated
especially during the first forecast hours if they are assimilating
similar sets of observations. The MEKF is designed to track an opti-
mal solution within such a linear space that will correspond to the
smallest departure from a prior guess but that also provides the
best fit to a given sequence of observations over a short time
window. The major assumptions underlying this technique are
that the prior domain will include the true ocean states and that
the systems are unbiased through iterations with independent
intrusive data assimilation systems.

Solutions to track best guesses within these multi-model
domains have been addressed in previous work and can be
12 00:00 UTC for the five models run in real-time during the GLAD experiment. The
riod.



Fig. 4A. GLAD drifter network (extracted from the real time display run by the CARTHE team at the University of Delaware) during the period August 19–21, 2012 (days 30–
32 in the trial) before the arrival of the Tropical Storm Isaac to the region. The lines show the last 48 h of the tracks, and the large dots correspond to the reported positions at
the end of the snapshot time. Times are UTC.
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summarized by three different categories: the local (Lagrangian)
approach; the consensus approach; and the Eulerian approach. In
the Local approach (e.g. Coelho et al., 2005) aggregation solutions
were identified as the best linear combination of the models for
each independent realization or application, independently of each
other. As such, the optimal (weighted average) forecasts of drifter
paths and velocities were computed independently for each drifter,
based only on the local fits to the data collected by the same plat-
form over a recent past. This platform-centric method maximizes
the individual fit to observations but does not provide a robust
extrapolation for positions away from their locations or to other
platforms since it does not take into account the data and/or model
space–time correlations. In the Consensus approach (Logutov and
Robinson, 2005; Rixen and Coelho, 2007; Leslie et al., 2008), the
solutions were found by choosing weights for the model runs
based on global fits to all available observations. This approach is
computationally efficient but when the available models have poor
global skills it may not produce improved results. Also remote
model errors may strongly degrade local accuracy if there is no reg-
ularization step. Finally, in the Eulerian approach (Lenartz et al.,
2010), weights were computed at each point on a common grid,
constrained by a high-dimensional error covariance matrix, com-
puted from recent model climatology. This solution has the advan-
tage of allowing observed innovations to produce locally consistent
fits, thus handling a large number of degrees of freedom. However,
since the number of models is small and they might be strongly
correlated it requires the use of regularization schemes and crude
approximations of the prior error covariance. Furthermore, the
smooth estimates of this error covariance matrix may not be valid
when individual models are undergoing independent data assimi-
lation, resulting in discrepancies between consecutive forecasting
cycles.

The MEKF can produce either local or consensus analysis,
by tracking individual or subsets of Lagrangian platforms or by
computing domain-wide consensus estimates. The skill resulting
from the MEKF will be strongly dependent on the skills of the prior
models and on the available observations. In fact, a major assump-
tion is that each individual model is unbiased (i.e. that on average
their estimates do not have persistent errors). For this purpose it is
then assumed the bulk of the model state corrections resulting
from local and remote observations are being performed through
routine intrusive data assimilation running on each model
separately. As a result, one should expect the MEKF to produce only
small deviations relative to a prior ensemble mean. The MEKF
problem is formulated next, following as close as possible the stan-
dard notation for Kalman filters described in Ide et al. (1997).

Assume there is an n by d matrix M = {mT
i , i = 1, . . . ,n} with n

unbiased model estimates (i.e. with a zero domain-wide mean
error) of d pre-normalized state variables included in each vector
mi. These variables are non-dimensional and already mapped onto
a common grid. As such, this matrix will include the available
forecasts within the range [0, tf] for all variables over the full set
of possible locations in the grid.

The MEKF will then find and track a set of n weights w = {wi,
i = 1,n}, such that the linear combination

Pn
i¼1wimi will provide

an optimal forecast, given a set of s observations yo during a time
window [0, ta] included inside [0, tf]. As a major constraint we want
the weights vector to be consistent with the corresponding models,
such that if two models are strongly correlated their weights should
be similar, while the models that produce a better least-square fit
will have larger weights. This analysis can be viewed within the
framework of particle filters applied to data assimilation problems
(e.g. van Leeuwen, 2009), by assuming the model realizations are
random draws of the possible ocean states and for which one can
identify a different weight or relative likelihood. The main differ-
ence for the present work is that we assume these models (or
particles) to be strongly correlated and that we only have access
to a mean estimate of each model representing a class of particles,



Fig. 4B. Same as Fig. 4A but for the period September 2–4, 2012 (days 43–45 in the trial) just after Tropical Storm Isaac made landfall (August 28, 2012).

Fig. 4C. Same as Fig. 4A but referring to the period September 11–13, 2012 (days 52–54 in the trial) after the passage of the Tropical Storm Isaac.
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and thus the global data fit and updates need to be addressed
accordingly. On the other hand, this constrained aggregation
approach can also be viewed in the perspective of more traditional
data assimilation work (e.g. Lorenc, 1995) where solutions are
found through the minimizations of cost functions that include
the relevant criteria and constraints.

A challenge one needs to consider when searching for an opti-
mal model aggregation is that the set of weights computed using
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observations made during the short time window [0 ta] might not
be optimal through the full forecast range tf. On the other hand if
through localization we develop different sets of weights per
region and/or variable, the linear combination of the model states
using these different weights will require further constraint by the
model physics and dynamics. These more complex localization and
multivariate aspects of the filter will be addressed in future work.
By taking into account these considerations, the present analysis
will only set up the basic framework for single variable global
weights estimation and test the hypothesis that these weights will
persist through a full forecast range within a single variable track-
ing problem.

The next sections show that the optimal weights computed by
the MEKF using a small portion of drifters’s dynamical trajectories
during the GLAD experiment did in fact persist during the subse-
quent forecast periods. The MEKF forecasts were performing above
any of the models individually, their mean and the results obtained
by direct linear regression. Since this analysis with the GLAD data
was made for single variable (water velocity) the MEKF estimates
did not be change the balances and relations between the other
state variables. Future work will study whether this consensus
based on GLAD drifters only can improve the full model state.

The set of observations used in the MEKF framework undergo
through the same pre-normalization as the model states to pro-
duce the set of data innovations yi for each of the model estimates
mi:

yi ¼ yo � HðmiÞ ð1Þ

Here the observation operator H maps the model estimates mi

with dimension d to the observation space with dimension s, so
that H(mi) is the vector with the ith model estimate of the
observed quantities and H(M) is the n by s matrix of all model
estimates thereof.

