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ABSTRACT

The impact of the assimilation of ocean observations on reducing global Hybrid Coordinate Ocean Model

(HYCOM) 48-h forecast errors is presented. The assessment uses an adjoint-based data impact procedure that

characterizes the forecast impact of every observation assimilated, and it allows the observation impacts to be

partitioned by data type, geographic region, and vertical level. The impact cost function is the difference between

HYCOM48- and 72-h forecast errors computed for temperature and salinity at all model levels and grid points. It

is shown that routine assimilation of large numbers of observations consistently reduces global HYCOM 48-h

forecast errors for both temperature and salinity. The largest error reduction is due to the assimilation of tem-

perature and salinity profiles from the tropical fixed mooring arrays, followed by Argo, expendable bathyther-

mograph (XBT), and animal sensor data.On a per-observation basis, themost important global observing system

is Argo. The beneficial impact of assimilating Argo temperature and salinity profiles extends to all depths

sampled, with salinity impacts maximum at the surface and temperature impacts showing a subsurfacemaximum

in the 100–200-m-depth range. The reduced impact of near-surface Argo temperature profile levels is due to the

vertical covariances in the assimilation that extend the influence of the large number of sea surface temperature

(SST) observations to the base of themixed layer.Applicationof the adjoint-based data impact system to identify

a data quality problem in a geostationary satellite SST observing system is also provided.

1. Introduction

Assessment of the impact of observations on reducing

ocean model forecast error from data assimilation is

a fundamental aspect of any ocean analysis and fore-

casting system. The purpose of assimilation is to reduce

the model initial condition error. Improved initial con-

ditions should lead to an improved forecast. However, it

is likely that not all observations assimilated have equal

value in reducing forecasting error. Estimation of which

observations are best and the determination of locations

where forecast errors are sensitive to the initial conditions

are essential for improving the data assimilation system

itself and for the design and implementation of future

observing systems. Typically, the impact of assimilated

observations is assessed using data denial studies in what

is referred to as an observing system experiment (OSE).

In an OSE a sequence of assimilation runs are per-

formed where one or more components of the observing

system are withheld. Impacts are determined by esti-

mating changes in the forecasts compared to a run when

all observations are assimilated (Oke and Schiller 2007;

Balmaseda and Anderson 2009; Lellouche et al. 2013;

Lea et al. 2014). Given the large number of ocean ob-

serving systems, an OSE is computationally a very ex-

pensivemethod for determining the value of observations

assimilated if it is applied systematically to all obser-

vation datasets. An OSE has a further disadvantage in

that modifications to the observing systems assimilated

from the data denial change the value of the remaining
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observations. Because of the computational expense

and difficulty in interpretation of the results, an OSE is

performed intermittently and is not a viable method for

routine determination of observation data impacts.

An alternative approach has been developed to esti-

mate the impact of the observations on the forecast by

using an adjoint sensitivity method (Langland and Baker

2004). The technique computes the variation in forecast

error due to the assimilated data. Observation impact is

estimated simultaneously for the complete set of obser-

vations assimilated. There is no need to selectively add

or remove observations in the assimilation to estimate

observation value as in an OSE. The procedure is com-

putationally inexpensive and can be used for routine

observationmonitoring. This aspect of the adjointmethod

is advantageous, since ocean observing and assimilation/

forecast systems are in continuous evolution, requiring an

efficient procedure that allows the impact of observations

to be regularly assessed. Data impacts can be partitioned

for any subset of the data assimilated—instrument type,

observed variable, geographic region, or vertical level—

with traceability to individual platforms based on station

identifiers, or call signs.

The monitoring of impacts of observations on short-

range forecasts in numerical weather prediction (NWP)

using the adjoint of the data assimilation system has be-

come routine (Cardinali 2009), as evidenced further by

the series ofWorldMeteorologicalOrganization (WMO)

conferences and technical reports (e.g., Andersson and

Sato 2012). Gelaro and Zhu (2009) compare results from

a standard OSE with the adjoint-based method and show

that the two approaches provide consistent estimates of

the overall impacts of the major observing systems as-

similated. Moore et al. (2011b) have applied the method

in the ocean using the Regional Ocean Modeling System

(ROMS) four-dimensional variational data assimilation

system (4DVAR; Moore et al. 2011a). They quantified

the impact of individual observations and observation

platforms on the alongshore and cross-shore transport of

the central California Current system associated with

wind-induced coastal upwelling. Recently, the data im-

pact method has been adapted for ensemble-based sys-

tems by Kalnay et al. (2012) and Ota et al. (2013).

This paper describes application of the adjoint-based

procedure to the estimation of the impact of the assim-

ilation of observations on reducing oceanmodel forecast

error in the navy’s global Hybrid Coordinate Ocean

Model (HYCOM) ocean analysis/forecast system. Fore-

cast error gradients and actual model–data differences are

used to estimate the impact of each observation assim-

ilated. Since forecast errors grow and decay at different

rates throughout the model domain, a large model–data

difference does not necessarily lead to a large data

impact. Observations can make small changes to the

initial conditions and still have a large data impact if the

location of the observation is in a dynamically sensitive

region. The results illustrate the types of diagnostics that

can be routinely obtained with the adjoint-based method

in an operational context.

The paper is organized as follows. Section 2 gives a brief

description of the global HYCOM analysis/forecasting

system. Section 3 outlines the data impact procedure,

including a description of the limitations of the method

as applied in this study. Results of the data impact

system cycling with global HYCOM are illustrated in

section 4. Summary and conclusions are presented in

section 5.

2. Global ocean forecasting

The U.S. Navy Global Ocean Forecasting System

(GOFS) consists of HYCOM and the Navy Coupled

Ocean Data Assimilation (NCODA) components. The

global system is described in a series of technical re-

ports (Metzger et al. 2008, 2010) and more recently in

Metzger et al. (2014). The NCODAdata assimilation is

described in detail in Cummings and Smedstad (2013).

As configured within GOFS version 3, HYCOM has

a horizontal equatorial resolution of 0.088 or;1/128 (;7-

kmmidlatitude) resolution. This makes HYCOM eddy

resolving. Eddy-resolving models can more accurately

simulate western boundary currents and the associated

mesoscale variability, and they better maintain more

accurate and sharper ocean fronts. In particular, an

eddy-resolving ocean model allows upper-ocean to-

pographic coupling via flow instabilities, while an eddy-

permitting model does not because fine resolution of

the flow instabilities is required to obtain sufficient

coupling (Hurlburt et al. 2008b). The coupling occurs

when flow instabilities drive abyssal currents that in

turn steer the pathways of upper-ocean currents. In

ocean prediction this coupling is important for ocean

model dynamical interpolation skill in data assimila-

tion/nowcasting and in ocean forecasting, which is

feasible on time scales up to about a month (Hurlburt

et al. 2008a).

The global HYCOM grid is on a Mercator projection

from 78.648S to 478N and north of this it employs an

Arctic dipole patch, where the poles are shifted over

land to avoid a singularity at the North Pole. This gives

a midlatitude (polar) horizontal resolution of approxi-

mately 7 km (3.5 km). This version employs 32 hybrid

vertical coordinate surfaces with potential density refer-

enced to 2000m, and it includes the effects of thermo-

baricity (Chassignet et al. 2003). Vertical coordinates can

be isopycnals (density tracking), often best in the deep
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stratified ocean; levels of equal pressure (nearly fixed

depths), best used in the mixed layer and unstratified

ocean; and sigma levels (terrain following), often the

best choice in shallow water. HYCOM combines all

three approaches by choosing the optimal distribution

at every time step. The model makes a dynamically

smooth transition between coordinate types by using the

layered continuity equation. The hybrid coordinate ex-

tends the geographic range of applicability of traditional

isopycnic coordinate circulation models toward shallow

coastal seas and unstratified parts of the World Ocean.

