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ABSTRACT

A 4D variational data assimilation systemwas developed for assimilating ocean observations with the Navy

Coastal Ocean Model. It is described in this paper, along with initial assimilation experiments in Monterey

Bay using synthetic observations. The assimilation system is tested in a series of twin data experiments to

assess its ability to fit assimilated and independent observations by controlling the initial conditions and/or the

external forcing while assimilating surface and/or subsurface observations. In all strong and weak constraint

experiments, the minimization of the cost function is done with both the gradient descent method (in the

control space) and the representer method (observation space). The accuracy of the forecasts following the

analysis and the relevance of the retrieved forcing correction in the case of weak constraints are evaluated. It

is shown that the assimilation system generally fits the assimilated and nonassimilated observations well in all

experiments, yielding lower forecast errors.

1. Introduction

This paper describes the development of a four-

dimensional variational data assimilation (4DVAR)

system based on the representer method for the Navy

Coastal Ocean Model (NCOM). NCOM is an opera-

tional ocean model (primarily at the Naval Oceano-

graphic Office) that has been validated (Martin 2000;

Barron et al. 2006), with several references in the liter-

ature. It is a free-surface general circulation model

(GCM) based on the primitive equations and employs

the hydrostatic, Boussinesq, and incompressible ap-

proximations. It has been used in global- and basin-scale

circulation applications (Barron et al. 2003, 2004; Kara

et al. 2006); in coastal applications, for example, to

model the upwelling and relaxation events in Monterey

Bay (Shulman et al. 2007); and river discharge (Morey

et al. 2003) and river plume modeling (Liu et al. 2009);

and in modeling air–sea interactions through coupling

with atmospheric models (Pullen et al. 2006, 2007).

Other applications include particle transport (Haza

et al. 2007; Schroeder et al. 2011), the tracking of oil

spills in Australia (Brushett et al. 2011) and in the Gulf

ofMexico (Cheng et al. 2011), the tracking of eddies and

filaments (Burrage et al. 2009), the study of bottom

Ekman tidal flows (Book et al. 2009), and the coupling to

ecosystem (Jolliff et al. 2009) and biochemical and bio-

optical models (Shulman et al. 2011).

Other models of the complexity of NCOM have seen

similar 4DVAR development efforts undertaken in the

past decade. A 4DVAR assimilation system was devel-

oped for the Ocean Parallelis�e (OPA) model (Weaver

et al. 2003), for theMassachusetts Institute of Technology’s

(MIT) general circulation model (MITgcm; Marotzke

et al. 1999) also used in the Estimation of the Circulation

and Climate of the Ocean (ECCO) consortium assimila-

tion experiments (Stammer et al. 2002), and a similar sys-

tem was built for the Regional Ocean Model System

(ROMS;Moore et al. 2004).Unlike the othermodels using

fixed z levels (OPA and MITgcm) or s coordinates

(ROMS), NCOM uses a hybrid vertical coordinate that

combines dynamic sigma layers in the upper ocean and

fixed z levels below, or a generalized vertical coordinate

with dynamic sigma layers, static sigma layers, and z levels.

Dynamic sigma layers evolve with the free surface and

static sigma layers are prescribed a fixed-depth fraction

that is kept constant throughout a given model simulation.
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It is a common practice to test a recently developed

assimilation system with identical twin experiments in

which the observations are simulated by the numerical

model. Twin experiments allow us to test not only the

system’s ability to fit the assimilated observations, but

also to test the accuracy of the analysis (and its associ-

ated forecast) away from the observation locations,

the adequacy of the prescribed error covariances, and

the accuracy and relevance of the retrieved corrections

of the initial conditions, and the external forcing in the

case of weak constraint.

All of these consistency and accuracy tests are carried

out in Monterey Bay. The region is chosen for the nu-

merous field experiments that have been conducted there

along with the array of moored buoys that have collected

data over a long period of time The region provides an

abundant dataset that will be used for evaluating and

validating the assimilation system with real observations

in the second part of this study, this first part consisting

of the system description and twin experiments.

The 4DVAR system is implemented with the flexi-

bility of running either strong or weak constraint as-

similation experiments. The strong constraint uses the

gradient descent method for minimizing the cost func-

tion. The weak constraint is based on the representer

method (Bennett 1992, 2002) in which the solution to the

assimilation problem is sought as the sum of a first guess

and a finite linear combination of representer functions,

one per datum. The computation and storage of all the

representer functions is avoided by using the indirect

representer method (Amodei 1995; Egbert et al. 1994;

Bennett et al. 1996; Ngodock et al. 2000). The formu-

lation of the assimilation problem allows for the in-

clusion of a model error term (i.e., weak constraint) at

no extra computational cost to the minimization pro-

cess. In this paper, an assessment will be performed of

the system’s ability to fit both assimilated observations,

as well as the consistency of the retrieved model forcing.

There are no specific applications of 4DVAR in

Monterey Bay, let alone its weak constraint formulation.

Strong constraint variational assimilation (Broquet et al.

2009) has been applied to the California Current System

CCS), including an application to estimate surface

forcing correction (Broquet et al. 2011), using the in-

verse Regional Ocean Modeling System (IROMS; Di

Lorenzo et al. 2007) with horizontal resolutions of 10

and 30 km. The CCS is a large area that includes Mon-

terey Bay, although these applications did not specifically

target the bay. Most of the assimilation experiments that

have been carried for Monterey Bay were based on se-

quential methods such as 3DVAR and ensemble-based

Kalman filters (Chao et al. 2009; Haley et al. 2009;

Shulman et al. 2009).

A brief description of the numerical model is pre-

sented in the next section, followed by the 4DVAR

system derivation and implementation in section 3.

Section 4 deals with the experiments’ setup and results,

and concluding remarks follow in section 5.