We can start by considering the expected value or un-weighted
mean of the available models as a first (or prior) guess for the opti-
mal aggregation. As will be discussed below, this corresponds to
the assumption that the true state is included in the model set
and that the models are all equally likely. One should note this
solution is independent of the data and corresponding innovations.

As a second option we can compute a weight, independently for
each model, that would provide a least-squares regression to the
global data. These regression coefficients will provide a data-fit
of each model and can be related to individual model likelihoods
and importance sampling in classical particle filter solutions that
have been applied within several geophysical contexts (van
Leeuwen, 2009). Here, each draw is considered independent of
the others, and the expected value of the model states, considering
these likelihoods as weights, produces an estimate that is closer to
the observations over [0 ta] in a least-squares sense. However, this
approach does not take into account the correlations among the
several model estimates and among the various observed variables,
and as such when applied for model aggregation it might amplify
or attenuate significantly the model estimates away from the
observations themselves. Since it does not account for consisten-
cies among the several model estimates and along the dynamical
trajectories predicted by each model, it may also produce an
over-fitting to the data and may be less likely to persist through
the full forecast range. These considerations motivated the use of
constrained regressions to the observations and models correla-
tions in particle filter formulations and provide further motivation
for the MEKF as described next.

The MEKF will search for a solution that preserves the multi-
model set information included in the model–model covariance
and in the joint regression to observations. For this purpose, we
start by defining a vector of random entities x(j) = {xi(j),
i = 1, . . . ,n} corresponding to the state vector that includes all
possible versions that could be given by the available models taken
as stochastic entities at a location and time denoted as j. There will
be d occurrences of this random vector at different locations and
times, and the expected value or consensus given by
x(j) = 1

n

Pn
i¼1�xıðjÞ ¼ n

Pn
i¼1wimiðjÞ provides the best global aggrega-

tion (for all values of j), given a sequence of observations and the
prior model runs. One should note all values of xi(j) at different
locations and times will be delivered by the same ith model entity
that has an expected value �xıðjÞ given by the weighted model draw
mi(j). As such, there will be only n parameters wi that we want to
find and track.

As we can see from the expression below for a generic estimate
�xı, the weight wi is the conditional probability of model i, relative to
the other models, and assesses its relative skill in predicting the
local state:

�xı ¼
Z

xi¼1;...;n

xipðxi¼1;...;nÞdxi¼1;...;n

¼
Z

xj–i

pðxj–i n xiÞdxj–i

Z
xi

xipðxiÞdxi ¼ wimi ð2Þ

In here p(xi = 1, . . . ,n) is the joint probability distribution of all
stochastic model entities, p(xj–inxi) is the conditional distribution
given the model i and p(xi) is the marginal probability distribution
for the random entity represented by the model i. The prior model
conditional distributions without the insight given by the observa-
tions or other criteria should all be equal. However, once there are
observations or other criteria that allow assessing relative perfor-
mances, one can expect these conditional distributions to be differ-
ent for each model. As a result better performing models will have
larger weights relative to the poorly performing models. The meth-
odology below details how these weights (or conditional probabil-
ities) can be computed once we have a Least Square Fit of each
model run, relative to a given set of observations.

This definition is different from the traditional Kalman filter and
particle filter formulations used for ocean data assimilation in that
although it uses the model state as the random variable of interest
and the draws of available model runs, it assumes that the random
components are the models themselves as global entities and not
the individual state variables. As such, each available model run
would be associated with a weight or likelihood determined by
the joint skill in representing all the observations. These are to be
determined through a joint-probability distribution of the model
states since they can be strongly correlated. One should note the
number of the MEKF weights is much smaller than the number of
degrees of freedom of traditional data assimilation formulations,
producing faster results with modest computer resource require-
ments. However, local corrections will be determined by a model–
model covariance and by each model’s space–time scales, so they
will include much less detail and will not be limited by or preserving
the correlations of the ocean state with the observed innovations.

The weights are determined in the MEKF for any generic model
variable at a location and time identified by the index j through a
forecast step described by:

wf ¼ w

xf ðjÞ ¼ wfT mðjÞ

Pf ðjÞ ¼ n2

d� 1
Wf ~M ~MTWf T

ð3Þ

followed by an analysis step that updates the weights prior and
covariance, described by:

w ¼ wf þ KD _w

xðjÞ ¼ wT mðjÞ
PðjÞ ¼ n2WPðjÞf WT þ Q ðjÞ

ð4Þ
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In these equations the superscript f stands for the forecast
cycle. The vector m(j) is the n-vector with the several model
draws for the specific variable at location and time j and in
the notation henceforth simplified. The vectors wf and w are
the model weights forecast and analysis, respectively. The n by
n matrix Pf is the forecast error covariance of the n-dimensional
random variable x. The model–model analysis residual error
covariance matrix is denoted by Q and will be defined below.
The estimates Pf, P and Q will be the same for all variables
and locations j for the purposes of the present work, though they
will become different if we apply a localization step. W is an n
by n diagonal matrix with the weights w along the main diago-
nal and zeros elsewhere and ~M is the n by d zero mean model
estimates matrix (i.e. each model represented in a row of ~M
had its mean subtracted). The matrix K denoting the Kalman
gain and the innovations vector D _w will be defined below.

Let g(x;xf,Pf) be the prior n-dimensional multi-variate distribu-
tion of the stochastic model entities in the vector x. It is assumed to
be normal with expected value xf and a covariance given by the n
by n matrix Pf. The generic expression for a normal distribution is
given by

gN x; xf ;Pf
� �

¼ ð2pÞ�n=2 Pf
��� ����1=2

exp �1=2 x� xf� �T
Pf�1

x� xf� �h i

ð5Þ

where |Pf| is the determinant of the model error covariance matrix
Pf. This matrix has the variances of each of the stochastic models in
x along its diagonal, while the off-diagonal terms represent the
cross-models covariances.

