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The US Navy’s relocatable (RELO) ensemble prediction system is fully described and is
examined in the Gulf of Mexico for 2010. After briefly describing the ensemble transfer
(ET) method for the initial perturbation generation, we introduce a new time-deformation
technique to generate the surface forcing perturbations from the atmospheric model fields.
The extended forecast time (EFT) is introduced to quantify the advantages of the ensemble
mean forecasts over a single deterministic forecast. The ensemble spread and its growth are
investigated together with their relations with the ensemble forecast accuracy, reliability
and skill.

Similar to many other operational ensemble forecast systems at numerical weather
prediction (NWP) centres, the initial analysis error is underestimated by the technique
used in the data assimilation (DA) system. Growth of the ocean ensemble spread is also
found to lag the growth of the ensemble mean error, a tendency attributed to insufficiently
accounting for model-related uncertainties. As an initial step, we randomly perturb the
two most important parameters in the ocean model mixing parametrizations, namely
the Smagorinsky horizontal and Mellor–Yamada vertical mixing schemes. We examine
three different parameter perturbation schemes based on both uniform and Gaussian
distributions. It is found that all three schemes improve the ensemble spread to a certain
extent, particularly the scheme with Gaussian distribution of perturbations imposed on
both the horizontal and vertical mixing parameters.

The findings in this article indicate that the RELO ensemble forecast demonstrates
superior accuracy and skill relative to a single deterministic forecast for all the variables
and over all the domains considered here. The ensemble spread provides a valuable
estimate of forecast uncertainty. However, the RELO uncertainty forecast capability could
be further improved by accounting for more model-related uncertainties, for example, by
the development of an error parametrization that imposes stochastic forcing at each model
grid point.
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1. Introduction

An ensemble prediction system is intended to generate a
sample of numerical forecasts that represents our knowledge
about the possible evolution of a dynamical system. Ensemble
forecasts should preferably reflect forecast uncertainties related
to both the initial values (analysis) and the representation of
the evolving system through a numerical model. During the past
20 years, various perturbation methods have been developed
to achieve these goals. It is generally accepted that initial
ensemble perturbations must constitute a sample taken from

a probability density function (PDF) that represents our best
knowledge about the state and uncertainty of the dynamical
system (i.e. the ‘analysis PDF’). Various initial perturbation
methods differ in how they estimate the analysis PDF and how they
sample it.

Major meteorological centres have operationally implemented
a variety of first generation initial perturbation generation
methods, including: the perturbed observation (PO) method
(Houtekamer et al., 1996), the total energy norm-based singular
vector (TE-SV) method (Buizza and Palmer, 1995; Molteni
et al., 1996), and the breeding method (BM: Toth and Kalnay,
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1993, 1997). These methods were all limited in that, for various
reasons, the sample produced was not consistent with the analysis
PDF. Summaries and discussions of these methods, including
both advantages and disadvantages, are in Wei et al. (2008)
(hereafter referred to as W08) and are listed in Tab. 1 of
that paper. Generally speaking, the initial perturbations used
in the first generation of ensemble prediction/forecast systems
(EPS or EFS) do not fully represent the uncertainties in the
analysis, as is expected from an ideal EPS, since the real initial
analysis errors are not being used by these methods. Therefore,
they are, in general, not consistent with the data assimilation
(DA) systems that generate the analysis fields. Comparisons of
the performance of the European Centre for Medium-range
Weather Forecasts (ECMWF) and the US National Centers for
Environmental Prediction (NCEP) operational EFSs are described
in Wei and Toth (2003). A more recent comparison study of
these methods in an operational environment, including their
performance at ECMWF, the Meteorological Service of Canada
(MSC) and NCEP can be found in Buizza et al. (2005). With
an increased emphasis on the use of the analysis PDF for
initial ensemble perturbation generation, a second generation of
techniques has emerged in recent years. These newer techniques
are discussed and summarized in Tab. 2 of W08. Such methods
include the ensemble transform Kalman filter (ETKF), ensemble
transform (ET), ensemble transform with rescaling (ETR),
and the Hessian singular vector (SV) technique (Barkmeijer
et al., 1999).

After the ETKF method was proposed for adaptive observation
and DA by Bishop et al. (2001), it was further applied to
ensemble forecasting in an operational environment with the
NCEP operational model and real-time observations by Wei
et al. (2006). A local ETKF has been implemented at the UK
Met Office (UKMO) (Bowler et al., 2009). The ET technique
was first proposed by Bishop and Toth (1999), also for adaptive
observation studies. The work of using ET and ETR for ensemble
forecast purposes was carried out by Wei et al. (2005), and
the important properties of the ET- and ETR-based ensemble
perturbations are derived and summarized in W08. The authors
also compared results based on the BM, ETKF, ET and ETR
methods. All four of these schemes involve the dynamical cycling
of ensemble perturbations. In the ET and ETR methods, the initial
perturbations are restrained by the best available analysis variance
from the operational DA system and centred on the analysis field
generated by the same DA system. In this way, the ensemble
system remains consistent with the DA. The perturbations are
also flow-dependent and orthogonal with respect to the inverse
of the analysis error variance. If the analysis variance information
is available, then the ET/ETR technique is considerably cheaper
than ETKF. The research described in W08 led to the operational
implementation of ETR-based EPS at the US National Weather
Service on 30 May 2006.

The ET method for EPS has also been developed at the Naval
Research Laboratory (NRL) Marine Meteorological Division and
implemented in the operational atmospheric forecast model at the
Navy’s Fleet Numerical Meteorology and Oceanography Center
(FNMOC), located in Monterey, CA (McLay et al., 2007, 2008;
McLay and Reynolds, 2009). Recently, a more efficient version of
ET (banded ET) has been implemented at FNMOC (McLay et al.,
2010). A common feature of the second-generation techniques
is that the initial perturbations are more consistent with the
DA system. A good DA system will provide accurate estimates
of the initial analysis error variance for the EPS, while a good,
reliable EPS will produce an accurate flow-dependent part of the
background covariance for the DA system.

Estimating analysis error covariance is important in building
an efficient EPS based on ET and ETR. A simple way to estimate
this error is to use multi-centre analysis data, which are routinely
available at most major forecast centres. Wei et al. (2010) describe
a method for estimating the analysis error variance using analysis
data from NCEP, ECMWF, UKMO, Canadian Meteorological

Centre (CMC) and FNMOC. Estimating analysis errors in a
three/four-dimensional variation (3D/4D-Var) DA system is a
challenging task. Fisher and Courtier (1995) proposed the Lanczos
method for estimating the analysis error variance in the ECMWF
DA system. This method produces the analysis error variance
estimates by computing the leading eigenvectors of the Hessian
matrix, with an obvious drawback that most of the trailing
eigenvectors are neglected in the computation. A few calibration
schemes for compensating for the loss of the contribution from the
less dominant eigenvectors of the Hessian matrix are introduced
and tested by Wei et al. (2012) in a study carried out for the NCEP
3D-Var DA system.

At the NRL at Stennis Space Center, MS, the Relocatable
Circulation Prediction System Version 1.0 (RELO V1.0) is being
developed to provide a capability for a rapidly relocatable ocean
forecast and data assimilation system for use in operational
forecast support for the US Navy’s missions (Rowley, 2008, 2010;
Rowley et al., 2012). Figure 1 shows a schematic configuration
of the RELO system with 32 ensemble members, as used in
this article. Basically, the system consists of a forecast model
component appropriate for regional to coastal-scale ocean
modelling, a data assimilation component, and supporting codes,
scripts and databases for domain configuration, data preparation,
data assimilation, and post-processing. This system produces real-
time forecasts of the ocean state (sea level and 3D temperature,
salinity and horizontal currents). Each regular cycle of the system
is organized around an analysis that produces an estimate of the
ocean state by assimilating newly available observations into the
previous best estimate of the ocean state, which is the forecast
model output valid at the current analysis time.