It maintains the significant advantages of an isopycnal

model in stratified regions while allowing more vertical

resolution near the surface and in shallow coastal areas,

hence providing a better representation of the upper-

ocean physics. HYCOM is configured with options

for a variety of mixed-layer submodels. This version

uses the K-profile parameterization (KPP) of Large

et al. (1994). In this study, the ocean model used

3-hourly Navy Operational Global Atmospheric Pre-

diction System (NOGAPS) forcing obtained from the

Fleet Numerical Meteorology and Oceanography Cen-

ter (FNMOC), which includes air temperature at 2m,

surface specific humidity, net surface shortwave and

longwave radiation, total (large scale plus convective)

precipitation, ground/sea temperature, zonal and me-

ridional wind velocities at 10m, mean sea level pressure,

and dewpoint temperature at 2m. The first six fields are

input directly into the oceanmodel or used in calculating

components of the heat and buoyancy fluxes, while the

last four fields are used to compute surface wind stress

with temperature- and humidity-based stability depen-

dence. NOGAPS forcing is available on the FNMOC 0.5

degree resolution application grid and extends out to 120h

(i.e., the length of the HYCOM/NCODA forecast). The

global HYCOM forecast system includes a built-in energy

loan thermodynamic ice model. In this nonrheological

system, ice grows or melts as a function of SST and heat

fluxes.

NCODA is an oceanographic implementation of the

NavalResearchLaboratoryAtmosphericVariationalData

Assimilation System (NAVDAS), a three-dimensional

variational data assimilation (3DVAR) technique de-

veloped for navy NWP systems (Daley and Barker 2001).

The NCODA 3DVAR analysis variables are tempera-

ture, salinity, geopotential (dynamic height), and u, y

vector velocity components. All ocean variables are an-

alyzed simultaneously in three dimensions. The hori-

zontal correlations are multivariate in geopotential and

velocity, thereby permitting adjustments to the mass

fields to be correlated with adjustments to the flow fields.

The velocity adjustments (or increments) are in geo-

strophic balance with the geopotential increments, which

are in hydrostatic agreement with the temperature and

salinity increments. The NCODA 3DVAR problem is

formulated in observation space as

xa5 xf 1HBT(HBHT 1R)21[y2Hxf ] , (1)

where xa is the analysis vector, xf is the forecast back-

ground vector, B is the positive-definite background

error covariance matrix, H is the forward operator, R is

the observation error covariance matrix, and y is the

observation vector. At the present time, the forward

operator is spatial interpolation performed in three di-

mensions by fitting a surface to a 4 3 4 3 4 gridpoint

target and evaluating the surface at the observation lo-

cation. Thus, HBHT is approximated directly by the

background error covariance between observation lo-

cations, and BHT directly by the error covariance be-

tween observation and grid locations. For the purpose of

discussion, the quantity [y 2 Hxf] is referred to as the

innovation vector, [y 2 Hxa] is the residual vector, and

xa 2 xb is the increment (or correction) vector.

The 3DVAR observation vector contains all of the

synoptic temperature, salinity, and velocity observations

that are within the geographic and time domains of the

forecast model grid and update cycle interval. The

analysis makes full use of all sources of the operational

ocean observations. Ocean observing systems currently

assimilated by NCODA 3DVAR are listed in Table 1,

along with typical global data counts per day. After data

thinning and preprocessing, NCODA routinely assimi-

lates about 2.2 million observations per day onto the

global HYCOM grid, which contains more than 520

million grid points. All ocean observations are subject to

data quality control (QC) procedures prior to assimila-

tion. The need for quality control is fundamental to

a data assimilation system. Accepting erroneous data

can cause an incorrect analysis, while rejecting extreme,

but valid, data can miss important events. The NCODA

3DVARanalysis was codeveloped and is tightly coupled

to an ocean data QC system. Cummings (2011) provides

an overview of the NCODA ocean data quality control

procedures.

The global HYCOM 3DVAR analysis is split into

seven overlapping regions covering the global ocean.

The boundary between the different regions follows the

natural boundary of the continents. The Atlantic, In-

dian, and Pacific Ocean regions cover the Mercator

projection part of the model grid. The remaining four

regions cover the irregular part of the model domain,

one region in the Antarctic, one each in the northern

part of the Atlantic and Pacific, and the Arctic Ocean.

Multiple analysis solutions are obtained in the overlap

regions, which ensure that the model update will be
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smooth across boundaries that occur in open ocean

areas. There are no limitations in the 3DVAR that pre-

vent the analysis from being executed on the full global

HYCOM grid. However, at the present time, limitations

in the data setup program do not allow the full global grid

in memory, which has resulted in the need to use basin-

scale grid domains that overlap slightly. This problem

is being addressed by implementation of a distributed

memory, domain decomposition Message Passing In-

terface in the data preparation step of the assimilation

system.

The assimilative run of the 3DVAR cycling with

global HYCOM on a daily basis (24-h update cycle)

reported here was initialized on 29 November 2011. It is

a real-time run and must deal with data latency issues

associated with some of the ocean observing systems.

Satellite altimeter and profile observations have the

longest time delays before the data are available for

assimilation in real time. The delays in the altimeter data

are 72–96 h because of the need to provide precise orbit

corrections to improve the accuracy of the measure-

ments. Similarly, receipt of profile data can be delayed

up to ;72 h for various reasons. Since ocean data are

so sparse, it is important to use all of the data in the as-

similation.Accordingly, in real-time applications,NCODA

3DVAR has the capability to select data for the assim-

ilation based on receipt time (the time the observation is

received at the center) instead of observation time. In

this way all data received since the previous analysis are

used in the next real-time run of the 3DVAR. However,

data selected using receipt time will necessarily contain

nonsynoptic measurement times. Comparing observa-

tions to model background fields valid at different times

is a source of error in the analysis. This error is reduced

by comparing observations against time-dependent back-

ground fields using the first guess at appropriate time

(FGAT) technique. Hourly forecast fields are used in the

FGAT for assimilation of SST observations in order to

maintain a diurnal cycle in the model. Daily-averaged

forecast fields are used in FGAT for profile data types.

TABLE 1. List of observation data types assimilated by NCODA 3DVAR in global HYCOM, with typical daily data counts. Note that

profile data counts are for the entire profile. Profiles typically contain hundreds of levels that are assimilated as independent observations.

NOAA stands for the National Oceanic and Atmospheric Administration satellite. MetOp is for Meteorological Operation. Suomi-NPP

VIIRS is for the Suomi–National Polar-Orbiting Partnership Visible Infrared Imager Radiometer Suite. Meteosat is for the Meteoro-

logical Satellite. COMS-1 denotes the Communication, Ocean and Meteorological Satellite 1. C-MAN is for the Coastal Marine Auto-

mated Network. Cryosat-2 is for the Cyrosphere Satellite-2. DMSP is for the Defense Meteorological Satellite Program. SSM/I is for the

Special Sensor Microwave Imager.

Data type Data source Specifications Number

Satellite SST NOAA-18 NOAA-19 Infrared 2-km day, night retrievals 4 800 000

NOAA-18 NOAA-19 Infrared 8-km day, night, relaxed day retrievals 800 000

MetOp-A Infrared 2-km day, night retrievals 15 000 000

MetOp-A Infrared 8-km day, night, relaxed day retrievals 450 000

MetOp-B Infrared 2-km day, night retrievals 15 000 000

MetOp-B Infrared 8-km day, night, relaxed day retrievals 450 000

Suomi-NPP VIIRS Infrared 1-km day, night retrievals 40 000 000

GOES-13 GOES-15 Infrared 12-km day, night retrievals 2 000 000

MeteoSat-2 Infrared 8-km day, night retrievals 220 000

COMS-1 Infrared 8-km day, night retrievals 220 000

In situ SST Ships Engine room intake 6500

Hull contact sensor 1000

Bucket temperature 100

CMAN station 100

Drifting buoy 34 000

Fixed buoy 7000

Satellite altimeter Jason-2, Altika, Cryosat-2 SSHA 150 000

Sea ice concentration DMSP-F13, -F14, -F15 SSM/I 25-km retrievals 900 000

DMSP-F16, -F17, -F18 SSMIS 25-km retrievals 1 200 000

Profiles Drifting buoy Temperature 50

Fixed buoy 1200

Argo 600

XBT 100

TESAC (CTD) 3500

Drifting buoy Salinity 50

Fixed buoy 800

Argo 600

TESAC (CTD) 3000
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The 3D temperature, salinity, and u, y velocity analysis

increments are incrementally inserted into the model

during the first 6 h of the forecast using the incremental

analysis update procedure (Bloom et al. 1996).