When there is no other prior information the background
expectation (and mode under the normal distribution assumption)
of x can be taken as the vector of the given model states with equal
skills in representing the truth (i.e. equal likelihoods). Assuming
they will include the true state, the sum of all conditional probabil-
ities will have to add up to 1. This corresponds to giving a weight
wf

i = 1/n to each model entity. This solution denotes the maximum
uncertainty solution, since it assumes a uniform likelihood for the
model estimates. The background state vector at the index j, is then
given by

xfðjÞ ¼ �xıðjÞ; i ¼ 1; . . . ;nf g ¼ wf
i miðjÞ; i ¼ 1; . . . ;n

n o
ð6Þ

To compute the model–model covariance we would need
access to an ensemble of realizations of each stochastic model
entity at each location, but we only have their mean. However,
if we assume the statistics of each entity to be stationary and
ergodic in the domain of interest, then we can compute the
model variances and covariances by averaging across the d real-
izations of x instead of averaging across the ensemble dimension.
This assumption might not always hold but it can be mitigated
by running the MEKF in localized space–time sub-domains. Using
this assumption the covariance of x will then be given by the n
by n matrix Pf as:

Pf ¼ n2

d� 1
Wf ~M ~MTWf T

ð7Þ

where Wf is a matrix with the prior or background weights (taken
as 1/n) along its diagonal and zeros elsewhere.

Now considering the set of observations yo and known observa-
tions operator H, each of the individual models will have a least-
squares regression to the observed data given by the weights
_w = { _wi, i = 1, . . . ,n} found by minimizing the square increments:

z2
i ¼

Xs

j¼1

n _wiHj mið Þ � yo
j

� �2
ð8Þ
For a linear H, the condition
@ z2

ið Þ
@ð _wiÞ
¼ 0 produces the set of

weights for the a best fit solution hereafter called Least Squares
Fit (LSF):

_w ¼ 1
nðs� 1Þ yoT HðMÞT N�1

h iT
ð9Þ

where N is a n by n normalization diagonal matrix with the
elements corresponding to the variances of the projected model
estimates summed over all observations:

Nii ¼ 1=ðs� 1ÞHðmiÞT HðmiÞ ð10Þ

These LSF model observations have a n by n residual error
covariance R given by:

R ¼ 1
s� 1

_D _DT ð11Þ

Here _D = {nH( _wimi) � yo, i = 1, . . . ,n} is an n by s matrix with the
residual errors of the LSF, for all models. Thus the diagonal terms in
R represent the LSF residual error variances for each model and the
off-diagonal terms the residual error covariances among the differ-
ent models.

We can also assume the LSF solution to be represented by a
multi-variate normal distribution describing the state estimates
of xLSFnx denoted as g(x;xLSF,R). As such, the LSF weights will
correspond to the conditional probabilities for each model mean
to reproduce the observations. Note that though this LSF solution
produces likelihoods or weights that can be conceptually equiva-
lent to traditional particle filter formulations, they differ in the
way the residual error matrix is formulated since it preserves the
information of the global cross-correlation of model-observations
misfits under ergodic approximations. Another note of caution is
that as the available draws (or means of the stochastic entities)
approach the data, the sum of these weights (or likelihoods) will
converge to unity, but when all models are uncorrelated with the
data their sum will converge to zero. Therefore the norm
�_w ¼

Pn
i¼1 _wi can be used as a metric benchmarking the overall like-

lihood of the available models to reproduce the observations i.e.
when _w is very small most of the true ocean state will likely reside
on the null-space of the domain span by the available models
draws and vice versa. As such, when this norm is small one can
expect the overall forecast performance to be poor.

The objective of the MEKF is then to combine the above
distributions into a single estimate that could provide an optimal
consensus. Using Bayes’ theorem and following a procedure sim-
ilar to the one described in e.g. Lorenc (1995) and Arulampalam
et al. (2002), within the context of variational analysis and
Bayesian filters, we can find a posterior probability distribution
function for the generic model local state vector, given the mod-
els’ LSF, as:

p xjxLSF
� �

¼
pðxÞp xLSFjx

� �
pðxLSFÞ ¼ Ag x; xf ;Pf

� �
g x; xLSF;R
� �

ð12Þ

where A is a normalization since

pðxLSFÞ ¼
Z m

j¼1
p xLSF

��x� �
pðxÞdx ¼ 1=A ð13Þ

is the integration through all possible values of x.
For a generic variable at location and time j we can now define

the ensemble domain with the possible states for the vector x as
the linear space of the available model draws (i.e. the possible
model realization in the basis will be proportional to the available
draw of the respective model). Defining the vectors x, xf and xLSF by
introducing the diagonal weights matrices W, Wf and _W as
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x ¼WmðjÞ ¼
w1 � � � 0

..

. . .
. ..

.

0 � � � wn

2
664

3
775mðjÞ;

xf ¼WfmðjÞ ¼
wf

1 � � � 0

..

. . .
. ..

.

0 � � � wf
n

2
664

3
775mðjÞ

ð14Þ

xLSF ¼ _WmðjÞ ¼

_w1 � � � 0

..

. . .
. ..

.

0 � � � _wn

2
664

3
775mðjÞ

where wi are the variable ensemble weights, wf
i are the weights cor-

responding to the expected value of the prior solution and _wi, are
the weights of the expected value of the LSF solution. After some
simple algebra, using the generic expression for the normal distri-
bution above in Eq. (5), we can then expand equation (12) into:

P xjxLSF� �
¼Bexp �1=2 x�xf

� �T
Pf �1
ðx�xf Þ�1=2 xLSF�x

� �T
R�1 xLSF�x

� �h i

¼Bexp �1=2mðjÞT W�Wf
� �T

Pf �1
W�Wf
� �

mðjÞ
�

�1=2mðjÞT _W�W
� �T

R�1ð _W�WÞmðjÞ
�

ð15Þ

where B(A,Pf,R) can be treated as a constant since it does not
depend on x.

In order to obtain the posterior weights for the final solution
and taking into account the result expressed in (2) one can now
compute the components of the expected vector �x(j) through:

�xiðjÞ ¼
Z

ensemble
xiðjÞp x n xLSF� �

dx ¼ wimiðjÞ ð16Þ

A direct generic solution is rather complex and in order to solve
Eq. (16) numerically we would need to have access to an ensemble
of possible weights following some unknown probability distribu-
tion. However, noting that for distributions of the normal class the
expected vector and mode vector will be the same, one can more
simply find the expected values for x by finding the set of param-
eters that maximize the posterior distribution i.e. by finding the set
of weights W that maximize p(x|xLSF).