The forecast component is the Navy Coastal Ocean Model
version 4 (NCOM: Martin, 2000; Barron et al., 2006). NCOM is
a primitive-equation ocean model developed at NRL for local,
regional and global forecasting of temperature, salinity, sound
speed and currents. The NCOM configuration used in the RELO
system is fairly flexible, and most of the model configuration
parameters are available for the user to define. Default values are
assigned to ease model set-up, so most domains can be defined
with limited user input. The NCOM in RELO uses a combined
sigma–z vertical grid with sigma layers near the surface to allow
for changes in the surface elevation and a bottom-following
vertical coordinate in shallow water, and a switch to z-levels
below a depth that can be specified by the user. The Arakawa C
grid is used in the horizontal direction.

The data assimilation component is the Navy Coupled Ocean
Data Assimilation system (NCODA: Cummings, 2005), which
was developed at NRL as the ocean data analysis component
of the Coupled Ocean Atmosphere Mesoscale Prediction System
(COAMPS: Hodur, 1997; Chen et al., 2003). The observational
data used for assimilation include satellite sea-surface temperature
(SST), satellite altimetry sea-surface height anomaly (SSHA),
satellite microwave-derived sea ice concentration, and in situ
surface and profile data from ships, drifters, fixed buoys,
profiling floats, XBTs, CTDs and gliders (see subsection 2.4).
The observational data are prepared and processed through
the NCODA automated data quality-control system, NCODA
QC, which identifies observations with a high probability of
error when compared against climatological or model fields
with associated variability information. The NCODA analysis
employs user-defined thresholds for acceptable error probabilities
when accepting data for the analysis and uses the forecasts from
NCOM as the background fields in a 3D-Var formulation. Both
NCOM and NCODA are used operationally at two of the Navy’s
operational centres: FNMOC and the US Naval Oceanographic
Office (NAVOCEANO), which is located in Stennis Space
Center, MS.

The uncertainties from the initial conditions in RELO are
represented by the initial perturbations produced by the ET
method. Rowley et al. (2012) show that perturbing the lateral
boundary conditions has only a minor impact on the ensemble
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Figure 1. Schematic of the US Navy’s RELO ensemble prediction system, which contains an ensemble forecast and an ocean DA system. The number of current
ensemble members is 32.

spread and is limited to regions close to the boundary.
Prior approaches have not accounted for other important
uncertainties from the ocean model. The two main sources
of model uncertainties include those from the model physical
parametrizations and those from dynamics. For a reliable EPS,
the ensemble spread should have amplitude and growth rate
similar to the ensemble mean error (Buizza et al., 2005; Wei
et al., 2006, 2008). Systems that do not account for the model-
related uncertainties tend to produce an ensemble spread that
grows much slower than the ensemble mean error. As a result,
the reliability and the forecast skill and range suffer. Various
stochastic parametrization schemes have been developed to
account for model-related uncertainties, and these have proven to
be effective in atmospheric models at the major world forecasting
centres such as ECMWF, NCEP, UKMO and MSC (Buizza et al.,
2005; Palmer et al., 2005; Bowler et al., 2009; Charron et al.,
2010). For example, four different schemes (addition of isotropic
random perturbation fields, multi-parametrization, stochastic
physical tendency perturbations and stochastic kinetic energy
backscatter (SKEB)) have been used at MSC, three schemes
(random parameter, stochastic convective vorticity and SKEB)
at the Met Office, one scheme (stochastic parametrization) at
NCEP, and two schemes (stochastic perturbed parametrization
tendency and SKEB) at ECMWF, are being developed or are in
the process of being implemented.

The stochastic forcing, parameter variation, and stochastic
kinetic energy backscatter schemes have been studied and
developed at the NRL Marine Meteorology Division for
atmospheric modelling (Reynolds et al., 2008, 2011a, 2011b). The
US Air Force Weather Agency has developed various schemes to
account for model errors, including multi-parametrization and
perturbation of model parameters and stochastic backscatter
stream-function perturbations (Hacker et al., 2011a, 2011b).
Bowler et al. (2009) described the use of multiple parameters.
Each of the parameters evolves in time with a first-order, auto-
regressive forcing. Although time-evolving parameters can exploit
the impact of an ensemble, Hacker et al. (2011b) noted that time-
evolving parameters are not necessary to represent parameter
uncertainties. Reynolds et al. (2011a) used the modified values
of different parameters and kept them constant throughout the
integrations for all the cycles.

Ensemble prediction methods developed in numerical weather
prediction have been more frequently applied to ocean modelling

in recent years. Miyazawa et al. (2005) used the breeding method
with 10 ensemble members to successfully predict a Kuroshio
meander position with a lead time of 60 days. The Kuroshio was
also studied by Fujii et al. (2008) using singular vectors (SVs). Yin
and Oey (2007) used 20 members based on the breeding method
to study an eddy-shedding event in the Gulf of Mexico. Based on
the ensemble, the authors successfully estimated the locations and
strengths of the Loop Current and ring for July to September 2005,
and found out that bred vectors resemble baroclinic unstable
modes in the Gulf of Mexico (GOM). Counillon and Bertino
(2009) studied eddy shedding and mesoscale dynamics in the
GOM by using a 10-member ensemble based on the HYbrid
Coordinate Ocean Model (HYCOM) with 5 km resolution. The
initial perturbations are generated by using different values of a
parameter in the optimal interpolation DA, while the atmospheric
and lateral boundary conditions are perturbed randomly. The
Loop Current and eddy fronts from observations were successfully
predicted by their ensemble forecast, although the ensemble
spread is two to three times smaller than forecast error. O’Kane
et al. (2011) developed an ocean ensemble prediction system
using breeding method to perturb all the model variables, and
used all available observations from the operational Ocean Model,
Analysis and Prediction System (OceanMAPS) forecasting system
at the Australian Bureau of Meteorology to predict the East
Australian Current.

In this study, we use the ET method to generate initial
perturbations. A time-deformation technique is introduced
to generate the surface forcing perturbations from real-time
atmospheric fields. All the ocean model variables at all the
levels are perturbed in an operational environment with all
available observations from NCODA. We focus on accounting
for model-related uncertainties by perturbing the key mixing
turbulence parameters. In Reynolds et al. (2011a), a number of
parameters are held constant within each ensemble member for
the entire experiment, while several parameters continuously
change throughout the integration in the method implemented
by Bowler et al. (2009). In contrast to these methods used in
atmospheric ensembles, the two most important parameters in
NCOM responsible for the horizontal and vertical mixing are
perturbed with the prescribed statistics imposed at every cycle and
held constant during each cycle’s integration. Thus, each ensemble
member has a different value of these parameters at every
cycle, with the changing parameter values reflecting the temporal
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variation of the parameters and model uncertainties. Once the
integration starts, the parameters are held constant, simulating a
complete parametrization package for this member. Of course,
we do not expect that perturbing these model parameters will
account for all of the model-related uncertainties; additional
packages accounting for different sources of model uncertainties
will be developed in the future.

Section 2 provides brief descriptions of the ET formulation for
initial perturbations, the time-deformation technique to generate
surface forcing perturbations from an atmospheric model for
RELO, the methodology for perturbing the mixing parameters,
the configuration for the RELO ensemble, and the experimental
set-up. The major results from using different ensembles with
different perturbing schemes are presented in section 3 in
separate subsections. A discussion and conclusions are presented
in section 4.

2. Methodologies for various perturbations in the RELO
system and experimental set-up

Before we provide the experimental results in section 3, we
briefly describe the methodologies used for generating the
initial perturbations, the surface forcing perturbations for the
atmospheric fields, and the schemes accounting for model-
related uncertainties. The RELO configuration over the domain
of interest and the experiment design will also be described.