Assimilation of altimeter sea surface height anomalies

(SSHA) in global HYCOM uses the synthetic profile

technique. Sea surface height from satellite altimeters is

an integral measurement, and its assimilation requires

an estimate of the covariability of dynamic height versus

temperature and salinity at depth. These relationships

have been derived from an analysis of historical profile

observations and are contained in the Modular Ocean

Data Assimilation System (MODAS) database (Fox

et al. 2002). MODAS produces synthetic profiles of

temperature and salinity consistent with the observed,

along-track altimeter SSHA. Salinity is computed in

a two-step process, where first a synthetic temperature

profile is generated from the altimeter SSHA and then

a synthetic salinity profile is derived from the synthetic

temperature profile using stored temperature–salinity

correlations. The observed altimeter time-mean SSHA

must exceed a 3-cm prescribed noise level to be used in

the MODAS synthetic profile generation algorithm. In

addition, projection of the altimeter SSHA signal onto

the model subsurface density field can produce un-

realistic results when the vertical stratification is weak.

In the absence of specific knowledge about how to par-

tition SSHA anomaly into baroclinic and barotropic

structures in these weakly stratified regions, MODAS

synthetic profiles are rejected for assimilation when the

top-to-bottom temperature difference of the HYCOM

forecast is less than 58C. This necessarily limits the use of

altimeter SSHA data at high latitudes.

3. Data impact procedure

Adjoint-based observation sensitivity provides a fea-

sible all-at-once approach to estimating observation

impact. Observation impact depends on the forecast

error metric, the innovations (model–data differences at

the update cycle interval), and the observations number.

First, a scalar error norm is defined that is a measure of

some aspect of the forecast error. Following Langland

and Baker (2004), forecast error is defined as the dif-

ference between two forecasts of different lengths sep-

arated in time by the update cycle interval and valid at

the same time. Here, we use forecasts of 48 and 72 h,

which correspond to the 24-h update cycle used in global

HYCOM. Forecast errors result from inaccuracies in the

initial conditions, the atmospheric forcing, and the non-

linear forecast model. However, differences between

forecast errors from forecasts of different lengths verify-

ing at the same time are solely due to the assimilation of

observations, which makes it an appropriate cost func-

tion for data impact studies. For example, if there were

no observations assimilated 48 h ago, then the trajectory

of the 48- and 72-h forecasts will be the same and their

differences will be zero at the verifying analysis time.

However, observations are usually assimilated and the

two forecast trajectories will differ as a result.

Quadratic estimates of forecast errors at two different

times are given by

e48 5 h(x482 x0)(x48 2 x0)i (2)

e725 h(x72 2 x0)(x722 x0)i , (3)

where x48 and x72 are forecast states of 48- and 72-h

length, and x0 is the verifying analysis. The outer brackets

represent a scalar inner product. These estimates of

forecast errors are calculated separately for model tem-

perature, salinity, and velocity fields. The difference be-

tween the forecast errors is given by

De7248 5 e482 e72 , (4)

with the expectation that e48 will be less than e72, since

the 48-h forecast will likely be closer to the true ocean

state than the 72-h forecast.

Normally, calculation of observation sensitivity and

observation impact is a two-step process that involves

the adjoint of the forecast model and the adjoint of the

data assimilation system. In the first step, the model

adjoint maps the forecast error differences given by Eqs.

(2) and (3) back to the analysis time, providing analysis

or initial condition sensitivity gradients in model grid

space. The second step is to extend the initial condition

sensitivity gradients from model space into observation

space using the adjoint of the assimilation system.

However, a limitation of the method as applied in this

study is that the adjoint of the HYCOM forecast model

is not available. Because of this limitation, initial con-

dition sensitivity gradients are approximated directly

from the forecast error differences given by Eq. (4).

Since these forecast errors are valid at the 48-h forecast

period and not at the analysis time, we have to assume

the errors are stationary. Advection and the likelihood

of nonlocal influences on the forecast error estimates

will invalidate this assumption as the forecast period is

extended. This necessarily limits the data impact calcu-

lations to relatively short forecast periods. The choice of

48-h forecasts in this study is expected to minimize the

effect of nonlocal influences on forecast errors at depths

below the mixed layer where oceanographic time scales

are relatively long, but it is likely forecast errors near the

surface are inflated because of the shorter time scales

there. Nevertheless, forecast error differences given by
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Eq. (4) are exact and their direct use in the data impact

system still provides useful information. The lack of the

forward model adjoint also means that we cannot use

forecast error cost functions that combine model prog-

nostic variables, such as the energy norm used in NWP

data impact studies (Rabier et al. 1996), or the alongshore

and cross-shore transport of the California Current sys-

tem investigated byMoore et al. (2011b). Instead, we are

limited to simple error norms calculated directly from

model prognostic variables. Consequently, we cannot

draw any conclusions about whether the assimilation of

temperature observations have a greater impact on re-

ducing HYCOM forecast errors than the assimilation of

salinity observations.

Forecast error gradients are projected from model

space to observation space using the adjoint of the

NCODA 3DVAR assimilation procedure according to

›J/›y5KTDe7248 , (5)

whereK5BHT[HBHT1R]21 is the Kalman gain matrix

of Eq. (1), with the adjoint of K given by KT 5 [HBHT 1
R]21HB. The observation sensitivity vector ›J/›y is the

forecast error gradients in observation space; its ele-

ments exist at the observation locations. Term J repre-

sents the forecast error norm for temperature or salinity.

The only difference between the forward and adjoint

of the analysis system is the transposition of the post-

multiplication of the solution in observation space to

grid space. In the adjoint, a premultiplier HB from grid

space to observation space is applied first followed by

a conjugate gradient solver. Note that [HBHT 1 R]21 is

symmetric or self-adjoint and operates the same way in

the forward and adjoint directions (Baker and Daley

2000). The assimilation procedure is essentially linear,

so the adjoint calculation for the 3DVAR is not subject

to much error, other than the residual error that results

from specifying a convergence criterion in the descent

algorithm of the solver.

The observation sensitivity gradient vector (›J/›y) is

then used in a modified form of the observation impact

equation (Langland and Baker 2004) given by

de48 5 hj(y2Hxf )j, ›J/›y)i , (6)

where (y 2 Hxf) is the innovation vector. The brackets

represent a scalar inner product. In the modification of

the impact equation used here, the innovation vector

appears as absolute values. The use of absolute values

means de48 is directly proportional to the sign and the

magnitude of the observation sensitivity gradient. This

form of the impact equation is used in adaptive, targeted

observing applications of the adjoint-based data impact

method, where innovations of future hypothetical ob-

servations are unknown and require the use of proxy

values. Interpretation of the observation impact equa-

tion is straightforward. A negative de48 value indicates

a beneficial observation in the assimilation of the

observation-reduced HYCOM 48-h forecast error, while

a positive de48 value indicates a nonbeneficial observa-

tion (forecast error actually increased from assimilation

of the observation). Nonbeneficial impacts are not ex-

pected, since the assimilation is expected to decrease

forecast error by producing improved initial conditions.

However, if nonbeneficial impacts occur, and they are

persistent, then that may indicate problems with data

quality or model performance. Thus, the data impact

system can be used as an effective observing system

monitoring tool for diagnosing data quality issues or

identifying areas where the model has significant pre-

dictability limits. We show an example of persistent

nonbeneficial data impacts from the assimilation of SST

retrievals from a geostationary satellite due to a data

quality issue.

