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ABSTRACT

The sensitivity of model forecasts to uncertainties in control variables is evaluated using the adjoint

technique and the ensemble generated by the reduced-order four-dimensional variational data assimilation

(R4DVAR) algorithm within the framework of twin-data experiments with a quasigeostrophic model. To

simulate real applications where the true state is unknown, the sensitivities were estimated using model

solutions that were obtained after assimilating sparse observations extracted from the true solutions. The

numerical experiments were conducted in the linear, weakly nonlinear, and strongly nonlinear (NL) regimes

with special emphasis on the NL case characterized by the instability of the tangent linear model. It is shown

that the ensemble-based R4DVARmethod provides better sensitivity estimates in the NL case, primarily due

to the better accuracy of the optimized solutions. The concept of sensitivity in the NL case is also considered

within the statistical framework. Using analytical arguments and numerical experimentation, averaging the

adjoint sensitivity estimates over an ensemble of model trajectories generated by finite perturbations of the

optimal control is shown to provide an estimate similar to that obtained with the adjoint model stabilized by

enhanced dissipation. This observation allows for evaluation of the sensitivities of strongly nonlinear optimal

solutions by using both the adjoint (4DVAR) and ensemble (R4DVAR) optimization algorithms.

1. Introduction

Sensitivity analysis is one of the important features of

data assimilation algorithms because it allows the de-

termination of how changes in the control variables of

a numerical model (e.g., initial conditions) affect the

target quantities (TQs) of interest (e.g., temperature in

a certain domain) at the time of the model forecast. This

type of analysis can be extended further by combining

sensitivity estimates with information about the prior

observational and background errors to assess the im-

pact of new observations on the a posteriori errors of the

TQs (e.g., Baker and Daley 2000).

In the past decade, many general circulation models

have been supplied with their adjoint code. This de-

velopment has enabled a particular type of sensitivity

analysis based on the application of the adjoint models

to obtain the derivatives of the TQs with respect to

a variety of variables controlling themodel solutions. To

cite a few oceanographic examples of the ‘‘adjoint sen-

sitivity’’ (AS) approach, Lee et al. (2001) estimated the

sensitivity of the Indonesian Throughflow to remote

wind forcing, Losch and Heimbach (2007) assessed the

AS of model solutions to the bottom topography, while

Moore et al. (2009) and Veneziani et al. (2009) con-

ducted a comprehensive AS analysis in the California

Current region.

The major limitation of the AS approach is the as-

sumption that models can be effectively linearized in the

vicinity of the optimal trajectory to compute sensitivities

with respect to infinitesimal perturbations of the control

variables over finite time intervals. However, this as-

sumption does not work in many applications, especially

in cases involving strongly nonlinear background states

characterized by exponential growth of the infinitesimal

perturbations. To cope with this issue, Hoteit et al. (2005,

2010) introduced stabilization of the adjoint model by

artificially enhancing its dissipation to a level that sup-

pressed the unstable modes.

Partly due to the above-mentioned limitation of the

adjoint technique, ensemblemethods of data assimilation

have experienced rapid development in recent years. The

ensemble approach is capable of better handling the
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quasi-chaotic model behavior induced by nonlinearities,

does not require development and maintenance of the

adjoint code, and appears to be consistent with the

modern trend in computer technology of massive paral-

lelization. The ensemble sensitivity (ES) analysis (e.g.,

Ancell and Hakim 2007; Torn and Hakim 2008) follows

the basic principle of perturbing amodel by the ensemble

members and analyzing the respective responses of the

TQs. In contrast to the AS, this approach is naturally

restricted to the subspace spanned by the ensemble

members, but the ensemble members tend to cover the

dynamically significant manifold that accounts for the

major part of the model variability (Farrell and Ioannou

2005).

Of certain interest are the methods merging the en-

semble approach with traditional variational assimila-

tion techniques (e.g., Cao et al. 2007; Liu et al. 2008;

Yaremchuk et al. 2009; Clayton et al. 2013). In particular,

Yaremchuk et al. (2009) demonstrated that the reduced-

order four-dimensional variational data assimilation

(R4DVAR) algorithm appears to be advantageous in

handling nonlinear optimizations and is comparable in

computational cost with the 4DVAR technique. The

ES analysis has been considered in detail by a number

of authors (e.g., Torn andHakim 2009; Zack et al. 2010)

in application to the ensemble methods that keep the

ensemble size fixed in the process of sequential assimi-

lation. The hybrid R4DVAR method considered in this

paper produces a sequence of ensembles spanning the

Krylov subspaces that account for the most dynamically

significant error components and can be naturally used in

the ES analysis of the optimized solution. A similar se-

quence (of search directions) is generated in the process

of 4DVARminimization that can be used for ES analysis

of 4DVAR solutions.