2. The model

NCOM is described in the literature (Martin 2000;

Barron et al. 2006). The model domain used for this

experiment contains the Monterey Bay, California, re-

gion. This location is favorable for ocean modeling due

to its strong land–sea-breeze circulation patterns, com-

plex coastline with steep topography, and the existence

of frequent local upwelling and relaxation events

(Shulman et al. 2002). The domain covers 35.68–37.498N
and 121.388–123.28W with a horizontal resolution of

2 km and 50 layers in the vertical. The initial conditions

were obtained from downscaling the operational 1/88
resolution global NCOM (GNCOM) to an intermediate

model with horizontal resolution of 6 km, and then via

a 3-to-1 nesting ratio to the 2-km model. Horizontal

viscosities and diffusivities are computed using either

the grid-cell Reynolds number (Re) or the Smagorinsky

schemes, both of which tend to decrease as resolution

is increased. The grid-cell Re scheme sets the mixing

coefficient K to maintain a grid-cell Re number below

a specified value (e.g., if Re5 u3 Dx/K5 30, then K5
u 3 Dx/30). Hence, as Dx decreases, K decreases pro-

portionally. A similar computation is performed for the

Smagorinsky scheme.

Surface boundary conditions (e.g., wind stress, IR

radiation flux, etc.) are provided by the CoupledOcean–

Atmosphere Mesoscale Prediction System (COAMPS;

Hodur 1997), a regional relocatable atmospheric model,

which in turns gets boundary conditions from the global

Navy Operational Global Atmospheric Prediction Sys-

tem (NOGAPS; Goerss and Phoebus 1992; Rosmond

1992). The regional atmospheric model can be run at a

user-defined horizontal resolution through a sequence

of nests. Here, the COAMPS resolution is set to match

the ocean model resolution of 2 km, and the forcing

fields are archived and used in themodel every 3 h.Open

boundary conditions use a combination of radiative

models and prescribed values provided by the parent

nest. Different radiative options are used at the open

boundaries depending on the model state variables:

a modified Orlanski radiative model is used for the

tracer fields (temperature and salinity), an advective

model for the zonal velocity u, a zero gradient condi-

tion for the meridional velocity y as well as the baro-

tropic velocities, and the Flather boundary conditions

for elevation.
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3. The 4DVAR system

a. The cost function

For the sake of clarity, the model equations given in

the appendix in discretized form are rewritten in a sim-

pler form here:

8><
>:
›X

›t
5F(X)1 f, 0# t#T

X(t5 0)5 I(x)1 i(x)

, (1)

where X stands for all the dependent model state

variables—two-dimensional sea surface height (SSH)

and barotropic velocities, and three-dimensional tem-

perature, salinity, and baroclinic velocities; F is the

model tendency terms on the right-hand sides of (A1)–

(A5) and (A10)–(A12) (see the appendix); f is the model

error, a function of the independent variables (x and t)

of the space–time domain V with covariance Cf ; I(x) is

the prior initial conditions; and i(x) is the initial condition

error with covariance Ci. Given a vector Y of M obser-

vations of themodel state in the space–time domain, with

the associated vector of observation errors e (with co-

variance Ce),

Ym 5HmX1 em, 1#m#M , (2)

where Hm is the observation operator associated with

the mth observation, one can define a weighted cost

function:

J5

ðT
0

ð
V

ðT
0

ð
V
f(x, t)Wf(x, t, x

0, t0)f(x0, t0) dx0 dt0 dx dt

1

ð
V

ð
V
i(x)Wi(x, x

0)i(x0) dx0 dx1 eTW
e
e , (3)

where V denotes the model domain; the weights Wf

and Wi and are defined as inverses of Cf and Ci, re-

spectively, in a convolution sense; and We is the matrix

inverse of Ce. The latter is usually considered to be

a diagonal matrix, from the assumption that observa-

tion errors are uncorrelated. Boundary condition er-

rors are omitted from (1) and (3) only for the sake of

clarity. The model error covariance is assumed to take

the form

Cf (x, t, x
0, t0)

5 v(x)1/2v(x0)1/2 exp

 
2
jx2 x0j2
2L2

!
exp

�
2
jt2 t0j

t

�
, (4)

where v(x) is the error variance and L and t are the

length and time scales, respectively. The initial error

covariance Ci also assumes the form of (4) with the

exception of the time correlation term and different

(higher) variance. Horizontal correlations in (4) are

obtained by solving a diffusion equation (Derber and

Rosati 1989; Egbert et al. 1994; Weaver and Courtier

2001), while the time correlation is obtained by solv-

ing a pair of coupled Langevin equations (Chua and

Bennett 2001; Bennett 2002; Ngodock 2005). Corre-

lations in (4) are univariate and are implemented

layer by layer for each model state variable. The cross

correlations are provided by the model dynamics

through the integration of the adjoint and the tangent

linear models.

b. The minimization

The solution of the assimilation problem [i.e., the

minimization of the cost function (3)] is achieved by

solving the following Euler–Lagrange (EL) system:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

›X

›t
5F(X)1Cf � l, 0# t#T ,

X(t5 0)5 I(x)1Ci+l(x, 0)

2
›l

›t
5

�
›F

›X
(X)

�T
l1 �

M

m51
�
M

n51

W
e,mn(ym 2HmX)d(x2 xm)d(t2 tm), 0# t#T

l(T)5 0

, (5)

where l is the adjoint variable defined as the weighted

residual

l(x, t)5

ðT
0

ð
V
Wf(x, t, x

0, t0)f(x0, t0) dx0 dt0

d denotes the Dirac delta function, We,mn are the matrix

elements of We, the superscript T denotes the trans-

position, and the covariance multiplication with the

adjoint variable is the convolution
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Cf � l(x, t)5
ðT
0

ð
V
Cf (x, t, x

0, t0)l(x0, t0) dx0 dt0

for the model error and

Ci+l(x, 0)5

ð
V
Ci(x, x

0)l(x0, 0)dx0

for the initial condition error. Note that, although the

cost function is written with the inverse of the co-

variance functions, the actual inverses are not needed in

the Euler–Lagrange equations in (5) associated with the

minimization of (3).