2.1. Initial perturbations for RELO

In the ensemble transform (ET) method, the forecast pertur-
bations from the previous cycle are first transferred into new
perturbations using the ET with the estimated initial analysis
error variance, followed by a rescaling using the same initial
analysis error variance information. The details and properties of
the method are described in Wei et al. (2005, 2008), McLay et al.
(2007, 2008) and McLay and Reynolds (2009). Only a very brief
description is provided here. Let

Zf = 1√
k − 1

[zf
1, zf

2, . . . .., zf
k], Za = 1√

k − 1
[za

1, za
2, . . . .., za

k],

(1)

where the n-dimensional state vectors zf
i = xf

i − xf and za
i =

xa
i − xa(i = 1, 2, . . . ..k) are k ensemble forecast and analysis

perturbations for all the model variables, respectively. Here
xf is the mean of k ensemble forecasts from NCOM, and
xa is the analysis from the Navy’s independent DA system
NCODA. Unless stated otherwise, the lower and upper-case
bold letters will indicate vectors and matrices, respectively. In
the ensemble representation, the n × n forecast and analysis
covariance matrices are approximated, respectively, as

Pf = Zf ZfT and Pa = ZaZaT, (2)

where the superscript T indicates the matrix transpose. For a given
set of forecast perturbations Zf at time t, the analysis perturbations
Zaare obtained through an ensemble transformation T such that

Za = Zf T. (3)

In RELO, the best analysis error variances are derived from
NCODA, which is based on 3D-Var and uses all the operational
real-time observations. Suppose Pa

op is a diagonal matrix with the
diagonal values being the analysis error variances obtained from
the operational NCODA system. The ET transformation matrix
T can be constructed as follows. For an ensemble forecast system,
the forecast perturbations Zf can be generated by Eq. (1). One
can solve the following eigenvalue problem:

ZfTPa−1
op Zf = C�C−1, (4)

where C contains the column orthonormal eigenvectors (ci) of

ZfTPa−1
op Zf (also the singular vectors of Pa−1/2

op Zf ), and � is a
diagonal matrix containing the associated eigenvalues (λi) with
magnitude in decreasing order, that is, C = [c1, c2, . . . .., ck],
CTC = I and � = diag(λ1, λ2, . . . ..,λk).

Let us suppose F = diag(λ1, λ2, . . . .., λk−1) and G =
diag(λ1, λ2, . . . ..,λk−1, α), where α is a non-zero constant, i.e.

G = diag(g1, g2, . . . .., gk) =
(

F 0
0 α

)
and � =

(
F 0
0 0

)
.

The new analysis perturbations can be constructed through
transformation:

Za = Za
pCT = Zf CG−1/2CT. (5)

It can be shown that the new analysis perturbations in Eq. (5)
are centred (sum of all perturbations is zero). In addition, this has
the advantage that the ensemble perturbations span a subspace
that has a maximum number of degrees of freedom. W08 also
showed that the orthogonality of the initial perturbations will
increase as the number of ensemble members increases. If the
number of ensemble members approaches infinity, then the
transformed perturbations will be orthogonal under the inverse
of the analysis error variance norm. In addition to the flow-
dependent spatial structure, the covariance constructed from the
initial perturbations is approximately consistent with the analysis
covariance from the DA if the number of ensemble members is
large.

2.2. Surface forcing perturbations for RELO using
time-deformation technique

To generate the surface forcing perturbations for RELO, the
real-time meteorological fields are obtained from the Navy’s
meteorological operational centre FNMOC, which produces
operational data fields using the Navy Operational Global
Atmospheric Prediction System (NOGAPS, for global) and
COAMPS (for regional) forecast systems. These operational data
are used to produce surface forcing fields for RELO and NCOM by
the Navy’s ocean operational centre NAVOCEANO. In general,
these fields include atmospheric wind stress, surface pressure,
short-wave and long-wave radiation, air temperature and
specific humidity. Throughout our experiments, the COAMPS
atmospheric data fields, which are available every 24 hours, have
been used to produce surface forcing for single and ensemble
forecasts of the ocean. For a single forecast, the atmospheric
forcing at each hour is computed from the linear temporal
interpolation of forcing terms from the neighbouring forcing
fields produced from COAMPS.

For the EPS, the perturbed surface forcing fields for different
ensemble members are also drawn from the same dataset, but
by using time-deformation with the random shifting technique
in which a number of completely independent random fields
are generated every 24 hours with a desired de-correlation
length. However, the linear interpolation is computed with
randomly shifted time, and the two neighbouring dates are
selected randomly among a set of fixed dates with available
atmospheric fields. The random shifts are designed so that any
interpolated field is not correlated with any other interpolated
field 24 hours away. Therefore, the atmospheric forcing for each
ensemble member is independent from forcing for the others.

For example, we generate nr = 4 or 5 completely random fields
in spectral space:

R(i, j, k) = r(i, j, k)c(i, j, k),

where i, j are longitude and latitude indices in the NCOM
horizontal domain, k = 1, 2, . . . nr, r(i, j, k) is a randomly
generated number, and overbar indicates the variables are in
spectral space. c(i, j, k) is the square root of the eigenvalues of the
correlation matrix in spectral space, and it depends on the size
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of horizontal domain. The eigenvalues of the correlation matrix
in spectral space will determine the correlation length-scale in
physical space. These randomly generated fields with a specified
correlation length-scale are transferred back to physical space
using a Fast Fourier Transform (FFT), i.e.

R(i, j, k) = FFT(R(i, j, k)).

The amplitudes of these randomly generated fields are adjusted
by multiplying predefined coefficients p(k), e.g.

R2(i, j, k) = p(k) ∗ R(i, j, k).

The random time shift for any time t is generated by linear
interpolation of the adjusted random field,

s(i, j, t) = w1(t) ∗ R2(i, j, k1) + w2(t) ∗ R2(i, j, k2).

Here, w1(t), w2(t) are the weights computed at time t and
k1,k2are the two neighbouring times that are identified by the
interpolation subroutine, and k1 < t < k2.

The surface forcing F(i, j, t, m) for any ensemble member m
at time t is produced by linearly interpolating the atmospheric
forcing fields from COAMPS, e.g. a(i, j, t), at randomly shifted
time T = t + s(i, j, t). Thus,

F(i, j, t, m) = W1(T) ∗ a(i, j, T1) + W2(T) ∗ a(i, j, T2),

where W1(t), W2(t) are the weights computed at the randomly
shifted time T, and T1,T2are the two neighbouring times that are
identified by the interpolation subroutine such that T1 < T < T2.
The whole process is repeated for different ensemble members.
Since a new random time shift is generated independently
each time, the final surface forcing fields for different ensemble
members are independent.

2.3. Perturbing the horizontal and vertical mixing parameters
in NCOM

In this study, we investigate the impact of varying model
parameters on the RELO ensemble spread, reliability, accuracy
and forecast skill. We choose two parameters that play critical
roles in describing the horizontal and vertical mixing in NCOM
(Martin, 2000; Barron et al., 2006). Like other parametrization
schemes in atmospheric and ocean models, the schemes described
below are attempts to describe phenomena at scales smaller
than those resolved by the model. The parametrized formulae
are approximate representations of unresolved ocean mixing
processes in terms of model variables at the resolved scales.

NCOM has two options for horizontal mixing parametriza-
tions, one based on maintaining a maximum horizontal grid-cell
Reynolds number and the other following the Smagorinsky
scheme (Smagorinsky, 1963). The relatively simple grid-cell
Reynolds number scheme is designed to suppress noise gen-
erated by numerical advection and scales the mixing coefficients
according to the velocity magnitude. The Smagorinsky scheme
scales the rate of mixing according to the horizontal velocity shear
and is considered more physically based, and the eddy coefficients
are isotropic and independent of coordinate rotation. All sim-
ulations in this article utilize the Smagorinsky formulation; the
control run scaling has the default value Smag = 0.1.