Denoting the exponential characteristics of normal distribu-
tions, for the purpose of finding a maximum we can compute:

�ln p xnxLSF
� �� �

¼1=2mðjÞT DWT Pf�1
DW

h

þ D _W�DW
� �T

R�1 D _W�DW
� ��

mðjÞ� lnðBÞ ð17Þ

where the correction (DW) and increment (D _W) matrices are
defined as

DW ¼W�Wf and D _W ¼ _W�Wf ð18Þ

Noting that ln(B) and the estimates m(j) are independent of the
weight selection, then the maximization of p(x|xLSF) corresponds to
minimizing the cost function J defined as the expression between
brackets above:

P xjxLSF
� �

MAX ) JðDWÞMIN

¼ DWPf�1

DWT þ ðDW� D _WÞR�1ðDW� D _WÞT
h i

MIN

ð19Þ

Now, by setting:

@JðDWÞ
@DW439 ¼ 0 ð20Þ
we can find

DW Pf�1

þ R�1
� �

¼ _WR�1 ð21Þ

Multiplying both sides of this expression on the right by R and on
the left by PfDW�1 we can find the final form for the optimal set of
weights and define the Kalman gain matrix K used by the filter as:

DW ¼ D _WðPf þ RÞ
�1

Pf ¼ D _WK ð22Þ

Finally, taking the values along the main diagonal of the
weights matrices we can produce the weights vectors used in the
MEKF as:

w ¼ wf þ D _wK ¼ wf þ K _w�wf
� �

ð23Þ

Since these weights correspond to the conditional probabilities
for each given model, the sum of these posterior expected weights
can also be used as a proxy of the joint likelihood of the final con-
sensus to preserve both the prior information and observations:
Very small values will correspond to large model spread and large
data misfits by all models while values closer to unity will corre-
spond to small spread in the model estimates that are accurately
capturing the observations.

If the hypothesis formulated in the previous chapter regard-
ing the persistence of the weights is true and these posterior
weights are optimal through the full forecast range [0, tf], then
the errors estimated during the analysis can be used to predict
the forecast errors. The model–model residual error matrix Q
can be computed after estimating the MEKF weights as Q = 1/
(s � 1)DDT from D = {nwiH(mi) � yo, i = 1, . . . ,n}. Under the same
stationarity and ergodic assumptions mentioned above, the
summations for Q are taken along all observations and as such
the diagonal terms will represent the residual error variances of
each model estimate after applying the optimal weight and the
off-diagonal terms the residual error covariances among the dif-
ferent models. This estimate allows us then to compute the gen-
eric analysis error covariance P as defined in the expressions (5)
for the Kalman filter.

Since our final variable of interest is the local estimate of a state
parameter that is computed by the mean of the components in the
vector x, we can also introduce a local error estimate for the gen-
eric variable x(j). We start by identifying the variance of the vector

x as mðjÞ ¼ 1
n�1

Pn
i¼1ðnwim jð Þi � xi jð ÞÞ2 and defining the n by n matrix

!(j) with the value of m along its diagonal and zeros elsewhere.
Next we assume the local model error covariances will be station-
ary over the entire grid and for all times in the forecast, such that a
normalized model–model correlation matrix C exists and is the
same for all possible j, as given by:

C ¼ n2

d� 1
W ~Mn

~MT
nWT ð24Þ

where ~Mn corresponds here to the normalized model estimates
matrix but where each column is divided by each model standard
deviation. As such the diagonal terms of the matrix C will corre-
spond to the squares of each model optimal weight and the off-
diagonal terms will only show the relative model–model normal-
ized covariances. We can then define a local forecast error covari-
ance for the estimates x(j) as:

Px jð Þ ¼ !ðjÞCþ Q ð25Þ

These error estimates are not used in the present work but they
will permit the identification of local sensitivities of the consensus
errors and to address targeted observations and adaptive sampling
problems as developed in Coelho et al. (2009) among others. These
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aspects of error forecast estimates will be expanded in future work
and are introduced here only to allow a more comprehensive
description of the methodology.

Though the MEKF formulation as detailed here can be general-
ized and applied to variables of any kind the following sections will
discuss the results of implementing this methodology only for a
single variable problem, tracking the velocities measured by the
drifters deployed during the GLAD experiment.
4. Ocean currents predictions using the MEKF during the GLAD
experiment

During the GLAD experiment in the summer-fall 2012 the data
from more than 300 drifters were used together with remote sens-
ing imagery and other in situ measurements to observe and under-
stand the motions in the upper ocean of the north-central GoM.
These observations were integrated with the estimates delivered
by several model runs to better capture the dynamics of the
observed dispersion. This section discusses how the MEKF can be
used to improve the ocean current estimates by using a non-intru-
sive four-dimensional analysis that outperforms any of the individ-
ual model estimates.
4.1. Velocity tracking using the numerical models

The models running during the GLAD experiment (introduced
in Section 2) assimilated standard data (satellite altimetry, sea sur-
face temperature, and temperature and salinity profiles). They all
produced daily updates of 72-h or longer range forecasts, using
atmospheric forcing from a COAMPS™ atmospheric model run at
25 km resolution and made available by the US Navy Fleet Numer-
ical Meteorology and Oceanography Centre (FNMOC). Lateral
boundary conditions were taken from the global HYCOM (e.g.
Metzger et al., 2006) or global NCOM (e.g. Barron et al., 2007). Note
the MEKF is not aimed to benchmark or assess individual model
skills; instead the MEKF will combine the information from all
Fig. 4D. GLAD drifter network detail showing drifters CARTHE-001, CARTHE-020 and C
August 19, 2012 00:00 UTC–August 29, 2012 00:00 UTC. This same period is highlighted
simulations into a best guess estimate, based on their consistency
with local observations.

The GLAD drifters were quality controlled and filtered as dis-
cussed in Section 2, resulting in a database with positions and
velocity estimates on a regular time grid, sampled at 15 min along
the drifter’s trajectories. Fig. 5 shows a short time series of the
observed velocities for the drifter CARTHE-001 corresponding to
the period August 19–29, 2012. Although the following paragraphs
will be focused on this drifter, similar conclusions can be drawn for
other drifters.