1) GRADIENT DESCENT

By omitting themodel error term in (1) or settingCf to

zero in (5), one recovers a familiar EL for strong con-

straint variational data assimilation that is solved by it-

erative algorithms such as the gradient descent. Starting

from a first guess of the initial conditions, the nonlinear

model is integrated forward in time and substituted into

the adjoint model that is integrated backward in time,

and from which the increments or corrections to the

initial conditions are computed. The new initial condi-

tions are used in a new iteration of the algorithm until

the selected convergence criterion is satisfied. The same

process can be used with the inclusion of the model er-

ror, except that the increase of the control space also

means the increase of the computational expense, and

a potentially ill-conditioned minimization problem.

2) THE REPRESENTER METHOD

Allowing the model error increases the dimension of

the control space and the computational cost of the as-

similation and, usually, renders the minimization pro-

cess poorly conditioned. This difficulty may be avoided

if the minimization is done in the data space, which does

not depend on, and is usually smaller than, the control

space. That is possible through the representer algo-

rithm, which expresses the solution of the EL system as

the sum of a first guess and a finite linear combination of

representer functions, one per datum. This cannot be

applied to (5) directly mainly because of its nonlinear

property. However, following Ngodock et al. (2000) and

Bennett (2002), the representer algorithm can be ap-

plied to a linearized form of (5), which is obtained either

by linearizing (5) directly or by linearizing the forward

model (1) and deriving an EL associated with the cost

function based on the linearized forward model. The

iterative process by which the solution of the linearized

EL becomes the background for the next linearization

until formal convergence, is known as the ‘‘outer loop;’’

while the ‘‘inner loop’’ consists of actually solving the

linear EL system. In either case, given a background

model solutionX0 around which the model is linearized,

one can write a linear EL system in the form

8>>>>>>>><
>>>>>>>>:

›Xk

›t
5F(Xk21)1

�
›F

›X
(Xk21)

�
(Xk 2Xk21)1Cf � l, 0# t#T ,

Xk(t5 0)5 I(x)1Ci+l(x, 0)

2
›l

›t
5

�
›F

›X
(Xk21)

�T
l1 �

M

m51
�
M

n51

W
e,mn(ym 2HmX

k)d(x2 xm)d(t2 tm), 0# t#T

l(T)5 0

, (6)

where k denotes the outer loop index and Xk is the EL

solution after the kth outer loop. The EL system (6) is

a linear coupled system between the adjoint and state

variables. The representer method uncouples the system

by expanding the solution as

Xk(x, t)5Xk
F(x, t)1 �

M

m51

bk
mr

k
m(x, t) , (7)

whereXk
F is a first-guess solution, bk

m are the coefficients,

and rkm(x, t), 1#m#M, are the representer functions

defined by

2
›ak

m

›t
5

�
›F

›X
(Xk21)

�T
ak
m 1HTd(x2 xm)d(t2 tm), 0# t#T

ak
m(T)5 0

›rkm
›t

5F(Xk21)1

�
›F

›X
(Xk21)

�
rkm 1Cf � ak

m, 0# t#T

rkm(t5 0)5Ci+a
k
m(x, 0)

,

8>>>>>>>>><
>>>>>>>>>:

(8)
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Note that the equations in (8) are only weakly coupled,

since the ak
m, also known as the adjoint representer

functions, depend only on the observation locations and

can be computed independently of the rkm. The first guess

in (7) can be chosen as the previous outer-loop solution

Xk21, or the tangent linear solution aroundXk21. It may

be shown that the representer coefficients are computed

by solving a linear system in data space involving the

representer matrix, the data error covariance matrix,

and the innovation vector:

(Rk1C
e
)b5Y2HXk

F , (9)

where Rk is the representer matrix with elements

Rk
mn 5 rkm(xn, tn), that is, the mth representer function

evaluated at the nth observation space–time location

(xn, tn). The entire representer matrix need not be com-

puted explicitly since the linear system (9) can be solved

using an iterative algorithm (e.g., the conjugate gradient),

by taking advantage of the symmetry of each matrix in-

volved. Also, the representer coefficients constitute the

right-hand side of the adjoint equation in the EL system.

Thus, once the representer coefficients are computed,

they are substituted into the adjoint equation, which is

then solved and substituted into the forward linear

equation for the final solution. A background solution

around which the model is linearized is needed. Usually,

it is the solution of the nonlinear model. For the first-

guess solution, one may consider either the background

or the tangent linear solution around the background.

Also, the new optimal solution may replace the back-

ground for another minimization process (i.e., outer

loops) until formal convergence (Bennett et al. 1996;

Bennett 2002; Ngodock et al. 2000, 2007, 2009).

c. Linearization and adjoint derivation

The generation of both the tangent linear and adjoint

codes of the model using the Parametric FORTRAN

compiler (PFC; Erwig et al. 2007), including the symmetry

test between the two codes, was described in Ngodock

and Carrier (2013). Here, the stability of the linearized

model is assessed by the time evolution of small pertur-

bations: the tangent linear model is initialized by three-

dimensional perturbations of the temperature, salinity,

and velocity fields, as well as two-dimensional perturba-

tions of the surface elevation field. These initial pertur-

bations are generated randomly and assigned amagnitude

of 2K for temperature, 0.3 psu for salinity, 0.09ms21 for

velocity, and 0.01m for surface elevation. At each time

step the norms of the perturbed fields are computed and

divided by the norms of their respective initial perturba-

tions. Results in Fig. 1, plotted every 6h and starting 6h

into the integration, show that the linear perturbations are

stable and bounded for about 16 days before they start to

grow exponentially.

d. Error standard deviations: v(x)1/2

Assigning model errors and prescribing their co-

variances is the most difficult task in data assimilation

(Daley 1992; Talagrand 1999; Bennett 2002; Wunsch

2006). Not only are there many error sources (external

forcing, initial and boundary conditions, bad parameter-

ization, empirical formulation, unresolved processes),

but also the errors cannot be measured. Therefore, one

can only make assumptions about them. Since NCOM

FIG. 1. Time evolution of the magnitude of the perturbation to

the temperature, salinity, u, y, and SSH fields normalized by the

magnitude of their respective initial perturbations.