NCOM also has multiple options for vertical mixing
parametrization following the Mellor–Yamada Level 2 (MYL2:
Mellor and Yamada, 1974; Mellor and Durbin, 1975) and the
Mellor–Yamada Level 2.5 (MYL2.5: Mellor and Yamada, 1982)
turbulence closure schemes. There is also an option to adjust
the mixing of the MYL2 scheme using the Large et al. (1994)
mixing enhancement in an attempt to account for unresolved
mixing processes by extending the mixing of typical oceanic
turbulence models above the normal critical Richardson number
value. The MYL2.5 scheme provides a prognostic equation to

compute the turbulent kinetic energy (TKE), which includes
advective and diffusive transport, and uses a second prognostic
equation to provide an estimate for the vertical turbulence length
scale (Martin, 2000). In contrast, the simplified MYL2 scheme
assumes that there is an approximate local balance between shear
production, buoyancy production, and dissipation in the TKE
equation, which allows the TKE to be calculated algebraically
from the mean vertical density and velocity gradients. The
turbulence length-scale is estimated from an empirical formula.
While the MYL2.5 scheme can be more accurate in high-
resolution simulations, where the transport of TKE is significant,
the MYL2 scheme is more efficient than the MYL2.5 scheme
due to the extra computational cost of the latter’s prognostic
treatment of the ice and turbulent length-scale. Ocean forecasts
produced by the Navy’s operational centre typically use the MYL2
formulation due to the overriding importance of efficiently using
operational resources. The RELO experiments reported here use
the default MYL2 scheme for vertical mixing parametrization,
with the ensemble experiments examining variations in b1 myl2,
the MYL2 parameter that scales the TKE dissipation, which
affects the predicted depth of mixing. The default operational
value b1 myl2 = 15.0 is used in the control run.

The experiments perturb these two critical parameters in
the horizontal and vertical mixing turbulence parametrization,
smag and b1 myl2. Since the unresolved mixing processes are
not known, we test their representation by treating these key
parameters as stochastic variables. In the absence of a priori
knowledge regarding the stochastic distribution of the mixing
processes, two common distributions, Gaussian and uniform,
are evaluated. The first experiment perturbs only the vertical
mixing parameter with a uniform distribution, while a second
experiment perturbs both of the mixing parameters with uniform
distributions. The third experiment, expected to be the preferred
case, imposes a Gaussian distribution on both parameters. All
the ensemble results from the experiments perturbing these
parameters are compared with the control ensemble, a default
RELO ensemble with default, unperturbed mixing parameters.
To demonstrate the advantage of the ensemble over the single
deterministic forecast, a single NCOM forecast with the same
resolution is evaluated as well. A summary of these experiments
is listed and described in Table 1.

The ranges selected for the random generator in the uniform
distributions and the mean and standard deviation in the Gaussian
distributions are selected such that the mixing parameters fall
within the limits appropriate for NCOM. If any parameter values
are too extreme, unphysical values may occur for some variables
and cause NCOM to crash. With the values chosen in Table 1,
99.99% of the random values generated by Gaussian distributions
for smag and b1 myl2 will be in the range of

smag range = mean ± 4 ∗ std = [0.05, 0.2],

b1 myl2 range = mean ± 4 ∗ std = [15.0, 20.0].

Under these distributions, values of these two randomly
generated parameters are expected to fall within reasonable ranges
and allow NCOM to run smoothly.

2.4. RELO configuration and experiments

Our RELO ensemble experiments are carried out for a period
of 102 days from 0000 UTC 15 April to 0000 UTC 25 July
2010 with 32 perturbed members plus an unperturbed single
run. Additional ensembles with different parameter perturbation
schemes as described in Table 1 are run over the same period. The
forecast length during the experiments is 72 hours with output
every 6 hours. The NCOM horizontal domain covers the whole
Gulf of Mexico (GOM) from 98 to 79◦W and 18 to 31◦N with
model grid spacing 3 by 3 km. The number of vertical levels is
49, with 34 sigma levels in the upper ocean and z-levels starting
from level 35 to the bottom of the sea. The advantages of this
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Table 1. A summary of experiments with various distributions for perturbations
of the horizontal and vertical mixing parameters.

Exp. ID Perturbation Scheme

s: Single deterministic forecast (NCOM + NCODA 3D-Var, same
resolution as ensemble).

c: Control RELO with 32 members without perturbing any parameters
(smag = 0.1b1 myl2 = 15.0)

v: perturbing b1 myl2 = [15.0, 20.0] with a uniform distribution.
h: perturbing smag = [0.05, 0.2] and b1 myl2 = [15.0, 20.0] with

uniform distribution.
g: perturbing smag (mean = 0.125, std = 0.01875) and b1 myl2

(mean = 17.5, std = 0.625) with Gaussian (normal) distribution.

kind of hybrid sigma–z coordinate have been discussed in Martin
(2000) and Barron et al. (2006). The vertical grid extends down to
5500 m. The configuration of the RELO experiments, consisting
of 32-member ensembles using the NCOM and NCODA DA
system, is depicted in Figure 1.

In all the experiments we have carried out for this article, real
observations for this same period from the US Navy’s operational
centre (i.e. NAVOCEANO) are used as the verifying truth.
Before the observations are assimilated into NCOM via NCODA,
the data go through a real-time ocean data quality control
(QC) process. These data include remotely sensed sea-surface
temperature (SST), sea-surface height anomaly (SSHA), and sea
ice concentration as well as in situ observations. The in situ surface
temperature observations are collected from ships and buoys
while subsurface profiles of temperature and salinity are gathered
from eXpendable BathyThermographs (XBT), Conductivity,
Temperature, Depth (CTD) instruments, Argo floats and gliders.
Observations are also supplemented with synthetic subsurface
profiles of temperature and salinity using SST and SSHA via the
Modular Ocean Data Assimilation System (Cummings, 2005).

3. Results from RELO ensembles

3.1. RELO ensemble spread and mean distribution

The very basic attributes of any ensemble prediction system are
the ensemble mean and ensemble spread. It is expected that
the ensemble mean normally outperforms a single deterministic
forecast in terms of the root mean square (RMS) error and the
absolute error. The ensemble spread strongly influences the range,
reliability, and sharpness or resolution of the EPS. Our results
from different ensemble configurations show that the spread
differences among different perturbation schemes (v, h and g) are
visually small; quantitative differences are shown in later sections.
Thus, in this section we concentrate on the comparisons between
the control ensemble (c) and one of the perturbed parameter
ensembles (g).

The DeSoto Canyon area spans a range of dynamical processes
including deep-water mesoscale structures that vary on long time-
scales, shelf processes that are more rapidly varying due to wind
forcing and strong interactions with the coast due to freshwater
outflow providing buoyancy forcing. This region is impacted
by diverse influences of wind-driven currents and circulation
associated with some eddy-like features that are related to the
Loop Current. The wind stress and eddies are combined, and
they can produce a complicated pattern of currents within the
DeSoto Canyon. This region is also of great interest for the
many active oil and gas explorations. The initial examination of
the ensemble spread indicates the range of uncertainty captured
under these varying dynamical regimes. For these reasons, we
choose a location P = (88.39◦W, 28.74◦N) at 0000 UTC on 20
April 2010 to show a few snapshots of the ensemble structure
which is always helpful to introduce our ensemble before we move
on to more detailed studies of performance in the later sections.

In order to get a glimpse of the vertical distribution at P, the
ensemble mean (left) and spread (right) at 72 hours forecast from

0000 UTC 20 April 2010 for ensemble c are shown in Figure 2.
The ensemble mean temperature shows that the mixed layer
continues down to about 50 m, then the temperature gets cooler
indicating the beginning of the thermocline layer until below 500
m. Salinity increases with depth due to the surface mixing process
with fresh river water on the surface and tropical precipitation.
Both components of the water current are larger at the surface due
to the mixing process induced from wind and solar radiation. The
distributions shown in the right panels indicate that the spread is
smaller for deeper water for every variable we have computed, and
does not change much after 200 m. One of the main reasons is the
lack of observations in deeper water as explained further in later
sections. The distributions for the other parameter-perturbed
ensembles show similar structures, and the differences are small
(not shown).

Figure 3 shows ensemble plumes originating at the surface from
P, including temperature, salinity, and the velocity components
u and v, respectively. Comparisons between the left and right
columns show that the impact of perturbing the mixing
turbulence parameters is small for all variables for ensembles
originating from this location. The ensemble mean and median
are very similar in all cases. It is a common practice that the
ensemble mean is normally used to predict forecast events, as it
has been shown that the mean from a reliable ensemble performs
better than a single deterministic forecast (Toth and Kalnay,
1993, 1997).