In this study we compare the accuracy of the adjoint

4DVAR and the R4DVAR sensitivity analysis tech-

niques using a quasigeostrophic model of intermediate

complexity. To mimic real applications, when the true

state is unknown and sensitivities are computed using

linearization around the available optimal state, we adopt

the following experimentation procedure. First, true

states are generated from model integrations and ob-

servations are sampled from these true states for the data

assimilation experiments (using R4DVAR and 4DVAR

techniques) to obtain ‘‘optimal’’ states. The sensitivity

experiments are then conducted with these optimal states

serving as the model trajectories and results of the ex-

periments are compared with each other using the sen-

sitivities computed from the ‘‘true’’ model trajectories as

benchmarks. Special attention is given to the experiments

in the strongly nonlinear case characterized by instability

of the tangent linear (TL) model.

The paper is organized as follows. In the next section

we briefly provide an overview of the basic relationships

of the linear sensitivity analysis, discuss the sensitivity

concept in strongly nonlinear geophysical flows, and show

that averaging sensitivity estimates over realizations of a

turbulent flow can be approximated by a single AS esti-

mate generated by a stabilized adjoint model. In section 3,

the methodology of the numerical experiments with the

4DVAR and R4DVAR systems is described. Results of

the experiments, which include consequent treatment of

the linear, weakly nonlinear, and strongly nonlinear cases,

are presented in section 4. The results are summarized and

discussed in section 5.

2. Sensitivity analysis

a. Linear case

Let c 5 fca, a 5 1, . . . , ng denote the n-dimensional

vector of control variables (e.g., initial conditions) of a

numerical model described by the nonlinear operatorN .

The operator N maps the control vector onto the model

trajectory represented by the N-dimensional vector X 5
fXk, k 5 1, . . . , Ng of all the gridded model fields in

a given space–time domain of the model’s operation.

Assuming differentiability of N , small perturbations

dc of the control variables result in small perturbations

of the model trajectory dX that are linearly related to

dc via the tangent linear model:

dXk5 �
a
Lk
adc

a . (1)

Here, Lk
a denote the elements of the N 3 n matrix L

representing the TL mapping (linearization of N in the

vicinity of c). To distinguish between the vectors from

the spaces of model trajectories and control variables,

their components are enumerated by the Latin andGreek

indices, respectively.

Consider now a (scalar) target quantity q of interest

(e.g., transport through a certain section in the model

domain averaged over a certain period of time) repre-

sented by a linear function q5 fQk, k5 1, . . . ,Ng ofX:

q5�kQkX
k.

Taking (1) into account, perturbations dq of the TQ

can be expressed in terms of dca:

dq5 �
k

QkdX
k5 �

k,a

QkL
k
adc

a[ �
a
sadc

a , (2)

where the n-dimensional vector s with components

sa5 �
k

Lk
aQk (3)
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explicitly provides the derivatives (sensitivity) of the TQ

with respect to the (variations of the) control variables.

In practice, the computation of s requires coding the

convolution of the transpose of the TL mapping LT with

the N-dimensional vector q describing the target quan-

tity (adjoint model integration forced by Qk). An esti-

mate of s obtained by the direct computation with (3) is

often called the adjoint sensitivity (e.g., Ancell and

Hakim 2007).

When the adjoint code is not available, sensitivity can

be formally computed by the ‘‘brute force’’ method:

Consider an ensemble of n linearly independent per-

turbations of the control vector fdci, i 5 1, . . . , ng that

cause the respective perturbations of the TQ, dqi 5

�asadc
a
i , and assess the impact of dci on the TQ by

computing the quantity

pa 5 �
i
dqidc

a
i 5 �

i,b
sbdc

b
i dc

a
i [ �

b
sbB

ab , (4)

whereBab 5�idc
b
i dc

a
i is the n3 nmatrix formed by the

sum of the outer products of the ensemble perturbations.

If we denote summation over i by hi and interpret it as the
‘‘ensemble average,’’ the quantities on the left- and right-

hand sides of (4) can be identified as being proportional

to the covariances p5 hdqdci and B5 hdcdcTi. If p and

B are available from the ensemble of model runs, the

sensitivity is readily obtained by the simple relationship

[cf. (4)]

s5B21p , (5)

which is identical to the ensemble sensitivity formula

introduced by Ancell and Hakim (2007). The only dif-

ference is that, in the purely statistical interpretation,

covariances are computed with prior removal of their

respective means.

In real applications, the values of n and N are quite

large (106–109) and the relationship (5) appears to be

impractical due to the large size of the required en-

semble. However, as has been already shown (Ancell

and Hakim 2007; Torn and Hakim 2008), meaningful

results can be obtained by inverting B in the subspace

spanned by the available ensemble members [i.e., re-

placing B21 in (5) by its pseudoinverse]. In this case, the

accuracy of (5) depends on how well q can be approxi-

mated by a linear combination of the ensemble members

dci. In many cases TQs are represented by d functions

(e.g., temperature at a certain point) that have a wide

spectrum. Ensemble members, on the other hand, are

usually associated with the most dynamically persis-

tent modes and, therefore, tend to have a relatively

smooth spatial variation. As a consequence, practical

computations of s via (5) usually result in smoother sen-

sitivity maps relative to the maps obtained by directly

computing the components of s using the adjoint code (3).