FIG. 2. Vertical distribution of the magnitude of the model errors

normalized by their surface value.
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includes all resolvable processes and subgrid-scale pa-

rameterization, errors are attributed to the initial condi-

tions and external forcing for all the dynamical equations,

and the derivation of their estimates is given below. Note

that there is no external forcing applied to the continuity

equation, and thus it is not assigned a model error either,

as in Jacobs and Ngodock (2003).

Consider the momentum equation in its non-

discretized form:

›u

›t
1⋯5⋯1 r21F/h , (10)

where F represents the wind stress atmospheric forcing

(Nm22), the volume flux source, or the tidal potential; h

is a typical water depth; and r is the water density. The

model error at the surface consists of errors in the wind

stress. For the subsurface, errors are assumed to arise

from the volume flux and the tidal potential terms. Er-

rors are considered to be high in magnitude at the sur-

face and decreasing with depth. Although the wind

stress varies in space and time, its associated error is

assumed to be uniform in the horizontal directions. The

error magnitude is considered to be 10% of the actual

wind stress at the surface and decreasing with depth in

order to mimic the decreasing impact of wind stress with

depth. Two terms contribute to the forcing for the

temperature equation: the net longwave, latent, and

sensible heat fluxes on one hand, and the solar radiation

FIG. 3. (a) The model domain with bathymetry contours and the horizontal observation locations (white squares); the model layer index

vs observation depths for (b) the upper 500m and (c) below 500m.

TABLE 1. List of all assimilation experiments and their associated settings indicated by the checked boxes.

Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 Exp8 Exp9

Wrong initial conditions x x x x x x x x

August forcing x x x x x x x

July forcing x x

30% forcing perturbation x x x x x

2 3 model error std devs x

Original simulated data sampling and error covariances x x x x x x x

Original simulated data sampling (surface only) and

error covariances

x

Twin data sampling and error covariances as in

real-data experiments

x

3-day assimilation window x

Strong constraint x x x

Weakly strong constraint x

Weak constraint x x x x x
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on the other hand. Both are assumed to be 10% in error

and the sum of their errors constitutes the forcing error

in the temperature equation, with a spatial distribution

similar to the one used for the errors in the momentum

equation. A similar approach is taken for the errors in

the salinity equation, where the forcing consists of the

river inflow and evaporation minus precipitation. Forc-

ing terms here are also considered to be 10% in error.

FIG. 4. (top) SST and (bottom) SSHwith surface velocity vectors for the (a),(b) control and (c),(d) free-running solutions at the beginning

and end of the assimilation window.

FIG. 5. As in Fig. 4, but for (c),(d) assimilated solutions at the end of the first cycle (6 Aug) and end of the assimilation window (31 Aug)

from Exp1.

JUNE 2014 NGODOCK AND CARR IER 2091



The distribution of the model errors with depth in the

momentum and tracer equations follows the normalized

profile in Fig. 2, where errors at the surface have the

10% magnitude of the forcing described above. The

spatial and temporal correlation scales in (4) are set to

20 km and 30 h, respectively.

4. Experiment setup and results

The model was initialized on 1 July 2003 and ran for 3

months to 30 September 2003. A portion of the model

trajectory that corresponds to the time window 1–30

August is considered the control solution, and will also

be referred to as the true solution or simply the ‘‘truth.’’

Several 1-month-long assimilation experiments are

carried out in order to evaluate the ability of the system

to correct the initial conditions alone, the external

forcing alone, both the initial conditions and external

forcing, and the model error defined in the subsurface as

a volume source.

A 1-month assimilation window is selected for 1–30

August, a time interval during which observations are

sampled from the control solution. The simulated ob-

servations are saved and utilized in the 4DVAR analysis

daily (i.e., at intervals of 24 h). There are 28 uniformly

distributed observation stations for SSH and profiles of

velocity, temperature, and salinity across the model

domain, as seen in Fig. 3. Each profile is represented on

the model’s vertical grid of 49 layers. Neighboring ob-

servations are separated horizontally from each other by

30 km. The temperature, salinity, velocity, and SSH

observation errors are set to 0.48C, 0.1 psu, 0.05m s21,

and 0.05m, respectively, and are held constant through

the entire assimilation window. These observation er-

rors are purposefully set low to test the assimilation’s

ability to reduce large discrepancies with the model

(i.e., to drive the model with large errors to fit obser-

vations with small errors). Within the month-long win-

dow, the assimilation is carried out in cycles of 5 days,

where the analysis at the end of one cycle becomes the

initial conditions for the next cycle. A total of nine as-

similation experiments (summarized in Table 1) are

carried out, using strong to weak constraints. They are

designed to test several parameters of the assimilation

system.

a. Controlling only the initial conditions

The wrong initial conditions are generated as follows:

first, the solution on 5 July is used to restart themodel on

15 July and, then, the model is integrated for 16 days

FIG. 6. Time series of the fit to the observations (red line) for (a) temperature, (b) salinity,

(c) SSH, and (d) velocity.
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using the atmospheric forcing corresponding to 15–31

July. This yields a set of initial conditions on 1 August

that are completely different from the control solution

on the same date, and thus a solution for 1–31 August

that is different from the control solution for the same

period, as seen in Fig. 4.

Because the difference between the two solutions is

solely due to errors in the initial conditions, a strong

FIG. 7. As in Fig. 6, but for Exp2.