The equivalent ensemble plumes originating from the same
location at 1500 m are computed, but not shown. The difference
is that the spreads at this depth are even smaller compared with
those at the surface. This is mostly a consequence of the small
analysis error variance produced by the NCODA DA system in
deeper water. When the analysis error variance used in the ET
ensemble generation is small, the initial ensemble amplitude will
be small. Little if any growth as a function of forecast lead time
is evident in the ensemble spreads in all cases with all variables.
This evidence can be observed more clearly in Figure 4, showing
the ensemble spread as a function of the forecast lead time and
depth for ensembles c and g. Since there is so little variation
below 200 m, we restrict the plots to the upper 200 m where
spread variations are better resolved by the colour range. For
temperature and salinity, the largest spread is not at the surface
but in a 50 m thick range centred at 50 m depth.

As expected, the spreads of u and v are largest near the surface
due to the atmospheric forcing perturbations introduced through
the time-deformation technique, which is consistent with the
results in Figure 2. However, the impact from this atmospheric
forcing propagates downward very slowly as the forecast lead time
increases, and only a very small impact can be seen within 72-
hour forecasts. Again, similar to the other variables, the spreads
for u and v near and below 200 m are small and show little
variation. Because the assimilation data stream has very few
observations at these depths, NCODA has little new information
to produce anything but very small analysis increments. Since
the analysis error variance estimated from NCODA is small, the
initial ensemble spread at these depths is small as well.

The ocean dynamics of the GOM are strongly influenced by
the Yucatan Current inflow which forms the powerful Loop
Current which is connected to the Florida Current. From the
Florida Straits, it travels to the Atlantic to form the Gulf Stream.
Ensemble spreads shown in Figures 2 and 4 indicate the largest
variability is around 50 m depth for both temperature and
salinity. It is interesting to compare the dynamics between the
surface and 50 m level. The horizontal contrasts over the Gulf
between distributions at 0 and 50 m are shown in Figures 5 and 6
with 0000 UTC 20 April 2010 snapshots of the control ensemble
mean and spread for temperature, salinity, u and v. The ensemble
mean shows warmer surface temperature from the Caribbean Sea
through the Yucatan Channel and along the western edge of the
Loop Current, while regions of high temperature at 50 m are found
in the midst of the Loop Current extension and approaching the
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Figure 2. Ensemble mean (left) and spread (right) at 72 hours forecast from 0000 UTC 20 April 2010 at (88.39◦W, 28.74◦N) for ensemble c. Panels from top to
bottom are for temperature (◦C), salinity (PSU), u and v (m s−1).

shelf break in the central western Gulf. Maxima in the ensemble
spread shows relatively high uncertainty in surface temperature
north of the Loop current, about 200 km south-southeast of
the Mississippi River mouth. Temperature variability at 50 m is
similarly high along the northern east side of GOM and near the
entrance to the Florida Straits.

The surface salinity is distributed relatively evenly except
near the Mississippi and Atchafalaya river outlets, where large
freshwater river input mixes with the sea water. This leads to
smaller salinity values near the coasts of Louisiana and Mississippi.
It is also in this mixing area where the largest surface salinity
variations are located. Relatively high salinity variations are more
widespread at 50 m, with the largest variations near the north of
GOM. The magnitudes and variations of the velocity components
are larger on the surface than at 50 m. The ensemble mean shows
clear signals of the Yucatan Current and Florida Current, which
lead to the strong Gulf Stream system in the North Atlantic. The

ensemble spread indicates large variations in the surface velocity
within 200 km of the Louisiana coast. At 50 m, variations in u
and v are smaller than at the surface, thanks to the atmospheric
forcing perturbations implemented in the RELO ensemble.

In order to see the impact on the ensemble forecasts from the
different mixing parameter perturbation schemes as described in
subsection 2.3, we look at the differences between the parameter-
perturbed and control (unperturbed) ensembles at the surface
(Figure 7) and at 50 m (Figure 8) at a forecast lead time of
72 hours starting from 0000 UTC 20 April 2010. These depths are
selected because, as demonstrated in Figure 4, the largest spread
in velocity is found at the surface, while the largest spreads in
temperature and salinity are more often found near 50 m depth.
Spreads are small below 200 m for all the ensembles.

The impacts on the mean and spread of the surface temperature
are mostly located in the northeastern GOM from Louisiana to
Florida. The impact patterns from v and h, in which the perturbed
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Figure 3. Ensemble plumes from 0000 UTC 20 April 2010 at (88.39◦W, 28.74◦N, 0 m) for ensembles c (left) and g (right). Panels from top to bottom are for
temperature, salinity, u and v. Dashed lines are for the 32 individual ensemble members; the ensemble mean and median are indicated by thick solid and dotted lines.
The thick dashed lines indicate ensemble mean +/− one standard deviation.

mixing parameters are distributed uniformly and affect either the
vertical or the horizontal and vertical mixing, respectively, are
different from the impact of g with the normally (Gaussian)
distributed horizontal and vertical mixing parameters (row 1).
Cases v and h exhibit similar spatial characteristics with increased
mean SST, higher in case v, off the continental shelf in the
northeastern Gulf and reduced SST, cooler in case h, from the
open ocean to the coast in the central Gulf. Case g exhibits a
different pattern of changes, with little change in the northeastern
Gulf and a dipole of warming and cooling in the central northern
Gulf that is in reverse phase from the changes in cases v and
h. While again concentrated in the northeast quarter of the
GOM, the anomalies in surface temperature spread are sprinkled
indistinctively and do not show clear differences among the
perturbation schemes. At 50 m (Figure 8), the mean temperature
is lower than at the surface, as expected, but the spread at 50 m
is larger. Coherent patterns in the temperature spread differences

at 50 m are difficult to identify among runs using these three
perturbation schemes. These differences will be evaluated more
quantitatively in later sections.

For the surface salinity, the ensemble mean is the smallest,
and the spread is the largest near the Mississippi River and more
broadly near the major freshwater inputs from Louisiana and
Mississippi along the northern coast of the GOM. The differences
among the different ensemble schemes are also largest near the
northern coast. A clear difference at 50 m is that a relatively low
salinity is broadly distributed across most of the northern half
of the GOM with the maximum salinity spread concentrated in
the northern Gulf from the Mississippi River outlet to the west
Florida Shelf. The ensemble schemes h and g, which have both
the horizontal and vertical mixing parameters perturbed, have
slightly larger impacts on the salinity ensemble mean and spread
than does scheme v, which perturbs only one parameter. The
ensemble mean of u shows clearly the Loop Current and Florida
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Figure 4. Ensemble spread as a function of forecast lead time and water depth from 0000 UTC 20 April 2010 at (88.39◦W, 28.74◦N) for ensembles c (left) and g
(right). Panels from top to bottom are for temperature, salinity, u and v.

Current at both the surface and at 50 m. However, regions with
a large ensemble velocity spread are more broadly distributed at
the surface than at 50 m. The largest variations in the ensemble
mean and spread are concentrated near the Florida Straits. While
the various ensemble schemes do not produce large differences
in the ensemble means and spreads, schemes h and g, with two
mixing parameters perturbed, have slightly larger impact than
alternatives.

3.2. Forecast accuracy and ensemble spread

The goals of ensemble forecasts are to predict the ocean state
with the ensemble mean and to predict the forecast uncertainty
with the ensemble spread. We quantify the forecast error as
the RMS difference between the forecast ensemble mean and
subsequent observations corresponding to the forecast time.