The background error covariance matrix used in the

NCODA 3DVAR controls how information is spread

from the observations to the model grid points and

model levels. It also ensures that observations of one

model variable produce dynamically consistent correc-

tions in other model variables. The NCODA adjoint

effectively performs the reverse of this information

spreading by taking as input forecast error gradient

fields and computing the matrix of weights given to the

error gradient grid points in the evaluation of the ob-

servation sensitivity problem at the observation loca-

tions. Formulation of the NCODA 3DVAR background

error covariances is summarized here, with more detail

given in Cummings and Smedstad (2013). Error co-

variances in the 3DVAR are first separated into a back-

ground error variance and an error correlation. The error

correlations are modeled using second-order auto-

regressive (SOAR) functions and are separated into

horizontal and vertical components. Horizontal corre-

lation length scales are proportional to the first baro-

clinic Rossby radius of deformation using estimates

computed from the historical profile archive by Chelton

et al. (1998). Rossby radius length scales qualitatively

characterize scales of ocean variability and vary from

;10km at the poles to ;200 km along the equator. The

length scales increase rapidly near the equator, which

allows for stretching of the zonal scales in the assimilation

of observations in the equatorial waveguide. Flow de-

pendence is introduced in the analysis by modifying the

horizontal correlations with a tensor computed from

HYCOM sea surface height (SSH) gradients. The flow-

dependent tensor spreads innovations along rather than
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across SSH contours, which are used as a proxy for the

circulation field. Flow dependence is necessary in the

analysis, since error correlations across an ocean front are

expected to be characteristically shorter than error cor-

relations along the front. A similar tensor is used to ac-

count for the influence of coastlines in the analysis by

rotating and stretching horizontal correlations along the

coast while minimizing or removing correlations into the

land. Background error correlations close to the coast are

expected to be anisotropic because of horizontal advec-

tion fromalongshore currents. Vertical correlation length

scales vary with location and depth and evolve from one

analysis cycle to the next. They are defined on the basis of

background vertical density gradients calculated using

a change in density stability criteria. The method pro-

duces vertical correlation length scales that are longwhen

the water column stratification is weak and short when

the water column is strongly stratified. Model variability

is used as a proxy for the background error variances.

Model variability is estimated from an inverse time-

weighted history of differences between successive fore-

casts at the update cycle interval. Since the forecasts are

separated in time by an assimilation step, the models are

on different trajectories and the variability estimates in-

clude the influence of the observations. A time-weighted

history of forecast differences is used to improve the es-

timate due to sampling limitations. The result is back-

ground error variances in the 3DVAR that vary with

location and depth, and evolve with time, although in

practice the error variances tend to evolve to a quasi-

steady state. Finally, a multivariate balance operator is

used to couple the mass and velocity fields in the analysis.

Assimilation of temperature and salinity observations

generates geostrophic balanced increments of u, y vector

velocity using multivariate correlations with the geo-

potential, which in turn is computed from temperature

FIG. 1. Instantaneous forecast error gradients [Eq. (4)] for (top) temperature (8C) and (bottom) salinity (PSU) at 100-m depth, valid

1800 UTC 1 Nov 2012. Results are presented for each analysis ocean basin. Positive values (warm colors) indicate forecast error growth;

negative values (cool colors) indicate forecast error reduction.
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and salinity. The strength of the geostrophic coupling of

the velocity/geopotential correlations is scaled to zero

within 18 of latitude from the equator. The multivariate

correlations are derived from the first and second de-

rivatives of the SOAR horizontal correlation function as

described in Daley (1991).

4. Results

Global HYCOM was cycled sequentially with the

NCODA 3DVAR from 16 September to 30 November

2012 using a 24-h update cycle. A summary of the ob-

servation data types assimilated in the model with typ-

ical daily observation data counts is given in Table 1.

Forecast error gradients are computed daily for differ-

ences between 48- and 72-h forecasts of temperature,

salinity, and u, y vector velocity using Eq. (4). The

NCODA adjoint is executed at the end of each analysis

update cycle to obtain the observation sensitivities for

use in the observation impact equation [Eq. (6)]. Ob-

servation impacts are available for each observation

assimilated and are partitioned into contributions made

by instrument type, geographic domain, and vertical

level. The separate NCODA 3DVAR analyses for each

of the seven overlapping regions covering the global

ocean provide a natural way to partition the data impact

results by geographic domain. Results presented here

are for the Atlantic, Indian, and Pacific Ocean basins.

Specifically, we consider the impact of assimilating

temperature observations on reducing HYOCM 48-h

forecast temperature error, and the impact of assimi-

lating salinity observations on reducing HYCOM 48-h

forecast salinity error. Recall that because of the lack

of the HYCOMmodel adjoint, we are limited to simple

forecast error norms calculated from model variable

fields.

FIG. 2. Averaged forecast error gradients [Eq. (4)] for (top) temperature (8C) and (bottom) salinity (PSU) for the month of November

2012. Results are presented for each analysis ocean basin. Positive values (warm colors) indicate forecast error growth; negative values

(cool colors) indicate forecast error reduction.
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a. Forecast error gradients

The forecast error gradient fields are the basic in-

formation input into the NCODA 3DVAR adjoint when

calculating observation data impacts. The gradient fields

are fully three dimensional and are calculated daily. To

illustrate some typical error patterns, Fig. 1 shows tem-

perature and salinity forecast error gradients at 100-m

depth in the Atlantic, Indian, and Pacific basins valid

1800UTC 1November 2012. Positive and negative areas

of forecast errors are seen for each analysis variable in

all of the ocean basins, indicating that on any given day

HYCOM forecast errors are both increasing (positive

values) and decreasing (negative values) in different

areas of themodel domain. These patterns will vary with

depth and evolve over time in accordance with changes

in the observing systems assimilated and the variable

skill of the HYCOM forecast. Magnitudes of the in-

stantaneous temperature and salinity forecast errors are

greatest in the tropics and western boundary current

regions.

Time-averaged temperature and salinity forecast er-

ror gradient fields at 100-m depth for the month of

November are shown in Fig. 2. In general, negative

values are found almost everywhere, an indication that,

on average, the assimilation is consistently reducing

HYCOM 48-h forecast errors. The magnitude of the

temperature forecast error reduction is greatest in the

tropics and western boundary currents regions, including

the Antarctic Circumpolar Current east of the Agulhas

region in the Indian Ocean basin. Salinity forecast error

reduction is greatest in the tropics for all of the ocean

basins, with some additional large salinity forecast

error reduction in the Gulf Stream and Brazil/Malvinas

Current regions in the Atlantic Ocean basin. The time-

averaged fields also show limited areas where temper-

ature forecast error differences are positive, indicating

assimilation of temperature observations in those

FIG. 3. Impacts of Argo profiles on reducing HYCOM 48-h (top) temperature (8C) and (bottom) salinity (PSU) forecast error. Ben-

eficial impacts are negative values (cool colors); nonbeneficial impacts are positive values (warm colors). Results are pooled over the 16

Sep–30 Nov 2012 time period.
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locations during the month of November actually in-

creased forecast error. These small areas are primarily

near the equator in the eastern tropical Atlantic, western

tropical Pacific, and Indian Oceans. This increase in

forecast error in limited areas could be due to localized,

reduced HYCOM predictability arising from instabilities

in the system, or due to the assimilation of erroneous

data.We suspect the latter in some cases, in particular the

increased forecast errors at 88N, 1588Wand 28S, 1648W in

the Pacific, which appear to be associated with the as-

similation of specific fixed mooring profiles.

Time-averaged forecast errors that are slightly nega-

tive or slightly positive are not color filled in the forecast

error maps shown in Fig. 2. These are areas where the

data impacts are essentially neutral. A neutral impact

does not imply that the model has no forecast error (or

skill), nor does it imply that the assimilation system is

not efficient in extracting the information content of the

observations. It is possible that the forecast is already

quite accurate in those areas and that little correction is

required. As a result, observations assimilated may im-

prove the quality of the forecast background every day,

but when averaged over multiple update cycles, the im-

pacts of observations assimilated on reducing HYCOM

forecast error in those areas are quite small. This outcome

is likely to be the case for salinity in southeastern Pacific.