FIG. 8. As in Fig. 5, but for Exp3.
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constraint assimilation approach is used (Exp1), in

which the initial condition errors for temperature, sa-

linity, velocity, and SSH are set to 28C, 0.5 psu, 0.5m s21,

and 0.2m, respectively. These initial condition (IC) er-

rors are kept the same for the first two assimilation cy-

cles, then progressively decrease by 20% every cycle

after the second, as the assimilation is expected to im-

prove the initial conditions for the following cycle. The

IC errors are initially large to reflect the significant dis-

crepancy between the free-running and the control so-

lutions at the beginning of the assimilation window.

Results from the strong constraint assimilation in Fig. 5

show that there are still some noticeable differences be-

tween the assimilated and the control solutions after the

first cycle, especially in the SSH and surface velocities.

However, by the end of the assimilation window (i.e.,

after the sixth cycle), the differences between the two

solutions are minor and, for the most part, within the

respective observation errors. This is confirmed by the fit

to the observation metric:

JFIT5
1

M
�
M

m51

jym 2HmX
aj

sm

, (11)

where ym is the mth observation, M is the number of

observations, Hm is the observation operator, Xa is the

assimilated solution or analysis, and sm is the observa-

tion error. The right-hand side of (11) is computed as

a time series for each observation type, and also evalu-

ated for the free-run solution and the first guess. The

latter is the forecast obtained by integrating the non-

linear model for 5 days, initialized by the analysis at the

end of the cycle.

Because the assimilation is expected to fit the obser-

vations to within the observation standard deviations,

the right-hand side of (20) is expected to be less than

one for the analysis, but not necessarily for the first

guess. It can be seen in Fig. 6 that the free-running so-

lution is far from the observations, by as much as two

standard deviations in temperature end velocity, due

especially to the wrong initial conditions being chosen.

In general, the assimilation fits the observations within

a standard deviation, except for the temperature in the

first cycle and the velocity in the first three cycles.

There is also a significant improvement in the forecast,

which remains within an observation standard de-

viation after the first two cycles. After the first cycle,

forecast (and thus analysis) errors remain low due to

the right forcing, except in the velocity. The latter

display some inaccuracies resulting from the end of

the first cycle that negatively affect both the forecast

and the analysis in the second cycle. However, the

FIG. 9. As in Fig. 6, but for Exp3.
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assimilation corrects those inaccuracies in the third and

subsequent cycles.

WEAKLY STRONG CONSTRAINT

It is also possible to carry out a strong constraint ex-

periment within the representer method by setting the

model error term to zero in the linearized EL. This ex-

periment is referred to as the weakly strong constraint

(Exp2), because the correction of the model trajectory is

based on the linearized dynamics [see (6)] contrary to

the original strong constraint that uses nonlinear dy-

namics. The weakly strong approach has the potential to

be computationally less expensive when the number of

observation being assimilated is significantly less than

the dimension of the initial conditions. The fit to the

observations metric plot in Fig. 7 shows that the weakly

strong constraint assimilation fits the observations simi-

larly well compared to the strong constraint. There is a

faster decrease of the analysis error in the first two cycles,

with the exception of salinity. There is also a slight in-

crease in the analysis error in temperature (fifth cycle)

and velocity (fifth and sixth cycles). The differences in the

curves from Figs. 6 and 7 are mostly due to the fact that

the correction of the model trajectory in the strong con-

straint uses nonlinear dynamics, whereas linearized dy-

namics are used in the weakly strong constraint.

b. Weak constraint: Controlling IC and forcing

In the third experiment (Exp3), the assimilation is

carried out with the wrong initial conditions used in the

experiments above and incorrect forcing (described

below) using the representer method. The experiment

is set up by running the model in the second month

using the wrong initial conditions for the strong con-

straint experiment above, and the 30-day atmospheric

forcing starting from 1 July. This rather drastic choice

of the wrong forcing (just as with the wrong initial

conditions in the strong constraint experiment) is

intended to test the robustness of the assimilation sys-

tem. Usually, a perturbation is added to the true forc-

ing. The initial condition errors are the same as those

of the strong constraint experiment, and the model

errors are as described in section 3c. Results of assim-

ilating with wrong ICs and forcing fields show that for

surface fields (temperature, height, and velocity) in

Fig. 8, the assimilated solution has substantial inac-

curacies after the first cycle, although the solution shows

much better agreement with the truth at the end of the

last cycle.

The fit to the observations metric in Fig. 9 shows that

the assimilation is fitting temperature, salinity, and SSH

within respective standard deviations, and the fit to ve-

locity is borderline with the standard deviation. In Fig. 8

FIG. 10. Profile time series of (a),(c) absolute temperature and (b),(d) salinity differences with the true solution from the (top)

free-running and (bottom) Exp3 solutions.

JUNE 2014 NGODOCK AND CARR IER 2095



errors of about 1K (two standard deviations) still re-

main in the surface temperature, which seems to con-

tradict the metric in Fig. 9. The latter, however, is an

average that does not reveal the inaccuracies of Fig. 9

due to there being a better fit to the observations in the

lower layers. This is shown in Fig. 10, where it can be

seen that both temperature and salinity errors from the

free run extended to more than 100 and 50m, respec-

tively. Assimilation errors are significantly reduced in

magnitude and do not extend below 50m. That the re-

maining errors in the assimilation are confined near the

surfacemay be due to the drastic choice of wrong forcing

fields and rather small standard deviations for the model

error terms.

The time series of the wind stress and heat flux for the

true and erroneous July forcings are shown in Fig. 11 at

the locations of the M1 and M2 buoys in Monterey Bay.

The forcing fields display large differences in the first 7

and the last 11 days of the assimilation window. In be-

tween those days, the wind stress generally is in the same

direction in both forcings, but differences persist in the

magnitude. Expressing the July forcing in error per-

centage shows that on average it is, relative to the true

forcing, more than 100% in error over all the model

domain.