In most applications, however, the background flow is

characterized by strong nonlinearities, which cause the

TL operator (and its adjoint) to have exponentially

growing (unstable) modes. As a consequence, the AS

analysis becomes impractical for forecast periods ex-

ceeding the e-folding times of the unstable modes.

b. Nonlinear case

It is noteworthy that the operatorN does not have the

instabilities of its tangent linear mapping because N is

constrained by conservation laws that prevent the orig-

inal model solutions from uncontrollable amplification.

In that sense, the ES approach may appear to be more

practical in the case of TL instability (TLI). Numerical

implementation of this approach has to be made with

special care, because the ensemble perturbations can be

neither too small (to avoid the effect of the TLIs) nor too

large relative to the reference solution. In the latter case

the magnitude of the ensemble perturbations should

certainly be smaller than the magnitude of the optimal

state, whose properties are being explored by the ES

analysis.

Let us consider the case when the forecast time T is

considerably larger than smallest TLI time scale, a not

restrictive constraint in the majority of applications. In

that case we can still apply the AS algorithm (3), al-

though the result will be severely contaminated by the

small-scale noise caused by TLIs. One may expect that

averaging the AS estimates (3) over a suitable ensemble

of the background states (i.e., over the ensemble of the

matrices Lk
a) will decrease the TLI-generated noise and

preserve a meaningful sensitivity signal that could be

interpreted as the mean sensitivity of the TQ given the

uncertainty of the optimal state.

For the sake of simplicity, let us assume that the TQ

does not involve time averaging (e.g., the mean temper-

ature in a certain region at forecast time T). In this case

the TL model controlled by the initial conditions c is

›x

›t
5M(t)x; x(0)5 c , (6)

where M is the dynamical operator that has been line-

arized in the vicinity of the optimal trajectory. In this

case the TL model state at the forecast time T can be

explicitly expressed by

x(T)5 exp[TM]c , (7)

whereas the AS estimate is given by the adjoint of (7):
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s5 (exp[TM])
T
q5 exp[TM

T
]q , (8)

where the overbar indicates for the time average

M5
1

T

ðT
0
M(t) dt .

Let us further assume thatM is ‘‘advection dominated’’;

that is, jMj; ju �$j, where u is the optimized velocity field

and $ is the gradient operator. Under this condition,

perturbing M is approximately equivalent to adding per-

turbations y to the velocity field, so that a member of the

ensemble of perturbed AS estimates takes the form

s05 exp[T(M
T
2y � $)]q . (9)

If the forecast time T is much larger than the decorre-

lation time scale of the perturbations y, y can be treated

as a Gaussian field because, by its definition, y is pro-

portional to the sum of a large number of uncorrelated

fieldsy.With an additional assumption of zeromean, one

can perform averaging over the ensemble to obtain

hexp[T(MT
2y � $)]i5 exp[TM

T
1$D$] , (10)

where the angular brackets denote the ensemble aver-

age and D is the effective diffusion tensor proportional

to the product of the time-averaged velocity covariance

and the forecast time (see the appendix). In other words,

one may expect that the result of averaging the AS esti-

mates over an ensemble of random perturbations of the

optimized state will be equivalent to performing a single

AS computation with the appropriately modified diffu-

sion. This observation provides significant computational

savings when computing both the AS (3) and ES (5) es-

timates in the strongly nonlinear case.

In the following sections, we compare the accuracy

and efficiency of the AS and ES methods within the

framework of twin-data experiments with the 4DVAR

and R4DVAR data assimilation systems in a nonlinear

QG model (Yaremchuk et al. 2009). The R4DVAR

method has many features of the ensemble assimilation

techniques, as it directly computes the cost function

gradient (without the adjoint) for a sequence of sub-

spaces spanned by the continuously updated ensemble

members. Considering real applications, we adopt the

following experimentation strategy: the AS and ES are

estimated with respect to the optimized states obtained

by, respectively, the 4DVAR and R4DVAR methods,

and then these estimates are comparedwith the sensitivity

estimates of the ‘‘true’’ state (which has been sparsely

subsampled to obtain the above-mentioned optimal

solutions).

3. Methodology

a. Experimental setting

We consider a QG model in a square 33 3 33 grid V
with a spatial resolution of d 5 15 km:

›tz1 J(c,Dc)1b›xc5 nD2c , (11)

Dc2R22
d c5 z, and (12)

c(›V)5 z(›V)5 0, (13)

where c is the streamfunction in the upper layer,b5 23
10211m21 s21 is the meridional gradient of the Coriolis

parameter, Rd 5 30 km is the internal Rossby radius of

deformation, and n is the horizontal diffusion co-

efficient. The details of the model numerics and spinup

are described in Yaremchuk et al. (2009).

To conduct the sensitivity experiments, the ‘‘true’’

solution is extracted from the 45-day model run and

then the streamfunction is subsampled at 16 locations

on days 15, 30, and 45 (Fig. 1). These data are then as-

similated using either the 4DVAR or R4DVAR method

by minimizing the following cost function with respect

to the control variables (initial values of the potential

vorticity z):

J0 5 �
3

n51
�
K

k51

[Ôkc(tn)2ckn* ]21Ws �
3

n50

ð
V
[D2c(tn)]

2 dV ,

(14)

where Ôk projects c(tn) onto the kth observation point,

K5 16 is the number of observation points at time level

n, and Ws 5 0.03d4 is the smoothing weight.