Forecast accuracy generally decreases as the lead time of the
forecast increases; this change in accuracy is represented as a
growth rate in the RMS forecast error. The estimated uncertainty
of a forecast is proportional to the ensemble spread, and it
can be shown that an ideal ensemble should have an ensemble
spread that has a similar magnitude and growth rate to the
ensemble RMS error (Wei and Toth, 2003; Buizza et al., 2005;
Wei et al., 2006, 2008). One of the main reasons for perturbing
the mixing parameters in RELO is to account for model-related
uncertainties and their contributions to ensemble spread. Without
representations of model-related uncertainty, the ensemble will be
under-dispersive and underestimate the true forecast uncertainty.
If important sources of uncertainty are neglected, the reliability
of forecast uncertainties will be reduced.

Ocean dynamics vary horizontally and vertically in the GOM
as we can see from Figures 2–6. The temperature does not
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Figure 5. Control ensemble mean (left) and spread (right) at 0000 UTC 20 April 2010 at the surface for temperature, salinity, u and v (from top to bottom). (88.39◦W,
28.74◦N) is marked with a black dot in top left panel.

change much in the mixed layer until about 50 m as shown
in Figure 2. Water becomes cooler from 50 m, indicating the
start of the thermocline layer. Due to the complicated mixing
processes with fresh river water, air–sea interactions such as
highly variable wind-driven currents, the tropical precipitation
and solar radiation on the surface, both components of water
current have largest spread, while salinity has smallest spread
at the surface. But salinity increases with depth until about
100 m. The interior layer is mostly controlled by internal
mixing processes and shear between geostrophically balanced
flows. The ensemble spreads are generally larger above 200
m for most variables. In addition, the density of observations
for the evaluations is much larger near the surface than in
the interior. To better identify different dynamics in different
domains, evaluations in the following sections are carried out in
three different domains, namely surface (about the upper 1 m),
ocean interior over a range from 50 to 200 m, and the whole
domain.

To evaluate RELO NCOM forecast accuracy, we plot in
Figure 9(a)–(c) the RMS error of the ensemble means for
temperature as a function of lead time for the control and
parameter-perturbed ensembles. The RMS error is the difference
between the forecast and the truth embodied in unassimilated
observations valid during the forecast interval; thus it is a
direct measure of forecast accuracy. To increase the statistical
significance, all the RMS values are averaged over the 102 days
from 0000 UTC 15 April to 0000 UTC 25 July 2010 and in
various observation spaces. The RMS errors of the ensemble
means for salinity as a function of lead time for the control and
parameter-perturbed ensembles are plotted in Figure 10(a) and
(b) for averages over the whole observation space and for the
layer between 50 and 200 m, respectively.

It is very clear that all the ensemble means of both temperature
and salinity have lower RMS errors than the single deterministic
forecast at all lead times. This applies to the control and different
parameter-perturbed schemes, although the differences between
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Figure 6. Same as Figure 5, but at 50 m depth.

the different schemes are small. There is no doubt that any of the
ensemble means of temperature and salinity offer more accurate
forecasts than the single deterministic forecast.

Forecast uncertainty is a function of uncertainty in the initial
state, uncertainty in quantifying the external forces that modify
the ocean state, and uncertainty in the model representation
of the physical processes of the ocean state. The purpose of
introducing the perturbed mixing parameters is to account
for the model-related uncertainties in dealing with unresolved
horizontal and vertical mixing processes. While the unresolved
subgrid processes are parametrized in these examples with simple
schemes, as described in subsection 2.3, a more realistic approach
would recognize that the mixing is stochastic by nature. Thus,
introducing random perturbations in these parameters should
improve the representations of model uncertainty and thereby
increase the accuracy of the ensemble forecasts and spread.

The ensemble spread between 50 and 200 m for temperature
as a function of forecast lead time is shown in Figure 9(d). It

is also clear that the ensemble with two randomly perturbed
parameters using the Gaussian distribution has the largest
spread increment (g in solid), with ensemble h (perturbing
both the horizontal and vertical mixing parameters with a
uniform distribution) second. This is also the case for salinity
(not shown).

In most operational ensemble systems in both meteorology
and oceanography, the ensemble spreads are generally under-
dispersive and grow more slowly than the ensemble mean error,
particularly in ensembles that do not account for model-related
errors (Wei and Toth, 2003; Buizza et al., 2005; Wei et al., 2006,
2008; McLay et al., 2007, 2008, 2010; Bowler et al., 2009; McLay
and Reynolds, 2009; Reynolds et al., 2011a, 2011b). This is also
the case in our RELO ensemble system, where the ensemble
spread is much smaller than the ensemble RMS error. The small
initial ensemble spread is a consequence of the underestimation of
the analysis error variance computed from the 3D-Var NCODA
system. This results in a smaller initial ensemble spread during

Published 2013. This article is a U.S. Government work
and is in the public domain in the USA. Q. J. R. Meteorol. Soc. 140: 1129–1149 (2014)



1140 M. Wei et al.

Figure 7. Left column from top: the control ensemble surface mean and spread at 72 hours forecast lead time from 0000 UTC 20 April 2010 for temperature, salinity
and u. From the 2nd to 4th column: the differences between the control and parameter-perturbed ensembles v, h and g, respectively.

the initial perturbation generation process. The future plans for
improving this are discussed in the Discussion and conclusions
section.

3.3. Ensemble spread and reliability

As discussed in the previous subsection, the ensemble spread
is important for the whole forecast system. The spread of an
ensemble forecast varies in space and time, and should capture
the forecast errors as a function of the forecast lead time. It is
expected that a reliable ensemble spread should have a magnitude
similar to the ensemble mean error and a growth rate similar to
the forecast error. An ensemble spread that is too small will miss
some important dynamic events, especially extreme ones, while
an ensemble spread that is too large will make the ensemble less
sharp and less reliable, with lower resolution. In this section, we
quantify the quality of the spread of our 32-member ensembles
by computing a spread–reliability diagram with 20 bins. Similar
methods have been used in Majumdar et al. (2002), Wei et al.
(2006), and Leutbecher and Palmer (2008). The steps for doing
this are outlined in appendix A.

Figure 11 shows ensemble forecast spread–reliability diagrams
for temperature using observations as the truth for various lead
times and observation spaces. The equivalent spread diagrams for
salinity is shown in Figure 12. Again, to increase their statistical
significance, all the values are averaged over a large number of
samples within the respective observation spaces from 15 April
to 25 July 2010. As the ensemble spread is supposed to represent
the forecast uncertainty, the spread–reliability curve over such
a large sample should coincide with the diagonal line denoting
equality between the ensemble spreads and ensemble errors. The
spread–reliability for temperature in Figure 11 shows that all the
ensemble spreads are too small or under-dispersive for all the
ranges. All the ensembles are overconfident and under-predict
the forecast error variance, which is consistent with what is seen
in Figure 9.

In comparison with the temperature, the ensemble salinity
forecasts are more reliable, especially for 24-hour lead
time evaluations over the whole observation space (top left
in Figure 12). When the verification is restricted to the
observation space between 50 and 200 m, the spread–reliability
reveals a transition near the 0.08 ensemble spread as the
ensembles under-dispersive, under-predicting forecast error
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Figure 8. Same as Figure 7, but for 50 m depth.

variance (overconfident) at the smaller ensemble spreads to over-
dispersive, over-predicting (underconfident) the forecast error
variance at the larger ensemble spreads. The reliability differences
are small for different parameter-perturbed ensembles for both
temperature and salinity. This is partly due to the small number
of bins (20) we have chosen. It is expected that larger differences
would be seen if a larger number of bins were used.

The spread reliability and consistency can also be assessed using
the rank histogram or Talagrand histogram (Talagrand et al.,
1997; Wilks, 2006). The idea, interpretation, and computing
steps are described in detail in appendix B. In this article, we
compute the rank histograms for both temperature and salinity
at three forecast lead times, namely 24, 48 and 72 hours and in
three vertical domains, including the whole observation space,
the space between 50 and 200 m, and, for temperature only, the
surface. Since previous versions of figures with three forecast lead
times in one row were too hard to read, we choose to show only
the histograms with 72-hour forecasts. Figure 13 shows the rank
histograms for temperature at a lead time of 72 hours in various
observation spaces. The same is shown for salinity in Figure 14.