In light of the significantly high errors in the July

forcing and the very low standard deviations in the as-

similation, this weak constraint experiment is repeated

in two ways. First, the July forcing is used in the assim-

ilation while the model error standard deviations are

increased by a factor of 2 (Exp4). Note that these stan-

dard deviations are still significantly lower than the ac-

tual errors that the July forcing brings into the system.

Second, perturbed forcing fields (instead of the 1-month

delayed case) representing 30% of the July forcing are

added to the true forcing, and the assimilation is carried

out with the 10% errors prescribed earlier (Exp5).

Assimilation results from these experiments are

shown in comparison to the original weak constraint

experiment (Exp3) for temperature profiles and surface

velocity and height. It is shown in Fig. 12 that when the

assimilation is carried out with the wrong July forcing,

the quality of the analysis slightly improves as the model

error standard deviations are increased by a factor of 2,

from 10% to 20%. This result shows that the assimilation

system is able to overcome significantly high errors in

the forcing to correct the model trajectory in each cycle

with significantly low model error specifications. The

results of the assimilation get even better when the

forcing error is dropped to 30%,while keeping themodel

FIG. 11. Time series of (a),(b) surface wind stress and (c),(d) heat flux for the months of July

(red lines) andAugust (black lines) at the (left) M1and (right) M2 buoys inMonterey Bay. The

August forcing is the true forcing.
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error to 10%. That is, when the model error is set to

relatively similar levels as the actual errors, the assimi-

lation fits the observations with greater accuracy. Similar

results are obtained with salinity profiles (not shown).

The improvement of the assimilation is also assessed

for the analyzed SSH and surface velocities by looking at

the difference of these fields between the truth and the

analysis from the three weak constraint experiments. As

FIG. 12. Profile time series of temperature differences (a)–(c) between the true solution and the free run and (d)–(f) between the true and

assimilated solutions from (left) Exp3, (center) Exp4, and (right) Exp5. Time series are shown for the last two cycles.

FIG. 13. SSH and surface velocity vector differences between the truth and (a) Exp3, (b) Exp4, and (c) Exp5, on 21 Aug.
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can be seen in Fig. 13, the analysis errors of these surface

fields are similar between the original weak constraint

experiment and the one with doubled model error

standard deviations, and the analysis error is much lower

for the experiment with 30%perturbation on the forcing

and the model error standard deviations set at 30%.

The overall assimilation performance is shown in

Fig. 14 as the fit to the observations metric. Unlike

similar figures shown above for individual observation

types, the metric in Fig. 14 combines all observations. It

confirms the assessment of the three weak constraint

experiments described above for the temperature

FIG. 14. Time series of the fit to the observations metric from (a) Exp3, (b) Exp4, and (c) Exp5.

FIG. 15. As in Fig. 6, but for Exp6.
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profiles and the surface height and velocity. 1) The

original weak constraint assimilation experiment with

the wrong July forcing and only 10% model error stan-

dard deviations is able to correct the model trajectory

and steer it toward the observations so that by the end of

the first cycle the analysis error is within the observa-

tions standard deviation. The associated forecast is also

significantly improved; from the third cycle and forward,

the forecast error is about an observation standard de-

viation. 2) There is a marginal improvement (slightly

lower analysis error) of the assimilation by increasing

the model error standard deviations by a factor of 2, as

well as a marginal improvement of the 5-day forecast.

3) Moreover, the improvement of the assimilation is

quite significant for the experiment with 30% pertur-

bation of the forcing and 10% model error standard

deviations, from the second cycle onto the last. The

same is true for the 5-day forecast associated with this

assimilation experiment.

c. Forcing alone

It may be argued that the experiments with the wrong

July forcing are fitting the observations within the ob-

servation standard deviation because of the contribution

of the subsurface where forecast and analysis errors are

significantly lower than at the surface, and the 5-day cycle

length is not long enough for the wrong surface forcing to

drastically and adversely impact the forecast.

A sixth experiment (Exp6) is set up that seeks to

correct only the external surface forcing by assimilating

only surface observations. This experiment uses correct

initial conditions, the 30% perturbation on the forcing,

and the 10% model error standard deviation prescribed

only at the surface. According to Fig. 11, the 30%

forcing perturbation produces errors that are most no-

ticeable in the heat flux and, therefore, in the surface

temperatures. The fit to the observations metric for this

experiment shows, in Fig. 15, that for salinity and SSH,

both the free-run and forecast errors are always within

an observation standard deviation and, thus, the analy-

sis. The same is true for velocity until the last two cycles,

where the free-run errors increase to slightly more than

a standard deviation, and the assimilation subsequently

corrects them. The major impact of the assimilation is in

the surface temperature, where errors as high as two

observation standard deviations in the free run and the

forecast are reduced to less than a standard deviation in

the analysis.

Surface temperature, elevation, and velocity fields (at

the end of the first and the fourth cycles) in Fig. 16 show

that the assimilation accurately recovers all the circu-

lation features, albeit for slightly higher temperatures

at isolated locations. Although these temperature in-

accuracies may be as high as 1K, they are isolated in the

sense that they do not dominate the overall fit to the

observations metric shown in Fig. 15.

Actual forcing errors and the retrieved errors from the

assimilation are compared at the end of the first and

fourth cycles in Fig. 17. It can be seen that the assimilation

does not recover the wind stress errors: corrections to the

FIG. 16. As in Fig. 5, but for only Exp6.
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wind stress are negligible compared to the actual errors.

The assimilation corrects the heat flux better than it does

the wind stress, even though the magnitude of the cor-

rection is lower than the actual errors. It should be em-

phasized that the assimilation usedmodel error standard

deviations at 10% of the actual forcing fields, while the

actual errors were set at 30%. The discrepancy in error

levels explains in part the difference between the re-

trieved and actual errors.

d. Shorter cycle strong constraint

In the seventh experiment (Exp7), we investigate

the possibility of improving the performance of the

strong constraint assimilation by resorting to a shorter

assimilation window. This idea seems reasonable from

the tangent linear model (TLM) point of view: the

tangent linear approximation underlying the variational

method is more accurate and thus more stable over

a shorter cycle. It should be noted, however, according

to Fig. 1 in section 3, that the TLM stability exceeds 10

days for initial perturbations. Therefore, the original

strong constraint experiment (Exp1), which used an

assimilation window of 5 days, could not have been

negatively affected by linear error growth, and a strong

constraint experiment with an assimilationwindow shorter

than 5 days should not yield better results. To verify this,

Exp7 is set up just as in Exp1, but with a 3-day assimilation

window.