Three true solutions have been used in the sensitivity

experiments, all of them starting with the initial distri-

bution of c shown in Fig. 1a. The first solution, purely

linear, with n5 300m2 s21 was obtained by removing the

Jacobian in (11). The corresponding distribution of the

streamfunction at the end of the integration is shown in

Fig. 1b. The second, weakly nonlinear (WNL) solution

had diffusion n 5 300m2 s21 comparable in magnitude

with advection to ensure stability of theTLmodel (Fig. 1c).

The third (nonlinear, NL) solution (Fig. 1d) was advec-

tion dominated with a grid-scale dissipation time of

d2/n ; 100 days (n 5 30m2 s21).

b. 4DVAR and R4DVAR optimization methods

To compare the accuracy of the AS and ES estimates,

we simulated the entire procedures of their computa-

tion. At the first stage, an optimal solution is obtained

either by using the adjoint model (4DVAR method) or

by using an ensemble approach (R4DVAR). After that,
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these optimal solutions are employed to assess sen-

sitivities in a similar way: using the adjoint code (3)

and using the output of the R4DVAR optimization

algorithm (5).

The 4DVARoptimization computed the cost function

gradient with respect to the vector of control variables

c 5 z(t0) using the adjoint code. The quasi-Newtoninan

minimization algorithm ofGilbert and Lemarechal (1989)

was used for descent.

The R4DVAR optimization method minimizes the

cost function (14) in a sequence of low-dimensional

Krylov subspaces Km
i (i5 1, . . . nu) of the control space.

Each minimization required computation of them5 15

perturbed model solutions contributing to the global

perturbation ensemble fdcig, which was later used for

ES analysis. Apart from computing projections of the

cost function gradient and the Hessian matrix on Km
i

(Yaremchuk et al. 2009), the ith minimization process

additionally calculated perturbations of the TQs dqi for

the ES estimation. After finding the suboptimal control

ci, the minimization problem was updated by

Ji11(c)[ Ji(c1 ci)/ min
c2Km

i11

and the updated ensemble (whose members span Km
i11)

was computed by taking m leading modes of N (ci) and

orthogonalizing them to Km
i21 and Km

i . This strategy

demonstrated the fastest convergence of the R4DVAR

algorithm, which usually required nu ; 30–40 ensemble

updates or mnu ; 450–600 perturbed model runs.

FIG. 1. Streamfunction (a) at the start and at the end of integration for the (b) linear, (c) WNL, and (d) NL true

solutions. Locations of the TQs used in the sensitivity experiments are shown in (c). Asterisks in (b)–(d) show

subsampling (‘‘observation’’) locations of the true solution.
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Error in the approximation of the true solutions ctrue

was estimated in terms of the RMS difference between

the optimized copt and true streamfunctions:

e5

2
6664

ðT
0

ð
V
(copt 2ctrue)

2 dt dV

ðT
0

ð
V
c2
true dt dV

1/2

.

3
7775 (15)

With the exception of the linear case, where the

4DVAR- and R4DVAR-optimized solutions were nearly

identical with an RMS discrepancy of e 5 0.19, in both

nonlinear cases the R4DVAR optimizations were better

with e 5 0.21 versus e 5 0.32 in the WNL case and e 5
0.28 versus e 5 0.44 in the NL case. Technically, the

larger 4DVAR errors were caused by the eventual loss

of the descent direction, which typically occurred after

100–150 iterations. On the other hand, a lower value of e

was achieved by the R4DVAR at the expense of larger

computational cost: typically, the algorithm converged

after 30–40 ensemble updates, which are equivalent to

250–300 iterations of the adjoint code in terms of the

computer time (CPU).

c. AS and ES experiments

The major TQ used in the sensitivity experiments was

the 1-day mean transport across the section shown in

Fig. 1c:

q15
1

T2 t1

ðT
t
1

[c(x1, t)2c(x2, t)] dt , (16)

where t1 5 44 days and x1,2 denote the locations of the

end points of the section. To explore the sensitivity of

the results to variations in TQ, we also used similar 1-day

means of the streamfunction (or sea surface height,

SSH) at the point x3 and the horizontal mean stream-

function (SSH) over the area S surrounding the point x4,

both shown in Fig. 1c:

q25c(x3, t); q35 S21

ð
S
c(x4) dS . (17)

Overbars here stand for the time average in (16). Com-

ponentsQk of the corresponding operatorswere obtained

by taking the derivatives of (16)–(17) with respect to the

gridpoint values of c.

The diffusion coefficient in the WNL case was ob-

tained after a series of experiments with the response of

the adjoint model to the forcing by the operators of the

TQs q1 and q2: In the NL case, the adjoint model ex-

hibited exponential growth of the solutions with an

approximate e-folding time t of 5–7 days (Fig. 2, top

curves). To stabilize the adjoint solution, an extra dif-

fusion term with n5 260m2 s21 was added to diffuse the

adjoint variables.