The area is well sampled by Argo (see Fig. 3), and fore-

cast errors of HYCOM temperature are consistently re-

duced from the assimilation of Argo temperatures, yet

forecast errors of HYCOM salinity show little change. It

is concluded that, on average, HYCOM predicts salinity

better than temperature in southeastern Pacific.

b. Data impacts

It has been demonstrated that routine assimilation of

large numbers of observations work together to consis-

tently reduce global HYCOM 48-h forecast error for

both temperature and salinity. An advantage of the

observation impact equation is that it allows quantifi-

cation of the impacts of individual observations assimi-

lated over the global domain. To summarize these

results, individual impacts are partitioned by geographic

location, data type, latitude band, and vertical level.

Because the impact of observations has large variability

from day to day, we pool the data impacts over the time

period of the experiment: 16 September–30 November

2012. Impact results presented for any group partition is

the sum of all individual observation impacts in that

group normalized by the number of observations. The

normalization is done to facilitate the intercomparison

among data types since, for example, temperature

observations are dominated numerically by synthetic

profiles derived from satellite altimeter SSHA and

salinity observations are dominated numerically by

Argo. In the figures that follow, beneficial impacts

(de48 , 0) are plotted using cool color shades and

nonbeneficial impacts (de48 . 0) are plotted using

warm color shades.

The geographic variation of the impacts of assimilat-

ing temperature and salinity observation data types on

reducing HYCOM 48-h forecast error are presented for

Argo (Fig. 3); expendable bathythermograph (XBT;

Fig. 4); fixed buoys (Fig. 5); MODAS synthetics (Fig. 6);

SST (Fig. 7); temperature, salinity, and current (TESAC;

FIG. 4. Impacts of XBT profiles on reducing HYCOM 48-h temperature (8C) forecast error. Beneficial impacts are negative

values (cool colors); nonbeneficial impacts are positive values (warm colors). Results are pooled over the 16 Sep–30 Nov 2012 time

period.
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Fig. 8); and animal sensors (Fig. 9). TESAC is the name of

aWMO code form for reporting temperature and salinity

profiles from ocean gliders and shipboard conductivity–

temperature–depth (CTD) measurements. In the case

of profile data types (Argo, XBT, TESAC, fixed buoy,

animal sensor), measurements from different levels

within a profile are treated as independent observa-

tions in the assimilation. The results shown here are

the summed impacts of the separate depth-level ob-

servations in each vertical profile. In addition, each

displayed point averages the impacts of multiple profiles

if during the two-and-half-month time period of the

study more than one profile occurred within a HYCOM

grid cell (;7-km midlatitude). This averaging of data

impact results on the HYCOM grid is also relevant for 1)

fixed buoy arrays assimilated as daily averages of pro-

files reported almost hourly, 2) MODAS synthetics de-

rived from 10- and 35-day repeat along-track satellite

altimeter SSHA measurements, and 3) SST observations

from multiple satellites and in situ networks (see Table

1). Results partitioned by observing system show that

a majority of temperature observations assimilated

have beneficial impacts (de48 , 0), although non-

beneficial impacts (de48 . 0) are seen in some Argo,

XBT, TESAC, and animal sensor temperature pro-

files. Assimilation of salinity observations, however,

is always beneficial, with relatively large data impacts

from assimilation of Argo salinity profiles at low

latitudes.

Figure 10 presents the normalized observation im-

pacts for temperature observing systems averaged over

the time period of the experiment within the ocean ba-

sins. Figure 11 presents similar results for salinity ob-

serving systems. The results show that, on average,

impacts from assimilation of temperature and salinity

measurements from all observing systems are beneficial

(de48, 0), with themost beneficial data assimilated being

temperature and salinity observations from the tropical

FIG. 5. Impacts of fixed buoy profiles on reducing HYCOM 48-h (top) temperature (8C) and (bottom) salinity (PSU) forecast error.

Beneficial impacts are negative values (cool colors); nonbeneficial impacts are positive values (warm colors). Results are pooled over the

16 Sep–30 Nov 2012 time period.
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fixed buoy arrays [Tropical Atmosphere Ocean (TAO)

and Triangle Trans-Ocean Buoy Network (TRITON)

moorings in the Pacific, Prediction andResearchMoored

Array in the Tropical Atlantic (PIRATA) moorings in

the Atlantic, Research Moored Array for African–

Asian–Australian Monsoon Analysis and Prediction

(RAMA) moorings in the Indian Ocean]. Impacts from

the assimilation of Argo, XBT, and animal sensor pro-

files are also highly beneficial. The large data impacts

from the TESAC salinity profiles in the Indian Ocean

is not considered to be a robust result, since it is based on

few observations from limited sampling locations in the

Gulf of Oman and along the Indonesian coast (see

Fig. 8).

Synthetic temperature profiles derived from altimeter

SSHA measurements using the MODAS methodology

have the smallest data impacts, even though synthetics

are the most numerous temperature profile data type

assimilated. These marginally beneficial impacts are

a clear indication that assimilation of altimeter SSHA

usingMODAS synthetic profiles is suboptimal. MODAS

uses climatological relationships to infer temperature at

depth from altimeter SSHA. These relationships are well

defined in western boundary current areas, where SSHA

FIG. 6. Impacts of MODAS synthetic profiles on reducing HYCOM 48-h temperature (8C) forecast error. Beneficial impacts are negative

values (cool colors); nonbeneficial impacts are positive values (warm colors). Results are pooled over the 16 Sep–30 Nov 2012 time period.

FIG. 7. Impacts of all sources of SST (satellite and in situ) on reducingHYCOM48-h temperature (8C) forecast error. Beneficial impacts

are negative values (cool colors); nonbeneficial impacts are positive values (warm colors). Results are pooled over the 16 Sep–30Nov 2012

time period.
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is a good indicator of thermocline depth, but elsewhere

dynamic height cannot be adequately described simply

in terms of vertical temperature structure. The altimeter

SSHA subsurface inference problem needs to take into

account the effects of salinity and nonsteric signals in the

altimeter SSHA measurements. Further, conversion of

altimeter SSHA to synthetic temperature profiles re-

quires an estimate of a reference mean dynamic topog-

raphy (MDT). The MDT must match that contained in

the time mean altimeter data, which is a nontrivial

problem. Synthetic salinity profiles from MODAS, gen-

erated in a two-step process described previously, are not

directly assimilated in global HYCOM, since it was found

that including MODAS salinity profiles in the analysis

created a bias in the model and the generation of spu-

rious circulation features when assimilating real salinity

data fromArgo.MODAS salinity, however, is used in the

multivariate balance operator to provide velocity cor-

rections when assimilating MODAS temperatures.

It is interesting to note the relatively large data im-

pacts of the animal sensor profiles given the very low

data counts. These are high-quality temperature and

salinity profiles obtained from CTD sensors attached to

animals, in particular elephant seals. The deep-diving

elephant seals obtain environmental data at depths of

more than 900m. The CTD sensors record and transmit

ocean structure information to polar-orbiting satellites

when the animal surfaces. The foraging behaviors of

the animals primarily bring them to ocean frontal zones

in search of food in hard-to-reach polar regions. The

seals basically serve as targeted observing platforms,

providing high-impact data in dynamically sensitive

areas.

Profiles from the tropical mooring arrays are found to

have the greatest impact on reducing HYCOM 48-h

temperature and salinity forecasts. However, in 2011

real-time observations from the TAO array began to

decrease. By 2013 distribution of data from TAO

FIG. 8. Impacts of TESAC profiles on reducing HYCOM 48-h (top) temperature (8C) and (bottom) salinity (PSU) forecast error.