The plots in Figs. 5A and 5B show the model velocity compo-
nents parallel to the drifter track (along-track), interpolated for
the same time and position along the trajectory. The NRL NCOM
at 1 km estimates are shown in Fig. 5A and the estimates from
NRL NCOM 3 km in Fig. 5B. They both use the 24–48 h forecast per-
iod. The plots also show the residual velocity component perpen-
dicular to the drifter track (cross-track), which represents model
misfits (the drifters measure zero cross-track velocities by defini-
tion). All the data shown in these figures were filtered with a
cut-off frequency of 12 h and decimated at 0.5 h. When the
cross-track velocity estimate are larger than a representation error
threshold taken at 0.1 m/s or when the along track velocities are
negative one can conclude the models were not interpreting
correctly the drifter track as a dynamical trajectory. When the
cross-track velocities are negligible and the along track compo-
nents positive we can assume the models are correctly interpreting
the track as a dynamical trajectory. However, if the along-track
velocities are either too large or too small then they were either
over-estimating or under-estimating its kinetic energy content.

To allow interpreting the causes of bad skills in capturing the
dynamical trajectories the plots in Fig. 5 also include a quasi-
geostrophic velocity proxy based on the density gradients taken
from the model fields along the trajectory and that could diagnose
long range misalignments of the observed tracks relative to the
predicted density surfaces. They also show the estimates from
the model free-surface slopes (mostly dominated by tidal and
inertial signals) that diagnose free-surface lead velocity estimates
ARTHE-236 overlay on the NCOM 3 km mean surface temperature for the period
as white along each track.



Fig. 5A. Velocities along the drifter track from the model NCOM 1 km and corresponding along the track velocities measured by the drifter CARTHE-001 between August 19,
2012 (day 30) and August 29, 2012 (day 40). The black line (+) corresponds to the drifter observed velocities. The model velocity estimates parallel to the drifter track are
marked in red (d) and the residual (perpendicular to the track) estimates in cyan (s). The quasi-geostrophic velocity proxy discussed in the text is shown in blue (D), and the
velocity proxies based on the along-track surface elevation are displayed in green (h). The dashed red line corresponds to the total magnitude of the model current along the
trajectory.

Fig. 5B. Same as Fig. 5A using the NCOM 3 km model estimates.
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(i.e. resulting from the available potential energy along the trajec-
tory). The quasi-geostrophic proxy is computed as Vqg � Dq/q g/fc

Det/Dl, where q is the water density; g the gravity acceleration;
et the de-tided free surface perturbation; Dl the drifter travel
distance; fc the Coriolis frequency. The free-surface elevation proxy
is defined as Ve � sqrt(2gDe Dq/q) fc Dt, where e is the full free
surface perturbation and Dt the time interval between samples.
If the models were correct, the cross-track velocities should be
negligible, the quasi-geostrophic (QG) proxy should be small along
the track, except when along track surface slopes were present and
that could force the drifter to cross the density fronts by converting
kinetic energy to potential energy and vice versa. The free-surface



Fig. 5C. Same a Fig. 5A using the MEKF consensus estimates.

Fig. 6A. Kinetic energy change (work done) estimated by the NCOM 1 km model and corresponding estimates along the track as measured by drifter CARTHE-001, between
August 19, 2012 (day 30) and August 29, 2012 (day 40). The black line (+) shows the drifter observations taken at 30 min intervals. The red line (d) shows the estimates from
the model velocities. The wind stress energy inputs per unit volume, integrated during the same 30 min intervals are marked in cyan (–) and the net heat fluxes in magenta
(..).
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lead velocities proxy allows diagnosing along the trajectory the
occurrence of these conversions of the potential energy into kinetic
energy and vice versa.

From the analysis of Figs. 5A and 5B one can see for both the
NCOM 1 km and NCOM 3 km models that the variability of the
along-track velocity estimates shows a persistent near-inertial
forcing, consistently with the estimates of potential–kinetic energy
transfer suggested by the free-surface velocity proxy. However,
phase lags and smaller magnitudes of the model estimates develop
with respect to the velocity of the drifter. The NCOM 1 km model
shows more frequent negative along-track velocities estimates and
larger cross-track estimates than the NCOM 3 km model suggesting
the latter is doing a better job in capturing the general aspects of this
dynamical trajectory. However, the quasi-geostrophic proxy for the



Fig. 6B. Same a Fig. 6A using the NCOM 3 km model estimates.

Fig. 6C. Same a Fig. 6A using the MEKF consensus estimates.
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NCOM 3 km showed larger values compared to the NCOM 1 km,
suggesting some misalignment of the density fronts as predicted
in the model relative to the observed trajectory.

Figs. 6A and 6B displays the corresponding changes in kinetic
energy for the same cases displayed in Figs. 5A and 5B, as mea-
sured by the drifters (black line) and those estimated by the NCOM
1 km and 3 km model runs (using the same 24–48 h segments).
The changes in kinetic energy can be either due to conversion of
potential energy to kinetic energy and vice versa (displayed by
the good correlation between the free-surface velocity proxy and
these curves), due to energy flux divergence or convergence or
due to external forcing (directly through momentum fluxes or
indirectly through net heat fluxes). The energy flux divergence
and convergence depends on remote fields outside the trajectory
and should be slowly evolving. These can justify the mean
differences in energy content over the period of several days. For



Fig. 7A. Anti-cyclonic velocity rotary spectra for drifters CARTHE-001, CARTHE-020 and CARTHE-236. The vertical axes correspond to the time from July 20, 2012 to October
30, 2012. The period August 19–29 is shown between the two horizontal lines. From left to right, the columns show estimates from NCOM 1 km, NCOM 3 km, the consensus,
and the observations. The vertical lines on all the plots show the semi-diurnal frequency on the right, the inertial frequency in the middle, and the diurnal frequency on the
left. The horizontal axis corresponds to the frequency logarithmic scale and is shown below the plots. The range of frequencies are from 5e�4 h�1–1/(83 days) to 2 h�1 (1/
(0.5 h).
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interpretation purposes the plots also show the external forcing
terms used by each model along the trajectory, namely the energy
inputs from the wind stress and by the net heat fluxes.