The ES experiments utilized the sequence of ensem-

bles generated by theR4DVARalgorithm. The ensemble

members were used to perturb the optimal solutions and

compute the covariances p,B in (5). Compared to theAS,

the ES experiments were computationally more intensive

due to the necessity of computing p, which required a

number of model runs equal to the size of the averaging

ensemble mnu. In practice, however, these extra CPU

requirements could be eliminated by computing pertur-

bations dqk in the course of the ensemble model runs

performed during the R4DVAR optimization.

4. Results

a. Linear case

Figure 3 shows the AS and ES estimates in the linear

case with b 5 4 3 10211m21 s21. In such a simplified

setting, solutions of the optimization problem (14) by

the 4DVAR and R4DVAR methods are quite similar,

with the approximation errors e 5 0.19.

The true sensitivity map obtained by the adjoint

method (Fig. 3a) appears to be accurately approximated

(r 5 0.99) by the ES map computed by averaging over

the 900 ensemble members (nu 5 60; Fig. 3b). It is un-

likely that such a level of accuracy can be achieved in

real applications because it may require an ensemble

size comparable with the number of the control variables.

A more realistic estimate with only 60 ensemble mem-

bers (nu 5 4) still produces an acceptable approximation

(Fig. 3c) to Fig. 3a, indicating that the TQoperator can be

FIG. 2. Growth of the adjoint relative vorticity v associated with

the TQs q1 (shown in black) and q2 (gray). Bottom lines correspond

to the adjoint model stabilized with the additional diffusion.
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described by these members with a reasonable degree of

accuracy. The corresponding sensitivity distribution (Fig.

3c) appears to be somewhat smoothed (cf. Fig. 3a) due to

the lack of high-frequency harmonics in the leading en-

semble members. Similar behavior was also observed by

Ancell and Hakim (2007) in ES experiments with a

90-member ensemble Kalman filter applied to a regional

Weather Research and Forecasting Model (WRF).

The accuracy of the approximation of the AS map by

the ES estimates is shown in Fig. 3d as a function of the

number of ensemble members used. In the linear case

considered, only nu5 4 ensemble updates (60 members)

are sufficient to achieve a correlation of r5 0.81 with the

true sensitivity map shown in Fig. 3a.

From a computational point of view, performing nu5 4

ensemble updates (mnu 5 60 perturbed model runs) of

the R4DVAR algorithm is approximately equivalent to

28 iterations of the 4DVAR algorithm, which actually

converged in 240 iterations, whereas the R4DVAR ap-

proach required 60 ensemble updates (1.6 times more

CPU time) to obtain the pattern in Fig. 3b.

b. Nonlinear case

The results of assimilation in the nonlinear case (true

solutions shown in Figs. 1c,d) were quite different. Similar

to the linear case, theR4DVARalgorithmconverged after

60–70 ensemble updates, whereas the 4DVAR method

exhibited a loss of search direction after 80–120 iterations.

FIG. 3. (a)–(c) Sensitivities in the linear case. (a) Correlation coefficients r with the AS distribution computed by

averaging over the squared subdomain are shown for the ES estimates obtained with (b) 60 and (c) 4 ensemble

updates. (d) The dependence of 1 2 r on the number of ensemble updates nu used in the R4DVAR ES estimates.
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As a result, the respective approximation errors e of the

true solution were significantly larger in the 4DVAR

case than in the R4DVAR case (e 5 0.32–0.44 versus

0.21–0.28). On the other hand, the CPU time required

for 4DVAR optimization was 2.5–4 times less than for

R4DVAR. It should be noted, however, that after 8–10

ensemble updates, the R4DVAR approximation error

was already compatible with the one obtained by the

4DVAR method.

In the sensitivity experiments, we considered two non-

linear cases: with the stable and unstable adjoint models.

The results of the respective AS and ES runs allowed us to

compare the pros and cons of both techniques and in-

vestigate the sensitivity in the NL case from a conceptual

point of view.

1) STABLE TL MODEL

Figure 4 compares the q1 AS and ES estimates com-

puted using linearizations with respect to the corre-

sponding optimal solutions against the AS estimate

computed in the vicinity of the true solution (Fig. 1c).

Similar to the linear case, the ESmap of the true solution

(not shown) was almost identical (r 5 0.99) to the AS

map in Fig. 4a. The major differences between the sen-

sitivity maps in panels Figs. 4b–d and Fig. 4a are due to

the differences in the optimal states obtained by the

4DVAR and R4DVAR methods.

The approximation error of the true sensitivity by the

ES method as a function of the number of ensemble

updates is shown in Fig. 3d by the gray line. Compared to

the linear case, theWNL ES estimates required twice as

many ensemble updates (nu5 9) to achieve a reasonable

correlation (r 5 0.8) with the true sensitivity. At larger n,

however, the difference in r between the linear andweakly

nonlinear cases becomes virtually indistinguishable.