Beneficial impacts are negative values (cool colors); nonbeneficial impacts are positive values (warm colors). Results are pooled over the

16 Sep–30 Nov 2012 time period.
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became very sporadic in the central and eastern equa-

torial Pacific. At the same time the density of Argo floats

increased in the region. A basic question is whether as-

similation of Argo can compensate for the decrease or

loss of TAO/TRITON data. Figure 12 compares zonal

averages of Argo and fixed buoy data impacts within

58 latitude bands in the ocean basins. Argo observes at

nearly all latitudes, but the greatest impact of Argo

temperature and salinity observations is in the tropics

(6108 latitude). In the Pacific, the magnitude of Argo

data impacts is similar to that of the tropical moorings

within the same latitude bands, in particular Argo sa-

linity. Argo has an advantage over the tropical moor-

ings by providing deeper and denser vertical sampling,

but it is difficult to maintain floats along the equator,

although that problem is improving with the imple-

mentation of Iridium communication. Argo has a disad-

vantage in that, solely in terms of ocean observing, profiling

floats cannot reproduce the highly temporally resolved

data time series that can only be obtained from fixed

moorings (e.g., Kessler et al. 1996). It is clear that tem-

perature and salinity observations are essential for

FIG. 9. Impacts of animal sensor profiles on reducing HYCOM 48-h (top) temperature (8C) and (bottom) salinity

(PSU) forecast error. Beneficial impacts are negative values (cool colors); nonbeneficial impacts are positive values

(warm colors). Results are pooled over the 16 Sep–30 Nov 2012 time period.
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constraining forecast errors in HYCOM ocean heat con-

tent, stratification, and circulation in the tropics.However,

it is unclear if Argo floats can compensate for the loss of

TAO/TRITON data. The results presented here show

that Argo and TAO/TRITON are highly complementary

during the time period of the study, an indication that both

observing systems are needed into the future.

The only true global temperature ocean observing

systems are Argo, satellite altimeters, and SST, which

includes SST data from both satellites and in situ net-

works (ships and buoys). Other observing systems utilize

opportunistic, burst-mode-type sampling regimes restricted

to shipping lanes (XBT), fixed locations (moorings), and

localized areas (TESAC and animal sensor). Figure 13

shows a comparison of normalized observation impacts

for the global temperature observing systems. As pre-

viously mentioned, normalization by the number of

observations is needed to compare impacts of observing

FIG. 10. Mean observation impact for temperature observing systems. Negative values in-

dicate beneficial data impacts. Results are partitioned by ocean basin: (a) Atlantic Ocean, (b)

Indian Ocean, and (c) Pacific Ocean. Note that the scale of the data impacts varies with ocean

basin. Includes all temperature observations (8C) assimilated over the 16 Sep–30Nov 2012 time

period: Argo—Argo array; fixed—fixed buoys; drift—drifting buoys with thermistor chains;

TESAC; Altim—MODAS synthetic profiles; animal—animal sensor profiles; SST—satellite

and in situ SST measurements.
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systems that have large numerical data differences.

Normalized data impact comparisons are valid if the

data assimilated within an observing system can be

considered as independent observations. Prior to as-

similation in global HYCOM, all observing systems

are processed to remove data redundancies and to

minimize correlations among the observations. In

particular, satellite altimeter SSHA and SST data are

thinned by averaging synoptic observations in spatially

varying sized bins based on horizontal correlation length

scales. The effect of this adaptive data thinning is seen in

Fig. 7, which shows increased decimation of SST obser-

vations at low latitudes, where length scales defined using

Rossby radius increase rapidly toward the equator. As-

suming independent observations after the data thinning

processing, it is found that on a per-observation basis,

Argo is the most beneficial source of temperature ob-

servations assimilated for reducing HYCOM 48-h fore-

cast error. The impact of Argo is more than twice that of

altimeter-derived synthetic temperature profiles and SST.

However, as shown below, assimilation of SST is comple-

mentary to Argo in the upper levels of the water column.

FIG. 11. Mean observation impact for salinity observing systems. Negative values indicate ben-

eficial data impacts. Results are partitioned by ocean basin: (a) Atlantic Ocean, (b) Indian Ocean,

and (c) Pacific Ocean. Note that the scale of the data impacts varies with ocean basin. Includes all

salinity observations assimilated over the 16 Sep–30 Nov 2012 time period: Argo—Argo array;

Fixed—fixed buoys; TESAC; Animal—animal sensor profiles. Salinity units are in PSU.
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Figure 14 partitions Argo data impacts according to

vertical levels of the observations. Data impacts are

summed within vertical layers that increase in thickness

with depth. Approximately 50% of the impact of as-

similating Argo temperature observations is in the up-

per 300m of the water column. For Argo salinity, more

than half of the data impacts are in the upper 100m.

Argo temperature data impacts show a subsurface

maximum in the 100–200-m-depth range. The impact

of Argo salinity, however, is greatest at the surface and

decreases monotonically with depth. The diminished

impact of near-surface Argo temperature profile

observations is likely due to the simultaneous assimila-

tion of the large number of satellite-derived SST obser-

vations. As described previously, single-level surface

observations such as SST are projected downward in the

3DVAR using vertical correlation length scales defined

by locally varying vertical density gradients (e.g., mixed

layer depth). The vertical covariance extension and the

relatively high density of satellite SST measurements

combine to effectively constrain HYCOM model tem-

peratures in the upper part of the water column, re-

sulting in a reduced impact of near-surface, less frequent

Argo temperature profile observations.

FIG. 12. Mean observation impacts of Argo and fixed buoy temperature (8C) and salinity (PSU) stratified by 58 latitude bands. Results

are partitioned by ocean basin: (a) Atlantic Ocean, (b) Indian Ocean, and (c) Pacific Ocean. Note that the scale of the data impacts varies

with ocean basin. Negative values indicate beneficial data impacts.
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c. Data quality

As previously mentioned, the data impact system can

be used to identify data quality problems that other-

wise are difficult to detect. Persistent nonbeneficial

impacts may indicate problems with data quality or

model performance. An example of a data quality issue

is shown here for SST retrievals from Geostationary

Operational Environmental Satellite-13 (GOES-13).

SST retrievals from GOES-13 are generated by the

Naval Oceanographic Office (NAVOCEANO) using

the empirical split-window formulation. Retrievals are

generated only for cloud-free radiances using data with

satellite zenith angles up to a maximum of 708. This value
exceeds the zenith angle NAVOCEANO normally uses

for retrievals from polar-orbiting satellites, which is re-

stricted to angles of 558 or less. The GOES-13 SST data

are quality controlled and assimilated in the NCODA

3DVAR along with many other sources of satellite SST

(Table 1). In general, the impact of GOES-13 is ben-

eficial in that assimilation of the data during the time

period of the study reduce HYCOM surface temper-

ature forecast errors (mean de48 5 20.2 in the Pacific,

mean de48 5 20.1 in the Atlantic). However, the geo-

graphic distribution of nonbeneficialGOES-13 retrievals

(de48 . 0) shows a distinct pattern that indicates as-

similation of GOES retrievals near the edge of the disk

are more likely to increase HYCOM forecast error

than assimilation of retrievals in the center of the disk

(Fig. 15). The longer atmospheric pathlength of the

surface-emitted infrared radiances at high zenith angles

is likely adding noise to the data from an increase in total

column water vapor and the presence of other atmo-

spheric constituents (i.e., aerosols). This atmospheric

variation is not adequately modeled or corrected in

the empirical NAVOCEANO split-window retrieval

algorithm.

5. Summary and conclusions

The NCODA 3DVAR system cycling with global

HYCOM assimilates a wide variety of space-based and

in situ ocean observations. The 3DVAR combines ob-

servations with the HYCOM 24-h forecast of the global

ocean state to generate improved initial conditions for the

next forecast run of the model. In this study we present

results on the impact of the assimilation of various op-

erational observing systems on reducing HYCOM 48-h

forecast error. The method uses an estimate of the

forecast error inmodel gridpoint space derived from two

model forecast trajectories of different lengths that

verify at the same time. The adjoint of the 3DVAR as-

similation extends the model space forecast error gra-

dients into observation space. A modified form of the

observation impact equation derived by Langland and

Baker (2004) is then used to estimate the impact of every

observation assimilated. The method is efficient with

computational costs roughly equivalent to a single run of

the 3DVAR. As such, it can be used for routine obser-

vation monitoring in operations. It provides an all-at-

once approach to estimating observation impacts. There

is no need to selectively remove observing systems to

determine impacts as in a data denial experiment. The

method automatically adjusts to changes in the obser-

vation suite assimilated as new observing systems are

introduced and to changes in the forecast model as

model resolution increases or as new physics are in-

troduced. The disadvantage of the method as applied

here is that due to the lack of HYCOM, adjoint-only

FIG. 13. Mean observation impact for global temperature observing systems (8C). Negative values indicate beneficial data impacts.