In the time series displayed in Fig. 6 we can see examples when
the impulses were consistent with the observations (e.g. during
days 38–39 corresponding to August 27–28, due to the strong
winds produced by Tropical Storm Isaac). They also show examples
when the models were not capturing well the observed changes in
kinetic energy either by lagging and/or underestimating the
impulses (e.g. in days 31–33 corresponding to August 20–22).
The large impulse on day 34 (August 23) produced a sharp increase
in the drifter speed. This corresponds to a strong inertial response
as can be seen in Fig. 7A. This impulse was not seen at all by any
model and was likely a response to a sharp wind event that was
not well reproduced by the smooth 25 km resolution COAMPS
winds that was used as the atmospheric forcing an all the models.
Figs. 6 and 7 shows that overall models had performances chang-
ing within the several forecasts cycles and sometimes not consis-
tently among each other. They also suggest that although NCOM
3 km may be better capturing phases of the impulses, the NCOM
1 km was better in reproducing their magnitudes.

The trajectory of drifter CARTHE-001 was complex as displayed
in Fig. 4D. It included periods of fast, straight motion with constant
kinetic energy alternating with very intensive high-frequency anti-
cyclonic rotation, superimposed with larger scale rotation both
cyclonic and anti-cyclonic. Some of these kinetic energy changes
are likely associated with local forcing (e.g. August 20, 23 and
27). For events like these, the model estimates were consistent
according to the atmospheric forcing being used. However, some
other impulse-like events as those on August 25–26 cannot be
directly linked to external forcing. The phase lags and amplitude
underestimations suggest the energy characteristics in the models
were not well aligned with the trajectory and/or that the model
energy fluxes due to the local dynamics contained significant
errors.

During the 10-day analysis period displayed in Figs. 5 and 6,
drifter CARTHE-001 was near the northeast GoM shelf break. How-
ever, these results are consistent with the analysis of other drifters
like CARTHE-020 and CARTHE-236, in different on-shore and off-
shore regions as displayed in Figs. 4D and 7. Because both the
NCOM 1 km and NCOM 3 km models underestimated along-track
velocities, showed phase lags and cross-track components, neither
model could be judged to be better than the other for the regions
sampled.

Fig. 7 shows the time evolution of the velocity amplitude rotary
spectra for the drifters CARTHE-001, CARTHE-020 and CARTHE-
236. By direct inspection one can see the spectral properties are
similar for all three drifters. The cyclonic spectral energy in
Fig. 7B was lower and mostly concentrated at lower frequencies,
while the anti-cyclonic spectra in Fig. 7A shows the most energetic
events at the near-inertial ranges.

Fig. 7A shows that significant anti-cyclonic inertial energy
appears after approximately August 19 in response to a passing
frontal system for all three drifters. Also noticeable is the inertial
response to the impulse of kinetic energy in August 23, seen in
all drifters and not detected by any of the models, as discussed
above for the drifter CARTHE-001. Another energetic event occurs
in response to the passage of Hurricane/Tropical Storm Isaac in
early September, characterized by large velocities and by a broad-
band transient rotary spectral response, mostly anti-cyclonic and



Fig. 7B. As Fig. 7A, but for the cyclonic velocity rotary spectra components.
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well captured by the models. This however had a negligible inertial
response, suggesting the impact of the storm over the surface to
have been like a time impulse with the energy propagating fast
across scales and eventually being lost to the sub-surface layers.
Also, the cyclonic response of drifter CARTHE-236 caught in an
accelerated loop current gyre in the latter half of August was not
well captured by the models.

Overall, these examples suggest that models were capturing
most energetic responses, although attenuated and with some lags
and amplitude mismatches. Models do track dominant kinematic
features in the region. The results also demonstrate the degrada-
tion in model along-track velocity forecast skill once local dynam-
ics became non-stationary and have large near-inertial responses.
Since each individual model carries different assumptions that
result in different forecasts and consequently in different errors
characteristics in space and time.

4.2. Velocity tracking using the MEKF

Daily outputs of the five models used during the GLAD experi-
ment were interpolated to a common 4 km resolution grid, with
6-h time sampling and covering a 72-h forecast period. All together
they defined the domain of uncertainty used by the MEKF and con-
tained the best guesses of the true ocean states at each running
cycle. The domain size was however too small to address all the
details of a multivariate problem with a large number of degrees
of freedom such that for this application we cannot expect the
filter to correct large model errors or to produce estimates signifi-
cantly different from the best individual runs of each cycle.

The MEKF was cycled for each day of the trial using the proce-
dures detailed in Section 3. The least-squares fit coefficients were
computed using a time window corresponding to the first 24 h of
the forecast cycles (hindcast period) and used to estimate the
optimal posterior weights that will produce the consensus analysis
for the remaining re-gridded forecast, covering the period 24–72 h
(forecast period). The observations made during the hindcast time
window were used in a single step, such that the filter background
was always the corresponding cycle multi-model mean (i.e.
wf = {1/n; i = 1, . . . ,n}). The resulting ocean surface velocities were
then compared to the observed drifter velocities to benchmark
the filter performance during both the hindcast and forecast
phases, assessing if the filter was improving alignment with the
observed dynamical trajectories represented by the drifter tracks.

The data observed during the forecast periods was not used to
compute the posterior estimates but was collected along the same
dynamical trajectories of the data used for the analysis, hence
potentially showing the maximum impact of the innovations.
During the hindcast period, by design, the optimal posterior
estimates should on average outperform any of the models (i.e.
have a least-squares error, averaged over the full hindcast period,
smaller than any of the single model runs). The hypothesis to test
is that the MEKF produces a consensus estimate that provides on
average a solution better aligned with the observed trajectories.

Assuming these trajectories will be invariant over the full 72 h
run periods, the optimal fit from the first 24 h should persist during
the remainder of the forecast period. This will mean the MEKF con-
sensus estimate will also remain valid through the full 72 h period.
If such is the case the filter estimates would also outperform on
average any of the single models during the forecast period.