2) UNSTABLE TL MODEL

The case of the unstable TL model is the most in-

teresting from the conceptual point of view. In this case,

at any given time the TL operator has a number of ex-

ponentially growing modes whose structure is charac-

terized by small-scale spatial variability. Numerically,

this property of the TL model causes a considerable

difference between the forecasts generated by the un-

perturbed and perturbed model solutions, which shows

no linear dependence on the perturbations’ magnitude.

Although this difference is bounded by the conservation

laws governing the dynamical system, normalization of

the model’s response by the magnitude of the pertur-

bation produces unacceptably large sensitivity maps

dominated by the grid-scale patterns (Fig. 5a). It is in-

structive that patterns of this type are produced by both

the AS and ES algorithms, because the only difference

between them is in the method of computing the de-

rivatives with respect to the perturbations. The AS

method employs analytical differentiation to obtain the

code for multiplication by Lk
a in (1), whereas the ES

algorithm does this numerically by computing the re-

sponse correlation vector p (4) and (pseudo-) inverting

the perturbation matrix B.

As a consequence, one comes to the conclusion that

model solutions at integration times exceeding the TLI

time scale (Fig. 2) are nondifferentiable numerically.

This phenomenon degrades the performance of the

4DVAR optimization algorithms in strongly nonlinear

regimes and makes the linear sensitivity estimates

worthless. The problem could be resolved by changing

the concept of the sensitivity analysis in the NL regimes.

Given the intrinsic uncertainty of an optimized solution,

it is more reasonable to consider a ‘‘composite’’ AS map,

obtained by averaging over the maps corresponding

to linearizations with respect to the ensemble of solu-

tions whose spread around the optimal one is consistent

with the a posteriori knowledge of the above-mentioned

uncertainty.

Figure 5b shows the result of averaging the AS esti-

mates of the true solution over the ensemble of 200

model runs generated by adding white noise pertur-

bations to the true initial distribution of the potential

vorticity (the corresponding streamfunction is shown in

Fig. 1a). To suppress eventual instabilities caused by

violation of the Courant–Friedrichs–Lewy (CFL) con-

dition, the perturbations were filtered with a cutoff

length scale of two grid steps. The magnitude j of the

perturbations (relative to the RMSmagnitude of the true

solution) was equal to the typical value of the approxi-

mation error e ; 0.3. It is remarkable that the sensitivity

map in Fig. 5b resembles the NLmap in Fig. 4a, although

the magnitude of the sensitivity maxima in Fig. 5b is

30%–50% larger than in Fig. 4a. In the following, we will

refer to the ensemble-averaged sensitivity (EAS) map in

Fig. 5b as the true sensitivity in the NL case.

Obtaining EAS maps of the type shown in Fig. 5b is

unfeasible in practice because it requires many runs of

the model and its adjoint. Therefore, numerically effi-

cient approximations to such maps should be of interest.

A straightforward method of smoothing the AS map in

Fig. 5a appears to be inefficient. The largest correlation

r 5 0.34 with Fig. 5c is obtained with a smoothing scale

l5 5.4d and the respective sensitivity distribution (Fig. 5c)

barely resembles Fig. 5b. An alternative approach is to

compute the sensitivity using the adjoint model with en-

hanced dissipation (Hoteit et al. 2005). The resulting sta-

bilized adjoint sensitivity (SAS) map (Fig. 5d) correlates

well with Fig. 5b (r 5 0.80) but has a somewhat smaller

magnitude. Similarity between the maps in Figs. 5b,d

FEBRUARY 2014 YAREMCHUK AND MART IN 781



supports the considerations in section 2b and justifies

the stabilization method of Hoteit et al. (2005).

In real applications the true state is never known, so

we consider further below the AS (ES) sensitivities with

respect to the optimal states, obtained in the course of

the 4DVAR (R4DVAR) optimizations. The R4DVAR

analog of the SAS technique requires integration of the

R4DVAR perturbation model with the enhanced dissi-

pation to obtain a ‘‘stabilized version’’ of the correlation

vector p, which is then used for computing an approxi-

mation to the EAS map via (5). In applications, such

integration has to be performed in parallel with the

R4DVAR optimization process. Figure 6b demonstrates

the stabilized ES (SES) map obtained using such an ap-

proach. The sensitivity pattern is well correlated (r 5
0.75) with the EAS map in Fig. 6a, despite utilization of

the R4DVAR-optimized solution (e 5 0.28) as a refer-

ence state for the perturbations. The SES map in Fig. 6b

approximates the true sensitivity map in Fig. 6a much

better than does the SAS maps generated using the

4DVAR- and stabilized 4DVAR-optimized solutions for

linearization of the adjoint model, which demonstrate

lower correlations (r 5 0.50 and r 5 0.54, respectively)

with the true sensitivity map in Fig. 6a.