Results are partitioned by ocean basin: (a) AtlanticOcean, (b) IndianOcean, and (c) PacificOcean. Note that the scale of the data impacts

varies with ocean basin. Includes all Argo, altimeter, and SST observations assimilated over the 16 Sep–30 Nov 2012 time period.
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simple cost functions and short forecast periods could be

used. Thus, only limited aspects of HYCOM forecast

error [impact of assimilation of temperature (salinity)

observations on temperature (salinity) forecast error]

are assessed. Even with these disadvantages and limi-

tations, it is shown that the method provides useful in-

formation on data impacts in global HYCOM. It is now

possible to efficiently and routinely evaluate the entire

global set of oceanographic observations assimilated by

HYCOM, determining which data are most valuable and

which data are redundant or do not add significant value.

As noted by Langland and Baker (2004) and Lea et al.

(2014), the impact results of the adjoint method or an

OSE strongly depend on the assimilation system and the

forecast model. The issue of whether the data impact

results presented here can be generalized to all ocean

forecast systems is thus unknown. However, a series

of observing system data denial experiments have been

proposed by Global Ocean Data Assimilation Experi-

ment (GODAE) OceanView (GOV), the follow-on to

the GODAE (Bell et al. 2009), to assess data impacts

in operational global ocean forecasting systems.

FIG. 14. Mean data impacts of Argo (left) temperature (8C) and (right) salinity partitioned

by vertical pressure level. Negative values indicate beneficial data impacts. Note that the

thickness of the vertical layers increases with depth. The depth range of the vertical levels for

each layer increase with depth and are shown. Results are partitioned by ocean basin: (a)

AtlanticOcean, (b) IndianOcean, and (c) PacificOcean.Note that the scale of the data impacts

varies with ocean basin.
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Comparison of data impact results from multiple sys-

tems will allow for a better assessment of the global

ocean observing system in terms of which observations

are best and defining locations where forecast errors

are sensitive to the initial conditions. The adjoint-

based data impact system developed for global

HYCOM and described here will contribute to the

planned GOV data impact experiments.

It is shown that routine assimilation of large numbers

of observations work together to consistently reduce

global HYCOM 48-h forecast error for both tempera-

ture and salinity. The assimilation of salinity observa-

tions is always beneficial, while the assimilation of

temperature observations does, on rare occasions, re-

sult in nonbeneficial profiles. The largest error re-

duction in global HYCOM is due to the assimilation of

temperature and salinity profiles from the tropical fixed

mooring arrays. However, Argo has equivalent data

impacts when compared with the tropical moorings in

identical latitude ranges. Argo, XBT, and animal sen-

sor data are the next most important observing systems

assimilated. The beneficial impact of assimilating Argo

temperature and salinity profiles extends to all depths

sampled, with salinity impacts maximum at the surface

and temperature impacts showing a subsurfacemaximum

in the 100–200-m-depth range. The vertical covariances in

the 3DVAR work to extend the influence of the numer-

ous satellite SST observations to the base of the mixed

layer, which reduces the impact of near-surface Argo

temperature profile levels. Finally, a data quality issue

was diagnosed with GOES-13 retrievals at high satellite

zeniths using the data impact system.

The forecast error and data impact results presented

here clearly indicate that global HYCOM forecast er-

rors are greatest in the tropics. The assimilation works

hard to reduce low-latitude HYCOM forecast errors

over time, especially for salinity. The results show that

continuous and routine observing is needed at low lati-

tudes to adequately constrain the global HYCOM. The

impacts of Argo and the tropical fixed mooring arrays

are equivalent in the Pacific. Thus, the two observing

systems can be considered complementary when ini-

tializing ocean forecast models. Argo samples deeper

with improved vertical resolution, but fixed moorings

observe more frequently and have the potential for di-

rect measurements of other variables that can be used in

ocean model assimilation (ocean currents) and air/sea

coupling (meteorological variables such as air temper-

ature and wind speed). Given the recent degradation in

the availability of TAO mooring profiles for real-time

ocean data assimilation, it is important that the design

of a long-term, cost-effective tropical ocean observing

system be made and that prioritization be given to its

deployment and maintenance.

Acknowledgments. This work was funded in part by

the NRL base project ‘‘Observation Impact Using a

Variational Adjoint System’’. Funding was also received

from the National Oceanographic Partnership Program

(NOPP) through the project ‘‘U.S. GODAE: Global-

Ocean Prediction with the Hybrid Coordinate Ocean

Model (HYCOM)’’ and the Office of Naval Research

(ONR) under ProgramElement 61153N. TheDepartment

of Defense High Performance Computing Modernization

FIG. 15. Geographic distribution of nonbeneficial impacts (positive values, warm colors) from assimilation of

GOES-13 satellite SST retrievals (8C). Beneficial impacts ofGOES-13 data are not displayed. Results are averaged

within HYCOM grid locations for the month of November 2012.

1790 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 31



Program provided grants of computer time at Major

Shared Resource Centers operated by the Naval Ocean-

ographic Office, Stennis Space Center, Mississippi. We

thank the two anonymous reviewers, whose comments and

suggestions greatly improved the manuscript.

REFERENCES

Andersson, E., and Y. Sato, 2012: Final report of the Fifth WMO

Workshop on the Impact of Various Observing Systems on Nu-

merical Weather Prediction. WMOWorld Weather Watch Tech.

Rep. 2012-1, 25 pp. [Available online at http://www.wmo.int/pages/

prog/www/OSY/Meetings/NWP5_Sedona2012/Final_Report.pdf.]

Baker, N., and R. Daley, 2000: Observation and background ad-

joint sensitivity in the adaptive observation-targeting problem.

Quart. J. Roy. Meteor. Soc., 126, 1431–1454, doi:10.1002/

qj.49712656511.

Balmaseda, M. A., and D. L. T. Anderson, 2009: Impact of initiali-

zation strategies and observations on seasonal forecast skill.

Geophys. Res. Lett., 36, L01701, doi:10.1029/2008GL035561.

Bell, M. J., M. Lefèbvre, P.-Y. Le Traon, N. Smith, and

K. Wilmer-Becker, 2009: GODAE: The Global Ocean Data

Assimilation Experiment. Oceanography, 22, 14–21, doi:10.5670/

oceanog.2009.62.

Bloom, S. C., L. L. Takacs, A. M. Da Silva, and D. Ledvina, 1996:

Data assimilation using incremental analysis updates.Mon.Wea.

Rev., 124, 1256–1271, doi:10.1175/1520-0493(1996)124,1256:

DAUIAU.2.0.CO;2.

Cardinali, C., 2009: Monitoring the observation impact on the

short-range forecast.Quart. J. Roy.Meteor. Soc., 135, 239–250,

doi:10.1002/qj.366.

Chassignet, E. P., L. T. Smith, G. R. Halliwell, and R. Bleck, 2003:

North Atlantic simulations with the Hybrid Coordinate

Ocean Model (HYCOM): Impact of the vertical coordinate

choice, reference pressure, and thermobaricity. J. Phys. Ocean-

ogr., 33, 2504–2526, doi:10.1175/1520-0485(2003)033,2504:

NASWTH.2.0.CO;2.

Chelton, D. B., R. A. DeSzoeke, M. G. Schlax, K. E. Naggar,

and N. Siwertz, 1998: Geographical variability of the first

baroclinic Rossby radius of deformation. J. Phys. Ocean-

ogr., 28, 433–460, doi:10.1175/1520-0485(1998)028,0433:

GVOTFB.2.0.CO;2.

Cummings, J. A., 2011: Ocean data quality control. Operational

Oceanography in the 21st Century, A. Schiller and G. B.

Brassington, Eds., Springer, 91–121.

——, and O. M. Smedstad, 2013: Variational data assimilation for

the global ocean.Data Assimilation for Atmospheric, Oceanic

and Hydrologic Applications, S. K. Park and L. Xu, Eds.,

Vol. II, Springer-Verlag, 303–343.