First of all, one notices that there are only small differences in
terms of the consistency indices among the different parameter
perturbation schemes for both temperature and salinity over all

three domains, and these small differences are not significant.
This indicates that the consistency index of the rank histogram is
not very sensitive to small variations in the ensemble spread. The
spread consistency decreases (index value increases) as a function
of the forecast lead time. This is particularly true for temperature
in the whole water column and at the surface (not shown). For
temperature, the spread in the observation space between 50 and
200 m (middle panel in Figure 13) is much more consistent
than in the whole observation space and at the surface for all
three forecast lead times. Overall, the ensemble spread of salinity
(Figure 14) shows more consistency than the temperature spread
(Figure 13) in these two observation spaces. This is consistent
with the spread–reliability diagrams shown in Figures 11 and 12.
In addition, the salinity spread shows more consistency in the
space between 50 and 200 m than in the whole observation space
at each of the three forecast lead times.

3.4. Ensemble forecast skill

Having studied the ensemble forecast accuracy using observations
as truth in comparison with a single deterministic forecast and
the ensemble spread reliability in previous sections, we look into
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Figure 9. RMS errors of ensemble means and single forecast (thick dashed) for temperature averaged over (a) whole observation space, (b) 50–200 m and (c) surface.
All RMS values are computed against observations. (d) Ensemble spread for temperature from different ensembles as a function of forecast lead time averaged over
50–200 m. All RMS and spread values are averaged from 0000 UTC 15 April to 0000 UTC 25 July 2010. Ensembles schemes are indicated in dotted (c), dash-dot (v),
dashed (h), and solid (g).

Figure 10. RMS errors of ensemble means and single forecast (thick dashed) for salinity averaged over (a) whole observation space and (b) 50–200 m. All RMS values
are computed against observations, and averaged from 0000 UTC 15 April to 0000 UTC 25 July 2010. Ensembles schemes are indicated in dotted (c), dash-dot (v),
dashed (h), and solid (g).
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Figure 11. Ensemble forecast spread–reliability diagrams for temperature using observation as truth for lead times of 24, 48 and 72 hours (from left to right). All
values are averaged from 0000 UTC 15 April to 0000 UTC 25 July 2010, and over the whole observation space (1st row), 50–200 m (2nd row) and surface (3rd row).
Ensembles schemes are indicated in dotted (c), dash-dot (v), dashed (h) and solid (g).

the forecast skill of various ensembles and compare them with the
single forecast. In order to quantify the ensemble forecast skill,
we compute the anomaly correlation (AC) of the ensemble mean
and the single forecasts. Again, the observations are used as the
truth. The AC is preferred to a simple correlation coefficient (CC),
which is defined as the correlation between the forecast and the
observed values. The CC does not take forecast bias into account.
It is possible for a forecast with large error to have a high CC
value. It is well established practice to use the AC with climatology
as a reference to account for seasonal variation (Wilks, 2006). The
AC for any forecast variable f at a particular forecast lead time is
defined as the correlation between the forecast and observation
anomalies with respect to climatology, i.e.

AC = (f − c)(y − c)√
(f − c)2

√
(y − c)2

,

where c, y are the climate data and observation fields respectively
at the same verifying locations as the forecast; the overbar indicates

the geographical mean over the verifying space. Therefore,
the AC measures similarities in the pattern of departure (or
anomalies) from climatology, thus it is a pattern correlation
and is regarded as a skill score relative to climatology. It is
arguably the most commonly used metric in numerical weather
prediction centres (Buizza et al., 2005). The climatological data
we used were obtained from the Navy’s ocean operational centre
NAVOCEANO. More details can be found in Carnes et al. (2010).

Shown in Figure 15 are the AC values of the temperature
averaged over various observation spaces and the same 102-day
period. It is noticeable that the differences among the different
ensemble schemes are very small. However, it is clear that all
the ensemble means from the different parameter perturbation
schemes are more skilful than the single forecast for all the
lead times in all three spaces. To quantify the advantages of
the ensemble mean over the single forecast, we introduce the
extended forecast time (EFT) by the ensemble mean for different
forecast lead times, e.g. the AC values for the ensemble mean ACe

and single forecast ACs as functions of time can be described as
ACe = fe(te) and ACs = fs(ts). For two forecast systems having
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Figure 12. Same as Figure 11, but for salinity, and the values are averaged over the whole observation space (1st row), 50–200 m (2nd row).

an equal AC score, the forecast lead times are different since the
ensemble mean is more skilful than the single forecast. We define
the difference between these two lead times with the same AC
score as the EFT by the ensemble mean. The lead time for the
ensemble mean is

te = f −1
e (ACe) = f −1

e (ACs) = f −1
e (fs(ts)).

The EFT can be computed as

EFT = te − ts = f −1
e (fs(ts)) − ts.

For forecast lead time up to 72 hours, both AC functions
(fe(te), fs(ts)) are approximately linear. With this approximation,
the EFT is easily estimated for the ensemble (g) and the single
forecast using the above formula. The corresponding EFT is
depicted as a function of the forecast lead time on the right panel.
The advantage of the ensemble mean over the single forecast
is clear. The EFT for temperature is about 4–6.5 hours in the
whole observation space. This can be understood equivalently as
the ensemble having the same skill score as the single forecast
for a forecast that is 4–6.5 hours longer. The EFT hours for
temperature for the space between 50 and 200 m and for the
surface are 5–7.5 hours and 3–5 hours, respectively.

Figure 16 is similar to Figure 15, but is for salinity. Unlike the
temperature scores, the differences between the different ensemble
schemes are larger, especially over the whole observation space
where the ensemble (g) with the Gaussian distribution for both
the horizontal and vertical mixing parameters is most skilful.
There is no significant difference in the space between 50 and 200
m. The advantages of ensembles over a single forecast of salinity
are larger than those for temperature. The EFT hours are about
7.5–11.5 hours and 25–36 hours in the whole observation space
and within the space of 50–200 m. This may not be surprising
if we look at the ensemble spread–reliability difference between
temperature and salinity, such as Figures 11, 12, and Figures 13,
14. Both the reliability and consistency of the ensembles are much
higher for salinity in these two observation spaces.

4. Discussion and conclusions

In this article, the US Navy’s RELO ensemble prediction system
is fully described, and its performance is examined in the Gulf
of Mexico for the period from 0000 UTC 15 April to 0000 UTC
25 July 2010. After briefly describing the initial perturbation
generation method using the ensemble transfer (ET), a new
time-deformation technique is introduced to produce the surface
forcing perturbations from the operational atmospheric model
fields. The results presented in this article demonstrate that the
RELO ensemble mean forecasts are clearly superior to a single
deterministic forecast in terms of accuracy and skill for all the
variables and over all the domains considered in this article. In
order to quantify the advantages of the ensemble forecasts in
comparison with the single deterministic forecast, the extended
forecast time (EFT) is introduced and computed. At the same
time, the ensemble spread and its growth are investigated, and the
impacts on the ensemble forecast accuracy, reliability and skill
are also examined in detail.

The RELO ensemble spread provides valuable uncertainty
forecast information; however, it is also clear that the uncertainty
forecast capability should be improved further by accounting
for more model-related uncertainties. As discussed in the
introduction, it is challenging to compute the initial analysis
error from a 3D-Var-based DA system such as NCODA. In the
current version of the RELO ensemble, it is found that the analysis
error that is used in the ET initialization is underestimated. As
a result of the underestimation, the initial spread is found to be
too small to have a magnitude comparable to the ensemble mean
forecast error. In spite of this, the superiority of ensemble mean to
the single forecast is clearly demonstrated in this study. Ensembles
based on HYCOM generated with other methods such as that
in Counillon and Bertino (2009) were also found to be under-
dispersive. The authors found out that the ensemble spread is two
to three times smaller than the forecast error with perturbations
on DA parameter, atmospheric and lateral boundary conditions.
At NRL, efforts are being made to make a better estimate of the
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Figure 13. Talagrand rank histograms for temperature using observation as truth for lead times of 72 hours. All the values are averaged from 0000 UTC 15 April to
0000 UTC 25 July 2010, and over the whole observation space (1st row), 50–200 m (2nd row) and surface (3rd row). Ensembles schemes are indicated in black and
white bars from left to right.