FIG. 4. Sensitivities in the WNL case: (a) true sensitivity, (b) AS estimate, and (c),(d) ES estimates. Estimates in

(b)–(d) were computed using model linearizations in the vicinity of the optimal states obtained by the 4DVAR

method in (b) and the R4DVAR method with 60 and 20 ensemble updates in (c) and (d), respectively.
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To compare the skill of the above-mentioned sensi-

tivity computation techniques (EAS, SES, and SAS),

a series of numerical experiments has been conducted

with the three different TQs shown in Fig. 1c and de-

scribed by (16) and (17). The results of the experiments

are presented in Table 1. It is evident that both the SAS

and SES methods tend to underestimate the sensitivity

magnitude of the (computationally much more expen-

sive) EAS method, but, nevertheless, provide a reason-

able approximation to the overall pattern (cf. the two

bottom numbers in the rightmost column with the top

ones). The R4DVAR method appears to have slightly

better skill than 4DVAR, but this is mostly due to the

better approximation of the true solution provided by

R4DVAR (e 5 0.28 versus e 5 0.44). The difference

between the 4DVARand stabilized 4DVAR (S4DVAR)

assimilation results was virtually indistinguishable, both

in terms of the errors e 5 0.44–0.46 and the accuracy of

the sensitivity maps.

We also explored the dependence of the EAS esti-

mates on the amplitude of the ensemble perturbations

(Fig. 7). The U-shaped curve is caused by two types of

FIG. 5. Sensitivity estimates in the NL case computed by linearization in the vicinity of the true state: (a) the AS

estimate, (b) estimate obtained by averaging over the ensemble of AS estimates computed by linearization in the

vicinity of the perturbed true states, (c) the smoothed AS estimate (a), and (d) the AS estimate with diffusive

stabilization of the adjoint model.
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instabilities: on the one hand, perturbations cannot be too

small due to the presence of growing modes in the TL

model, and on the other hand, they are limited fromabove

by the CFL condition. In our case, the true NL solution

was characterized by the maximum CFL value of 0.6. As

a consequence, imposing perturbations with the same

amplitude as the solution caused a violation of the CFL

stability criterion. In addition, imposing perturbations of

such a large magnitude is questionable in itself, as the

reference model dynamics can be lost in the background

of the model’s interactions with the perturbations.

In a sense, the magnitude of the perturbations in the

EAS method is clinched between the Scylla of the TL

instability and the Charybdis imposed by the above-

mentioned natural limitations. In the reported exper-

iments, we used the value of j 5 0.3 for computation of

the true and R4DVAR-referenced sensitivities. It is re-

markable, however, that the largest values of r for the

4DVAR- and S4DVAR-referenced EAS estimates was

achieved at j 5 0.45, a value consistent with the approx-

imation errors of the respective optimized solutions.

c. Computational cost

ES estimation within the R4DVAR algorithm in the

linear andWNL regimes requires just a small fraction of

the CPU time required for data optimization because

FIG. 6. Sensitivity estimates in the NL case computed by linearizations in the vicinity of the optimized states

obtained by (b) R4DVAR (SESmethod), (c) 4DVAR (SASmethod), and (d) the stabilized 4DVAR (SASmethod).

(a) For comparison the true sensitivity is shown.
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the perturbations of the TQs can be effectively com-

puted during the perturbed model runs in the course of

minimization of the cost function. Upon completion, the

correlation vector p is easily computed together with the

pseudoinversion of the perturbation matrix. With a rel-

atively small (100–500) number of perturbations, these

operations are not costly and produce ES estimates

comparable in accuracy to the AS ones (Fig. 4).

In the NL case, the concept of sensitivity has to be

transformed from the deterministic to the statistical

framework. As a consequence, direct numerical sensi-

tivity estimates appear to be computationally unfeasible

and require efficient approximation methods. Extension

to the R4DVAR case of the adjoint stabilization tech-

nique proposed by Hoteit et al. (2005) requires addi-

tional integration of the stabilized perturbation model,

which can be executed in parallel with the ensemble runs

of the R4DVAR optimization algorithm. The twofold

increase of the computational requirements can be partly

justified by the improved performance of the R4DVAR

algorithm in the NL regimes.

5. Summary and discussion

In many geophysical problems, application of the

4DVAR data assimilation technique encounters diffi-

culties associated with the emergence of exponentially

growing modes of the TL operator in flow regimes

characterized by nonlinear instabilities. A straightforward

way to deal with the problem is to either increase the

diffusion coefficient in the adjoint of the background nu-

merical model (Hoteit et al. 2005; Zhang et al. 2011) or to

reduce the duration of the data assimilationwindow to the

smallest e-folding time scales of the instabilities (Xu and

Daley 2000). The latter approach is acceptable in op-

erational meteorology, which enjoys dense daily cov-

erage by observations, but is rarely used in oceanography

(Ngodock et al. 2009) where observations within the

ocean interior are sparse.

Within the context of a sensitivity analysis, NL systems

require a conceptual transition from a deterministic (ad-

joint based) to a probabilistic (ensemble based) method-

ology. In this study we have shown that AS estimates

stabilized by enhanced dissipation are capable of pro-

viding a good approximation to the probabilistic sen-

sitivities in the NL regimes.

Special attention has been paid to the comparison of

the sensitivity estimates obtained with the ensemble-

based R4DVAR data assimilation technique and with

the 4DVAR method in both linear and nonlinear re-

gimes. In the linear andWNL regimes, the R4DVARES

estimates are similar in accuracy to the AS ones and do

not require additional computations if the perturbations

of the TQs are computed in the process of R4DVAR

optimization. In the NL case, the ensemble analog of the

stabilized AS technique is developed. The proposed sta-

bilized ES method is similar in accuracy to the SAS ap-

proach, but requires a twofold increase in computer time

due to the necessity of augmenting the R4DVAR opti-

mization process with integration of the stabilized per-

turbation model.