Daley, R., 1991:Atmospheric DataAnalysis.CambridgeUniversity

Press, 457 pp.

——, and E. Barker, 2001: NAVDAS formulation and di-

agnostics. Mon. Wea. Rev., 129, 869–883, doi:10.1175/

1520-0493(2001)129,0869:NFAD.2.0.CO;2.

Fox, D. N., W. J. Teague, C. N. Barron, M. R. Carnes, and

C. M. Lee, 2002: The Modular Ocean Data Assimilation Sys-

tem. J. Atmos. Oceanic Technol., 19, 240–252, doi:10.1175/
1520-0426(2002)019,0240:TMODAS.2.0.CO;2.

Gelaro, R., and Y. Zhu, 2009: Examination of observation im-

pacts derives from observing system experiments (OSEs)

and adjoint models. Tellus, 61A, 179–193, doi:10.1111/

j.1600-0870.2008.00388.x.

Hurlburt, H. E., and Coauthors, 2008a: Eddy-resolving global ocean

prediction. Ocean Modeling in an Eddying Regime, Geophys.

Monogr., Vol. 177, Amer. Geophys. Union, 353–381.

——, E. J. Metzger, P. J. Hogan, C. E. Tilburg, and J. F. Shriver,

2008b: Steering of upper ocean currents and fronts by the to-

pographically constrained abyssal circulation. Dyn. Atmos.

Oceans, 45, 102–134, doi:10.1016/j.dynatmoce.2008.06.003.

Kalnay, E., Y. Ota, T. Miyoshi, and J. Liu, 2012: A simpler for-

mulation of forecast sensitivity to observations: Application to

ensemble Kalman filters. Tellus, 64A, 18 462, doi:10.3402/

tellusa.v64i0.18462.

Kessler,W. S.,M. C. Spillane,M. J.McPhaden, andD. E. Harrison,

1996: Scales of variability in the equatorial Pacific inferred

from the TAObuoy array. J. Climate, 9, 2999–3024, doi:10.1175/

1520-0442(1996)009,2999:SOVITE.2.0.CO;2.

Langland, R., and N. Baker, 2004: Estimation of observation

impact using the NRL atmospheric variational data assimi-

lation adjoint system. Tellus, 56A, 189–201, doi:10.1111/

j.1600-0870.2004.00056.x.

Large, W. G., J. C. Mc Williams, and S. C. Doney, 1994: Oceanic

vertical mixing:A review and amodel with a nonlocal boundary

layer parameterization.Rev. Geophys., 32, 363–403, doi:10.1029/

94RG01872.

Lea, D. J., M. J. Martin, and P. R. Oke, 2014: Demonstrating the

complementarity of observations in an operational ocean

forecasting system. Quart. J. Roy. Meteor. Soc., doi:10.1002/

qj.2281, in press.

Lellouche, J.-M., and Coauthors, 2013: Evaluation of global mon-

itoring and forecasting systems atMercatorOcéan.Ocean Sci.,

9, 57–81, doi:10.5194/os-9-57-2013.
Metzger, E. J., H. E. Hurlburt, A. J. Wallcraft, J. F. Shriver, L. F.

Smedstad,O.M. Smedstad, P. Thoppil, andD. S. Franklin, 2008:

Validation test report for the Global Ocean Prediction

System V3.0 – 1/128 HYCOM/NCODA: Phase I. NRL Memo.

Rep. NRL/MR/7320‒08-9148, 82 pp. [Available online at http://

www7320.nrlssc.navy.mil/pubs/2008/metzger-2008.pdf.]

——, and Coauthors, 2010: Validation test report for the Global

Ocean Forecast System V3.0 – 1/128 HYCOM/NCODA:

Phase II. NRL Memo. Rep. NRL/MR/7320‒10-9236, 70 pp.

[Available online at http://www7320.nrlssc.navy.mil/pubs/

2010/metzger1-2010.pdf.]

——, and Coauthors, 2014: U.S. Navy Operational Global Ocean

and Arctic Ice Prediction Systems. Oceanography, in press.

Moore, A. M., H. G. Arango, G. Broquet, B. S. Powell, A. T.

Weaver, and J. Zavala-Garay, 2011a: The Regional Ocean

Modeling System (ROMS) 4-dimensional variational data

assimilation systems: Part I—System overview and formu-

lation. Prog. Oceanogr., 91, 34–49, doi:10.1016/

j.pocean.2011.05.004.

——, and Coauthors, 2011b: The Regional Ocean Modeling Sys-

tem (ROMS) 4-dimensional variational data assimilation

systems: Part III—Observation impact and observation

sensitivity in the California Current system. Prog. Oceanogr.,

91, 74–95, doi:10.1016/j.pocean.2011.05.005.
Oke, P. R., and A. Schiller, 2007: Impact of Argo, SST, and al-

timeter data on an eddy-resolving ocean reanalysis. Geophys.

Res. Lett., 34, L19601, doi:10.1029/2007GL031549.

Ota, Y., J. C. Derber, E. Kalnay, and T. Miyoshi, 2013: Ensemble-

based observation impact estimates using the NCEP GFS.

Tellus, 65A, 20038, doi:10.3402/tellusa.v65i0.20038.

Rabier, F., E. Klinker, P. Courtier, and A. Hollingsworth, 1996:

Sensitivity of forecast errors to initial conditions.Quart. J. Roy.

Meteor. Soc., 122, 121–150, doi:10.1002/qj.49712252906.

AUGUST 2014 CUMMINGS AND SMEDSTAD 1791

http://www.wmo.int/pages/prog/www/OSY/Meetings/NWP5_Sedona2012/Final_Report.pdf
http://www.wmo.int/pages/prog/www/OSY/Meetings/NWP5_Sedona2012/Final_Report.pdf
http://dx.doi.org/10.1002/qj.49712656511
http://dx.doi.org/10.1002/qj.49712656511
http://dx.doi.org/10.1029/2008GL035561
http://dx.doi.org/10.5670/oceanog.2009.62
http://dx.doi.org/10.5670/oceanog.2009.62
http://dx.doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2
http://dx.doi.org/10.1002/qj.366
http://dx.doi.org/10.1175/1520-0485(2003)033<2504:NASWTH>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(2003)033<2504:NASWTH>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2001)129<0869:NFAD>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2001)129<0869:NFAD>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(2002)019<0240:TMODAS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(2002)019<0240:TMODAS>2.0.CO;2
http://dx.doi.org/10.1111/j.1600-0870.2008.00388.x
http://dx.doi.org/10.1111/j.1600-0870.2008.00388.x
http://dx.doi.org/10.1016/j.dynatmoce.2008.06.003
http://dx.doi.org/10.3402/tellusa.v64i0.18462
http://dx.doi.org/10.3402/tellusa.v64i0.18462
http://dx.doi.org/10.1175/1520-0442(1996)009<2999:SOVITE>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1996)009<2999:SOVITE>2.0.CO;2
http://dx.doi.org/10.1111/j.1600-0870.2004.00056.x
http://dx.doi.org/10.1111/j.1600-0870.2004.00056.x
http://dx.doi.org/10.1029/94RG01872
http://dx.doi.org/10.1029/94RG01872
http://dx.doi.org/10.1002/qj.2281
http://dx.doi.org/10.1002/qj.2281
http://dx.doi.org/10.5194/os-9-57-2013
http://www7320.nrlssc.navy.mil/pubs/2008/metzger-2008.pdf
http://www7320.nrlssc.navy.mil/pubs/2008/metzger-2008.pdf
http://www7320.nrlssc.navy.mil/pubs/2010/metzger1-2010.pdf
http://www7320.nrlssc.navy.mil/pubs/2010/metzger1-2010.pdf
http://dx.doi.org/10.1016/j.pocean.2011.05.004
http://dx.doi.org/10.1016/j.pocean.2011.05.004
http://dx.doi.org/10.1016/j.pocean.2011.05.005
http://dx.doi.org/10.1029/2007GL031549
http://dx.doi.org/10.3402/tellusa.v65i0.20038
http://dx.doi.org/10.1002/qj.49712252906