Results in Fig. 18 show that there is no substantial

improvement from the 5- to the 3-day strong constraint

assimilation windows, except for the velocity in the first

half of themonth-long experiment. Note that in that first

half neither Exp1 nor Exp7 fits the observations to

within a standard deviation. Once that begins to happen

in the second half of the month, both experiments have

the same accuracy.

e. Strong constraint with forcing errors

The strong constraint performance is further in-

vestigated within the context of both initial conditions

and forcing errors. This follows the design of Exp5 with

the only exception that the assimilation is carried out

with strong constraint using the representer method.

The results of Exp8 are shown in Fig. 19, where the

FIG. 17. (top) Actual and (bottom) retrieved errors in the surface heat flux and wind stress at the end of the (a),(c) first and (b),(d)

fourth cycles.
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strong and weak constraint analyses are compared. It

can be seen that the weak constraint assimilation fits the

observations better than the strong constraint, owing to

its higher number of degrees of freedom. It is expected

of the strong constraint to correct the model trajectory

by adjusting the erroneous initial conditions. However,

if the model is driven by an erroneous forcing, the latter

will steer the model trajectory away from the observa-

tions even if the initial conditions were perfectly

corrected. This is seen in Fig. 19, especially for the tem-

perature and velocity, by the decrease of the analysis

error at the beginning of the each cycle followed by

a gradual increase. It should also be noted that the strong

constraint fits the salinity and SSH observations well, al-

though not as well as the weak constraint. This can be

attributed to the facts that salinity forcing is poorly known

and as such its perturbations for forcing errors are small,

and there is no forcing perturbation for the SSH equation

because it is treated as a conservative quantity.

f. Sampling at real observation locations

In most of the experiments above, the assimilation ex-

periments are assessed at the observation locations.

However, the availability of the true solution makes it

possible to evaluate the ability of the assimilation to

correct the model everywhere else in the domain. A weak

constraint assimilation experiment (Exp9) is carried with

data sampling and error settings as in the real-data ex-

periments described in the second part of this paper

(Ngodock and Carrier 2014, hereafter Part II), and

a comparison to the true solution over the entire domain is

made to assess the assimilation’s ability to reconstruct the

true solution away from the assimilated observations.

Exp9 is run for a 60-day window (in 5-day cycles) to allow

the dynamics to propagate the assimilation corrections

through the model domain. In Fig. 20 the normalized

global differences (in the three space dimensions) between

the weak constraint and true solutions are compared.

It can be seen that initially the assimilation does not

compare well to the true solution for all of the variables.

The errors in the salinity and SSH fields are lower than

those in the temperature and velocity fields, probably due

to the same reasons mentioned above for Fig. 19. But as

time progresses, the model dynamics are able to propa-

gate the assimilation corrections through the model do-

main and the discrepancy between the assimilation and

true solution decreases: salinity and SSH errors become

lower than 1 standard deviation; temperature errors are

close to 1 standard deviation, having started around 2.0

standard deviations; and finally velocity errors have

FIG. 18. As in Fig. 6, but for comparison between the free run and analyses from Exp1

and Exp7.
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decreased to 1.5 standard deviations having started at 2.5.

It is arguable that these errors would have decreased

further to below a standard deviation; that is, the assim-

ilation would eventually reproduce the true solution in

the entire region had the system run long enough.

5. Conclusions

A 4D variational system was developed for assimi-

lating ocean observations with the Navy Coastal Ocean

Model. The system is described in this paper, along

with initial assimilation experiments in Monterey Bay

using synthetic observations. The assimilation system is

tested in a series of twin data experiments to assess its

ability to fit assimilated and independent observations

by controlling the initial conditions and/or the external

forcing while assimilating surface and/or subsurface

observations. The minimization of the cost function

was done with the gradient descent method in all of

the strong constraint experiments, and with the repre-

senter method (observation space) in the weak con-

straint experiments.

It was shown that in the strong constraint approach

the system is able to correct wrong initial conditions to

fit the observations within a standard deviation after two

5-day cycles. After the first cycle, forecast (and thus

analysis) errors remain low due to the right forcing,

except in the velocity. The latter displays some inac-

curacies at the end of the first cycle that negatively affect

both the forecast and analysis in the second cycle.

However, the assimilation corrects those inaccuracies in

the third and subsequent cycles. The length of the strong

constraint assimilation window was reduced to explore

the possibility of improving its performance. It was

noted that since the TLMwas shown to be stable beyond

10 days, a shorter than 5-day assimilation window would

not improve the accuracy of the strong constraint, and

that was confirmed by an actual assimilation experi-

ment. Finally, the strong constraint was compared to the

weak constraint in the case of wrong initial conditions

and forcing. It was shown that although the strong

constraint could accurately correct the initial conditions,

the wrong forcing would keep steering the solution away

from the observations; only the fields that had low

forcing perturbations (salinity) or none (SSH) could be

accurately fit by the assimilation.

Several weak constraint experiments were carried

out. First, a completely wrong forcing was used in the

FIG. 19. As in Fig. 6, but for comparison between the free-run and analyses from Exp5

and Exp8.
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free run and forecast, while model error standard de-

viations were set to 10% of the magnitude of the true

forcing. In general, the assimilation was able to fit the

observations, although some isolated discrepancies

greater than twice the observations’ standard deviation

remained in the analysis. This was mostly due to high

actual forcing errors and very low model errors for the

assimilation. The second weak constraint experiment

followed the first, except with doubled model error

standard deviations in the assimilation. There was

a marginal improvement in the analysis, as the differ-

ence between the actual forcing errors and the pre-

scribed model errors in the assimilation remained high.