The R4DVAR ES technique is similar to the one

considered by Ancell and Hakim (2007) with the differ-

ence that the ensemble averages are not removed and the

correlation vector p is always multiplied by the pseudo-

inverse of the ensemble matrix. A number of computa-

tions were performed with the removal of the ensemble

averages and/or replacement ofB21 in (5) by the diagonal

TABLE 1. RMS magnitude (numbers to the left within the cells)

and correlation coefficient r (numbers to the right within the cell)

of the EAS, SES, and SAS estimates (respectively, the top, middle,

and bottom numbers within the cells) for the three TQs. Compu-

tations were performed using the true reference state (rows 1–3)

and the reference states obtained with the stabilized 4DVAR

(S4DVAR; rows 4–6) and R4DVAR (rows 7–9) methods. The

magnitude of the sensitivity estimates is normalized by the re-

spective EAS values.

Reference

state q1 q2 q3 Mean

True 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.01 0.90 0.56 0.82 0.64 0.85 0.74 0.86

1.42 0.80 0.83 0.91 0.66 0.81 0.97 0.84

S4DVAR 0.65 0.74 0.63 0.46 0.50 0.79 0.59 0.66

0.88 0.63 0.66 0.37 0.49 0.69 0.68 0.56

0.81 0.54 0.52 0.52 0.43 0.71 0.59 0.60

R4DVAR 0.76 0.81 0.64 0.67 0.85 0.91 0.75 0.80

0.78 0.75 0.55 0.65 0.60 0.76 0.64 0.72

0.78 0.75 0.58 0.69 0.57 0.78 0.64 0.74

FIG. 7. Sensitivity magnitude estimated by the EAS method as

a function of the relative perturbation amplitude j. Dashed line

shows jSj computed by the SAS technique.
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matrix of the inverse ensemble variances (Torn and

Hakim 2008), but these experiments consistently pro-

duced a decrease in the accuracy of the ES estimates. To

some extent, the result can be explained by the fact that

the considered TQs have a noticeable projection on the

ensemble-mean state whose removal increases the error

of the approximation of the true sensitivity.

Theoretical arguments (section 2b) supported by nu-

merical experiments have shown the ability of the SES

and SAS methods to effectively approximate the EAS

sensitivity maps in the NL regime. Confirming this result

with a real OGCM requires particular care in the defi-

nition of the amplitude of the ensemble perturbations

(section 4b), which contain multivariate state vectors

and may be affected by the higher-order nonlinearities

present in the model.

Extending the R4DVAR ES technique to optimi-

zation (with respect to TQs) of the observational net-

works (observation targeting) appears to be a feasible

task, because products of the ensemble members by

the Hessian of the assimilation problem are among the

outputs of the R4DVAR optimization process. A similar

approach to observation targeting can be undertakenwith

the 4DVAR method, which generates a sequence of de-

scent directions in the process of minimizing the cost

function.

The linearization technique underlying the 4DVAR

and AS analysis imposes natural limitations on the

performance of the adjoint methods in NL regimes. This

opens further prospects for the development of the en-

semble approach in sensitivity analysis and optimization

of observational networks.
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APPENDIX

Averaging the Advective Propagator

We denote the covariance of the time-averaged per-

turbation velocities by

V5 hyyTi

and expand the ensemble mean of the advective prop-

agator in the Taylor series:

hexp[2y � $]i5 �
‘

k50

h(2y � $)ki
k!

. (A1)

Assuming that y is nondivergent, the even-order terms

of the expansion can be rearranged in the form

h(2y � $)2mi
(2m)!

5
[$hyyTi$]m

2mm!
5

1

m!

�
$V$
2

�m
, (A2)

whereas odd-order terms vanish due to Gaussianity.

Substitution of the rhs from (A2) into (A1) yields

hexp[2y � $]i5 �
‘

m50

1

m!

�
$V$
2

�m
5 exp

�
1

2
$V$

�
. (A3)

Comparing (A3) with (10) provides the relationship be-

tween the effective diffusion tensorD and the covariance

tensor V of the time-averaged perturbation velocities:

D5
T

2
V . (A4)

The operator exp(2T y � $) is a propagator by a ran-

dom velocity field, a process similar to classic Brownian

motion. Therefore, one may expect that, after averaging

over y, only the spatial scales exceeding T
ffiffiffiffiffiffiffiffi
trV

p
will re-

main; that is, this operator effectively removes the small-

scale components of the field it acts upon. The assumption

that the largest principal axis ofV tends to be aligned with

the optimal (analyzed) current is one of the underlying

principles of flow-dependent background error modeling

in data assimilation (e.g., Purser et al. 2003; Xu 2005;

Mirouse and Weaver 2010), which has gained consider-

able attention in recent years (Yaremchuk et al. 2013).
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