The MEKF weights computed for each run cycle are shown in
Fig. 8. They change throughout the experiment suggesting that
no single model consistently outperformed the others in terms of
predictive skills. When the model produces large mismatches with
observation, the overall skill of a run will be low and the magni-
tudes of the corresponding LSF weight small. If a run is highly
correlated with the observations the mismatches will be smaller



Fig. 8. The upper panel of the figure shows the MEKF weights for the different models through the GLAD experiment. During the days 40–43 the weights were not updated.
The lower panel shows the inverse of the sum of the weights magnitude and that was used to re-scale the final MEKF consensus estimates.
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and the LSF weights will approach 1/n. When there is a background
model variance (diagonal of the matrix P) that is much larger than
the LSF residual errors (diagonal of R), the final posterior weights
will approach the LSF weights (i.e. the weights will converge to
the maximizing the likelihood function). On the other hand, if all
the LSF residual errors become much larger than the background
model variances the final weights will approach the background
weights (1/n for all models in this case). In this second situation
the observations will be producing a very small or no impact in
the final solution. As a note of care, when all models have equally
low skills and the background model variance is large, the poster-
ior weights can be very small and damp the magnitudes of the con-
sensus estimates, which will converge to a trivial solution. To avoid
this behavior the weights are therefore normalized by the inverse
of the sum of the weights magnitude, as shown in Fig. 8 (lower
panel). This operation guaranteed the final velocities and kinetic
energy did not change just due to the changes in the data and/or
models skill. The resulting velocity and kinetic energy changes
estimates along the trajectory of drifter CARTHE 001 are shown
in Figs. 5C and 6C.

Fig. 5C compares the measured along-track velocities with
those computed from the MEKF consensus for the drifter CAR-
THE-001. For the period shown, the NCOM 1 km and the AMSEAS
models were the runs with larger weights (Fig. 8). Also note that
all models had small weights on on August 24 and 25 (Fig. 8; days
35–36 in the trial) suggesting degraded consensus forecast skill
during this two-day period. From the analysis of this figure we
can infer the consensus captures the variability of most events
(learning from both the run NCOM 1 km and NCOM 3 km). How-
ever, the consensus still shows significant cross-track velocities,
and negative along-track values suggesting limited skill in fore-
casting the trajectories. The MEKF consensus also shows significant
quasi-geostrophic velocity proxy.

Fig. 6C displays the equivalent changes in kinetic energy along
the trajectory as predicted by the MEKF consensus. Though still
with some inconsistencies we can see there are some improve-
ments relative to the MCOM 1 km and NCOM 3 km in reproducing
some of the impulses along the trajectory, particularly in matching
the response to the front passage during August 20–21 and 25–26
and a better fit in the response to the Tropical Storm Isaac during
August 27–28.

This analysis suggests the MEKF consensus is improving the
velocity estimates by attenuating the features in the models that
are not consistent with observations, while maintaining those that
are better correlated with the data. The consensus spectra
estimates shown in Fig. 7 further suggests this property either by
distributing the energy or by better reproduction both cyclonic
and anti-cyclonic events, though still with significant mismatches.

Fig. 9 shows the square errors of the MEKF (consensus) fore-
casts relative to the observed velocities using a 24–48-h forecast
window through the full life of drifter CARTHE-001. The figure also
shows the equivalent results using the estimates from the NCOM
1 km and 3 km as reference. For exemplification the MEKF was also
run using the Local option for this drifter (i.e. using only the LSF
with the data from the drifter CARTHE-001). The Local approach
(identified as the Buoy Tracking Analysis in the figure) provides
smaller RMS error for some cases but does not outperform the con-
sensus overall. The consensus estimate has residuals that are close
to the Local solution and generally performs better than the NCOM
1 km and 3 km estimates. The large error displayed by the models
and the consensus on August 22–23 (days 33–34) correspond to
the response to the sharp impulse discussed in Fig. 6 that was
not seen in any of the models and triggered the energetic near-
inertial response seen in Fig. 7 for all drifters.

The performance of the consensus using the full drifter network
is shown in Figs. 10A–10D and in Tables 1–3. The figures show the
root-mean-square (RMS) of the mismatches between the model
estimates and the measured velocities, along 6 h bins over the full
72-h forecast cycles, for the several individual models and their
mean (colored lines). The figures also show the final MEKF consen-
sus (black line) that outperforms all other single model estimates
during the full forecast period and relative to their mean (red line)



Fig. 9. Root-mean-square (RMS) errors of velocities along drifter CARTHE-001 trajectory. RMS errors are shown for the NCOM 1 km, NCOM 3 km, Velocity persistency,
consensus using the full drifter network, and the analysis using only the drifter CARTHE-001 data for the posterior optimal estimation. The RMS errors were computed using
the model-observation mismatches during the forecast periods 24–72 h of each daily cycle, such that for example the RMS for day 20 shows the RMS errors averaged for the
forecasts covering days 21–23.

Fig. 10A. Root-mean-square surface velocity error using the full drifter network and 6 h time bins for the forecast run on August 19, 2012 at 00:00 UTC (day 30) before the
Tropical Storm Isaac crossed the region. This cycle used the several runs from August 19 00:00 UTC as the model backgrounds and the drifter position during the period
August 19–20 to compute the optimal posterior weights using the MEKF. As such the first 24 h (to the left of the blue vertical dotted line) the thick black line shows the MEKF
residual analysis errors while the values to the right are true MEKF forecast errors. For reference, the velocity persistency error assuming the velocity observed by each
platform at the analysis time remained constant is shown as the red dotted line. The other curves correspond to the different models used by the filter.
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used by the MEKF as the background. As reference, to compare
results relative to a trivial solution, the figures and tables also dis-
play the performance relative to a persistency estimate defined as
if the first measured velocity by each drifter and assumed to persist
throughout the full 72 h range. The tables also show the overall
results when considering the LSF solution only. These are not



Fig. 10B. Same as Fig. 10A for the run on September 2, 2012 (day 45), a few days after the landfall of Tropical Storm Isaac in August 28–29 2012.

Fig. 10C. Same as Fig. 10A but for the MEKF run using the model estimates from September 11, 2012 (day 54), well after the Tropical Storm Isaac had left the region.
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includes in the figures but the corresponding curves were mostly
between the MEKF consensus and the mean. Note that the first
24 h in each cycle corresponds to an analysis for the MEKF consen-
sus estimate, as such one should expect it to perform better than
any of the other estimates that were not using the observations
during this period. Figs. 10A–10C refer to single daily runs corre-
sponding to the dates used in Figs. 4A–4C. They represent the
performance of the MEKF during single days of the experiment
and highlight the three different dynamical regimes explained
above with the drifters covering different regions and with differ-
ent overall spread.