In the third weak constraint experiment, forcing errors

were computed as a 30% perturbation of the true

forcing, and the model error standard deviations were

kept at 10%. There was a significant improvement in

the accuracy of the analysis compared to the first two

weak constraint experiments. The fourth weak con-

straint experiment follows the third, except only sur-

face observations were assimilated and the model

errors were also restricted to the surface. This experi-

ment yielded accurate surface fields, and the forcing

corrections showed that the assimilation corrected the

heat flux better than it did the wind stress, even though

the magnitude of the corrected fluxes was lower than

the actual errors. This resulted from using smaller

model error standard deviations (a third of the actual

errors magnitude) in the assimilation. The assimilation

system is able to overcome significantly high errors in the

forcing to correct the model trajectory in each cycle with

significantly lowmodel error specifications. The results of

the assimilation get even better when the forcing error is

dropped to 30%, while keeping the model error to 10%.

That is, when the model error is set to relatively similar

levels as the actual errors, the assimilation fits the obser-

vations with greater accuracy. There was a discrepancy

between the actual forcing errors and the retrieved forc-

ing errors from the assimilation that is explained in part

by the difference between the actual and prescribed error

magnitudes in the assimilation.

Finally, a weak constraint assimilation experiment

was carried with data sampling and error settings as

in the real-data experiments described in Part II, and

a comparison to the true solution over the entire

domain was made to assess the assimilation’s ability

to reconstruct the true solution away from the assim-

ilated observations. It was shown that this global

FIG. 20. As in Fig. 6, but for normalized global differences (in the three space dimensions)

between the true solution and Exp9 (red lines), the first guess (blue lines), and true free-run

(green lines) solutions.
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analysis error was high initially, especially in tempera-

ture and velocity. But as time progressed, the discrep-

ancy between the assimilation and the true solution

decreased because the model dynamics were able to

propagate the assimilation corrections through the

model domain. It is arguable that these errors would

have decreased further to below a standard deviation,

that is, the assimilation would eventually reproduce the

true solution in the entire region had the system run

long enough.
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APPENDIX

Discretization of NCOM Equations

The discretization of NCOM uses second-order in-

terpolation and differentiation as defined with the fol-

lowing notation:

f
x
5 0:5(fx1Dx/21fx2Dx/2) ,
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›x
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x

5
1

Dx
dxf5

1

Dx
(fx1Dx/22fx2Dx/2) ,

and

d2tf5 (ft1Dt2ft2Dt) .

The NCOM equations are then discretized in flux con-

servative form as follows
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In (A1)–(A5), Fu and Fy are the horizontal mixing

terms; zatm and ztp are the atmospheric surface pressure

and tidal potential, respectively; and z* is the surface

elevation term that can be distributed among any of

the three time levels, z* 5 a1z
n11 1 a2z

n 1 a3z
n21, ac-

cording to the temporal weighting terms a1, a2, or a3,

which are specified by the user. The horizontal mixing

coefficients for the velocity and scalar fields (tempera-

ture and salinity) areAM andAH , respectively; likewise,

KM and KM are used for the vertical mixing; Q is a vol-

ume flux source term (with Tsor, Ssor, usor, and ysor as the

term source values); Qr is the solar radiation; g is

a function describing the solar extinction;Dx,Dy, andDz
denote the grid-cell dimensions defined at the center of

the grid cells; and the superscripts u, y, and w indicate

the grid-cell dimensions computed at those velocity lo-

cations on the staggered Arakawa C grid. The Coriolis

term is f; r0 and pi are the reference density of seawater

and the internal pressure, respectively; and the hori-

zontal advection velocity terms are given by ua and ya.

The term Ccurv is used to correct the horizontal advec-

tion of momentum for the horizontal curvature of the

grid. It is calculated as

Ccurv 5 yy
d2x(Dy)

2DxDy
2ux

d2y(Dx)

2DxDy
. (A6)

The horizontal mixing terms for the momentum equa-

tions are given by
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where the mixing coefficient is modeled according to Smagorinsky’s formula:

AM 5CSmagDxDy

"�
1

Dx
dxu

n

�2

1
1

2

�
1

2Dy
d2yu

nx1
1

2Dx
d2xy

ny
�2

1

�
1

Dy
dyy

n

�2
#1/2

, (A9)

with the magnitude of the eddy coefficient being scaled by

the constant CSmag. The vertical mixing coefficients are

computed using the turbulence closure method of Mellor

and Yamada in either its 2 or 2.5 version.

The computation for the free-surface mode is governed

by the following equations:

DxuDyu
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d2t(D

uu)52DyuDugdx(a1z
n111a2z
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n21)1DuGu , (A10)
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(A11)
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where b1, b2, and b3 are positive constants define by

the user with b1 1b2 1b3 5 1, andDuGu andDyGy are

the vertical integrals of all the terms on the right-hand

sides of (A1) and (A2), respectively, with the excep-

tion of the surface elevation gradient terms and the

vertical mixing, and Du 5D
x
and Dy 5D

y
. The free-

surface mode (A12) is solved by first substituting

(Duu)n11 and (Dyy)n11 into the time-discretized (A10)

and (A11) into (A12), resulting in an elliptic equation

that is solved for the surface elevation at time level

n 1 1, which is then substituted back into (A10) and

(A11) to compute the barotropic transports Duu

and Dyy, from which the barotropic velocities are

obtained.

The vertical discretization uses a combination of

sigma layers and z levels in a three-tiered distribu-

tion with (i) free sigma layers near the surface that

expand and contract with the free surface elevation,

(ii) fixed sigma layers that do not vary with the free

surface, and (iii) fixed z levels that allow for partial

bottom cells for a better match with the bottom

topography.
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