Figure 14. Same as Figure 13, but for salinity, and the values are averaged over the whole observation space (1st row), 50–200 m (2nd row).
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Figure 15. The anomaly correlation (left column) of ensemble mean and single forecast (thick dashed) for temperature for different ensembles as a function of
forecast lead time. Right column: the extended forecast time by ensemble mean over single forecast as a function of time. All the values are averaged from 0000 UTC
15 April to 0000 UTC 25 July 2010, and over the whole observation space (1st row), 50–200 m (2nd row) and surface (3rd row). AC is computed using observation as
truth and real-time climatology as reference. Ensembles schemes are indicated in dotted (c), dash-dot (v), dashed (h) and solid (g).

analysis error from NCODA; this will improve our future RELO
ensemble. More advanced methods, such as the Lanczos method
with calibration in 3D-Var, could be explored to improve the
analysis error estimate (Wei et al., 2012).

The results in this study also show that, without accounting
for model-related uncertainties, the spread growth of the
RELO ensemble cannot match that of the ensemble mean
error. As an initial step in our long-term research plan
towards accounting for more ocean-model-related uncertainties
in the future, we introduce randomly generated perturbations
to the two most important parameters in the ocean model
mixing parametrizations, namely the Smagorinsky horizontal
and Mellor–Yamada vertical mixing schemes. In order to study
the impact of these parameter perturbations on the ensemble,
we carry out experiments with a single deterministic forecast and
the default control ensemble, in addition to the three different

parameter perturbation schemes based on uniform and Gaussian
distributions.

It is found that all three schemes improve the ensemble spread
to a certain extent, particularly the scheme with a Gaussian
distribution imposed on both the horizontal and vertical mixing
parameters simultaneously. The improvement on the ensemble
forecast accuracy, reliability and skill is found to be small. This
is consistent with the findings for atmospheric ensembles as
described in Bowler et al. (2009), Charron et al. (2010), Hacker
et al. (2011a) and Reynolds et al. (2011b). It is also clear that the
ensemble spreads still do not grow as fast as the ensemble
mean RMS error with addition of parameter perturbations.
These findings indicate that just perturbing these two mixing
parameters is not sufficient to account for most of the model-
related uncertainties. The results will provide some insights with
respect to perturbing parameters in ocean models for other
researchers and developers in the ocean community. Further
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Figure 16. Same as Figure 15, but for salinity, and the values are averaged over the whole observation space (1st row), 50–200 m (2nd row).

improvements for RELO ensemble could be made from two
possible aspects. The first one is to perturb more parameters
in addition to these two in NCOM simultaneously. The second
option is to increase the ranges of perturbations for these two
parameters. Including both of these options at the same time will
probably produce largest impacts on the ensemble spread and
performance. However, care must be taken when the ranges are
increased, as too large or too small a value of either parameter
could force the model to produce unphysical variable values.
These options will be explored in future studies.

Another area to which we are going to pay special attention
in the near future, to account for more model-related errors,
is to develop a stochastic parametrization scheme that imposes
stochastic forcing at all the model grid points. Lermusiaux (2006)
studied the use of stochastic forcing in ocean prediction and DA
systems and found a positive impact. The ensemble experience at
the major NWP centres has shown that a number of stochastic
parametrization schemes are normally needed to account for
various sources of model uncertainties in a mature, reliable
ensemble. In general, the ensemble performance is best when a
number of different schemes are used simultaneously for different
sources of model error. The parameter-perturbation scheme is
most effective when it is combined with other schemes in an
atmospheric ensemble (Palmer et al., 2005; Bowler et al., 2009;

Charron et al., 2010; Hacker et al., 2011a, 2011b; Reynolds et al.,
2011a, 2011b). Theoretically, model errors related to subgrid-scale
parametrizations can also be dealt with by more general statistical
dynamics and stochastic models such as those implemented in
O’Kane and Frederiksen (2008). A recent review of these broader
theoretical methods can be found in Frederiksen et al. (2012).
The discussion of these methods is beyond the scope of this study.

The parameter perturbation scheme developed in this article
will be one of the components of the future RELO ensemble
system. It is our plan at NRL that a few different stochastic
schemes will be developed and implemented in the RELO to
account for various sources of model uncertainty in order to
achieve the best probabilistic forecast performance. Hopefully,
when more model uncertainties are accounted for, the ensemble
spread will grow at a similar rate to the ensemble mean RMS error
and raise the RELO ensemble reliability to a new level. We will
report our progress when it becomes available.
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Appendix A. Steps for computing spread reliability

To quantify the ensemble spread reliability, we compute the forecast error variance explained by the ensemble variance. Similar
methods have been used in Majumdar et al. (2002), Wei et al. (2006), and Leutbecher and Palmer (2008). The following steps can be
carried out to achieve this. (1) Select a variable at a specific forecast lead time over a targeted domain. (2) Choose a truth, such as an
observation in our case, and compute the ensemble mean RMS error at each grid point. (3) Compute the corresponding ensemble
spread. (4) Stratify the ensemble spread and mean RMS error, followed by partitioning into equally populated bins of increasing
spread. (5) Compute the mean values of the ensemble spread and RMS error for each bin. (6) Draw a curve connecting the average
value from each bin. A good ensemble with a reliable spread should have a curve that closely follows the diagonal line.

Appendix B. Talagrand histogram and consistency index

The Talagrand histogram (Talagrand et al., 1997; Wilks, 2006) or rank histogram checks whether the ensemble spread is consistent
with the assumption that the observation (which is used as truth) is statistically just another member of the forecast distribution, and
all the observations are equally distributed amongst the predicted ensemble. It measures how well the ensemble spread represents the
true uncertainty of the truth/observations. The general steps to construct a rank histogram are: (1) Select an ensemble variable at a
specific forecast lead time and a domain you want to verify. (2) Choose a truth that you want to verify against. This is normally an
observation or analysis. We use an observation as truth in most of this article. (3) Sort the ensemble members into increasing order
at every observation point as depicted in Figure 17 for the RELO ensemble. This creates 33 possible bins (for 32 members) that the
observation falls into at each point. (4) Count where the observation falls with respect to the ensemble forecast. (5) Tally over all the
observations to create a histogram of rank.

Figure 17. Schematic for sorting RELO ensemble forecasts to compute Talagrand rank histogram.

For an ensemble with a perfect spread, each member represents an equally likely scenario, so the observation is equally likely to
fall among any member. A uniform, flat histogram means that the truth is indistinguishable from any ensemble member, and the
ensemble spread is about right to represent the forecast uncertainty. A U-shaped histogram indicates that the ensemble spread is
too small, and many of the observations fall outside the extremes of the ensemble. In this case, the ensemble is under-dispersive
and overconfident. A dome-shaped histogram indicates that the ensemble spread is too large, and most of the observations fall near
the centre of the ensemble. In this case the ensemble is over-dispersive and underconfident. An asymmetric shape means that the
ensemble contains some biases.

To have a quantitative measure of the consistency of the rank histogram, a consistency index is defined in this article. The basic
idea is motivated by Talagrand et al. (1997), but the formulation is modified. Let k be the number of ensemble members, and n be
the number of samples. The total rank is k + 1. For an ideal uniform distribution, the number of elements in each bin is n/(k + 1).
Thus, if the number in bin i is ni, then the expected value of ni is

〈ni〉 = n

k + 1
. (A1)

The RMS distance between the real and the expected values can be written as

rmsd =
√√√√ 1

k + 1

k+1∑
i=1

(
ni − n

k + 1

)2

. (A2)

It can be shown that 〈rmsd〉 =
√

nk
k+1 . The consistency index is defined as

c = rmsd

〈rmsd〉 . (A3)

For an ideal, reliable ensemble system, c ≈ 1.0.
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