Fig. 10A shows the comparisons of the model velocities with the
corresponding observed drifter velocities using the forecast run in
August 19 (thus covering the period August 19 00:00 UTC–August
22 00:00 UTC 2012). This period immediately followed the passage
of an atmospheric frontal system across the northeastern Gulf. The



Fig. 10D. Same as Fig. 10A, using the full range of forecast cycles from July, 20 to September, 30 2012. The RMS errors for this figure were computed over 6 h bins that include
the full set of measured vs. modeled velocities along the drifters trajectories in all cycles for the same forecast bin period.
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atmospheric front triggered inertial residual motions in many
drifters along the shelf and coastal areas, as can also be seen in
Figs. 3, 5 and 7. During this period most of the drifters were still
grouped in their deployment clusters and followed the dynamical
features where they were launched as described in Section 2. The
results show a highly variable response in time and that the MEKF
consensus was only slightly outperforming the ensemble mean.
During this period all models were showing similar fits to the
observations. The persistency performance shows significant oscil-
lations suggesting this period was mainly dominated by a strong
inertial motion.

Fig. 10B shows the equivalent comparisons using the fore-
casts run in September, 2. Hurricane Isaac passed through the
region shortly before this period. It made landfall in the central
Gulf August 28. The storm increased drifter velocities (which
reached values above 2 m/s), and caused several drifters to
ground in shallow waters along the Louisiana, Mississippi, and
Alabama coasts. The winds of this storm also wiped out most
of the residual inertial motion that were set earlier around
August 20–22 and before as we can see in the examples in
Figs. 4B and 7. In this example the model HYCOM with tidal
forcing (HYC-T) showed an RMS error that was above the others
likely due to the different handling of the data assimilation on
this particular cycle. This situation when one or more models
show degraded skills is when the MEKF consensus produces a
significantly more accurate solution compared to the ensemble
mean as visible in the figure.

Finally, Fig. 10C shows the comparisons for the forecast begin-
ning September 11, well after Hurricane Isaac. During this period
the drifter network was widely dispersed but strongly constrained
along what seem to be well developed frontal systems through the
central and eastern Gulf. Overall during this period all models have
much smaller and stable RMS errors than the previous dates. Nev-
ertheless, the MEKF consensus provides a more accurate solution
during the full forecast period.

The overall RMS errors using the full set of forecast runs are
shown in Fig. 10D and in Tables 1–3. They concur with the single
days analysis discussed in the previous paragraphs, confirming
that the MEKF produces a consensus analysis that outperforms
on average the entire model set on both the hindcast and forecast
periods as well as their mean and the individual Least Square Fits
(LSF row in Tables 1–3). The smaller residual RMS errors of the
MEKF consensus, estimated during the first 24 h, persist during
the remainder of the forecast cycles, giving an indication of the
robustness of the method, even during extreme events. These
results show that the posterior weights computed by the MEKF
using the observation made during the first 24 h were still produc-
ing better results during the true forecast periods (24–72 h). This
result concurs with the hypothesis stated in Section 3 (i.e. the
optimal weights computed by the MEKF during a small portion
of the dynamical trajectories persist during the following forecast
period).

Fig. 10D and Tables 1–3 also allows us to compare consecutive
forecast cycles. The forecast delivered by the MEKF for the ranges
24–48 h or 48–72 h, based on 24- or 48-h old simulations and per-
forming the non-intrusive analysis of the drifter data, were better
on average than the estimates given by the updated runs over the
range 0–24 h after the intrusive assimilation of the routine data.
These more recent runs were assimilating new observations (pro-
file and remote sensing data). None of the models was assimilating
the drifter observations but Carrier et al. (2014) discusses tests on a
version of the NCOM 3 km assimilating the drifter velocity data
that showed improved model skill.

5. Summary and conclusions

The Multi-Model Ensemble Kalman Filter (MEKF) produces
optimal aggregation estimates that combine multiple operational
models and local observations into an improved forecast. These
estimates can be used for on-scene forecasting or as background
states for additional intrusive data assimilation Results have
shown the approach to improve the consistency of surface velocity
estimates with turn-around times compatible with operational
applications.
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The MEKF method was used to track the velocity data from more
than 300 surface drifters deployed during the GLAD experiment in
the GoM, using an ensemble of five models with different setups.
Results showed the MEKF produced a robust consensus analysis
that on average outperformed any of the individual model runs,
their mean or model linear regressions to observations for the
entire forecast cycles, even during extreme events. However,
results showed the method still had limitations in reproducing drif-
ter tracks as dynamical trajectories, producing residual cross drifter
track velocity components comparable to those estimated by indi-
vidual runs. Comparison of consecutive run cycles show the MEKF
forecasts from 24- or 48-h old simulations performed better than
newly updated runs using the standard data assimilation suggest-
ing the optimal weights computed during a 24 h time window per-
sisted throughout the full range of the available forecasts.

Although the tests were focused on the velocity estimates, the
method can also be used for different variables or include other
parameters that could be directly correlated with the ocean state
and for which a forward model exists (e.g. oil spill images).

The results discussed in this paper can be viewed as part of a
framework that allows multi-scale multi-model assimilation of
observations into ocean models. The approach starts by correcting
the large-scale and low-frequency features in lower resolution outer
nests. These corrected estimates then force inner higher resolution
nests through the boundaries. The smaller scales reproduced by
these inner nests can be further corrected internally through higher
resolution analysis and so forth. When we get to a limit when the
available observations are not sufficient to constrain the higher
resolution or whenever there will be variables with operators that
cannot be directly be used by the operational data assimilations
systems, a final local zoom-in into the area and variables of interest
can then be performed using the non-intrusive MEKF approach.

The MEKF method can expand the use of high resolution local
observations, combining several assimilation methods and scales,
to improve the local accuracy in the areas and variables of interest
by aligning the model runs with the detected dynamical trajecto-
ries. This ‘‘telescopic’’ forecast and assimilation approach allows
dynamical features or instabilities as detected by the data to be
sequentially projected onto the scales reproduced by each domain
resolution. These can then be evolved and projected onto the smal-
ler grids to correct new significant dynamical modes consistently
with the observed scales, while keeping coherence at the bound-
aries through the analysis of the same data sets.

Future work will use and discuss this methodology for the mul-
tivariate problem processing state and non-state variables to eval-
uate the impact of other measured variables like temperature and
salinity profiles or satellite imagery on the prediction of surface
velocities.
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