
Naval Research Laboratory
Stennis Space Center, MS 39529-5004

NRL/MR/7320--14-9502

Geospatial Analysis and Model Evaluation
Software (GAMES): Integrated Web-Based
Analysis and Visualization

April 11, 2014

Approved for public release; distribution is unlimited.

TimoThy R. Keen
James D. DyKes

Ocean Dynamics and Prediction Branch
Oceanography Division

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

3. DATES COVERED (From - To)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

6. AUTHOR(S)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR / MONITOR’S ACRONYM(S)9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR / MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

b. ABSTRACT c. THIS PAGE

18. NUMBER
OF PAGES

17. LIMITATION
OF ABSTRACT

Geospatial Analysis and Model Evaluation Software (GAMES): Integrated
Web-Based Analysis and Visualization

Timothy R. Keen and James D. Dykes

Naval Research Laboratory
Oceanography Division
Stennis Space Center, MS 39529-5004

NRL/MR/7320--14-9502

Approved for public release; distribution is unlimited.

Unclassified
Unlimited

Unclassified
Unlimited

Unclassified
Unlimited

Unclassified
Unlimited

109

Timothy Keen

(228) 688-4950

 The software design methodology discussed in this report is fundamental to Geospatial Analysis and Model Evaluation Software (GAMES)
module development. This report describes methods for the development of Web-based applications for accessing, processing, and distributing
observations and model simulation results. The primary components discussed in this report include data visualization using Google Earth,
geographical analysis using ArcGIS components within an oceanographic framework, and executable scripts designed to access large databases
and run user-specified analyses. These components are illustrated using local examples in conjunction with local GServer web server. An example
is also given of accessing a global ocean model database and using the results to calculate model statistics and long-term trajectories for surface
flotsam in the Pacific Ocean. The components described in this report can be used for either component-based software engineering (CBSE) or
service-oriented software engineering (SOSE) designs. The resulting software is applicable to research and operational oceanography.

11-04-2014 Memorandum Report

Office of Naval Research
One Liberty Center
875 North Randolph Street, Suite 1425
Arlington, VA 22203-1995

73-6669-04-5

ONR

Google earth
ArcGIS

0602435N

Geographical information systems
Web service

Data mining
Global NCOM

iii

Table of Contents

1. Introduction ... 1

Background ... 1

Objectives ... 8

Tables and Figures .. 10

2. GoogleVision .. 15

Overview of Google Earth .. 15

Data importing features and techniques .. 16

KML files .. 16

Image overlays .. 16

Network links .. 17

Regions ... 17

Super-overlays .. 18

Common Gateway Inteface (CGI) .. 19

Placemarks .. 19

Animation notes .. 19

Creating KML files with Perl scripts .. 20

Examples ... 20

Atchafalaya Bay, Louisiana .. 21

Patos Lagoon, Brazil ... 22

St. Louis Bay, Mississippi .. 22

San Francisco Bay and Hunters Point ... 22

Tables and Figures .. 24

3. ASW Reach-Back Cell Oceanographic Analysis System (ARCOAS)............................... 40

Background ... 40

Software Approach ... 40

Applications .. 40

Functionality ... 41

Interfacing with Data Services .. 41

Tables and Figures .. 43

4. GServer Web Service .. 46

iv

Generating Forms with CGI scripts .. 46

Image Generation in a CGI script ... 49

Ocean Data Mining ... 50

Databases .. 51

Web Server Software .. 53

Database Access.. 54

Database Products ... 55

Tables and Figures .. 57

5. Component Integration: Ocean Drifter Web Services .. 71

Introduction ... 71

Drifter Model .. 71

Description .. 71

Operation... 74

Analysis Methods.. 76

Data Processing ... 76

Visualization and Graphics ... 77

Statistical Methods .. 77

Model Verification .. 78

Case 1: Idealized Domain with Tides and Variable Wind .. 78

Case 2: North Pacific from Global NCOM... 78

Visualization with ArcGIS .. 80

Tables and Figures .. 81

References ... 100

Manuscript approved February 18, 2014.

2

applications using these abstractions can communicate regardless of differences on lower
layers.

Web-based services can be invoked using Web technologies, and provide results in some
format. Web-oriented services often provide HTML as the result format, which is not well
suited for processing. Application-oriented services often provide XML as the result format,
which is easier to process and can be structured specifically for the needs of a service. One of
the key questions when designing and using XML-based services is the underlying data model
of the XML (Osipov et al. 2000; Ravat et al. 2010). Web Services (the narrowly defined field as
opposed to the broader topic of WS) are usually described as three technologies (Curbera et al.
2002). The Simple Object Access Protocol (SOAP) is used to encapsulate XML payload and
provides a common format that can be interpreted and processed by all SOAP-aware
applications (Liu et al. 2001). The Web Services Description Language (WSDL) is used to
describe the interface to a Web service which accepts SOAP messages (Anonymous 2001). The
Universal Description, Discovery, and Integration (UDDI) format is a registry that can be used
to search for WSDL documents (Anonymous 2000).

An API is a particular set of rules and specifications that a software program can follow to
access and make use of the services and resources provided by another particular software
program that implements that API (Maaref et al. 1997; Weis 1996). It serves as an interface
between different software programs and facilitates their interaction, similar to the way the user
interface facilitates interaction between humans and computers. An API may include
specifications for routines, data structures, object classes, and protocols used to communicate
between the consumer program and the implementer program of the API. When used in the
context of Web development, the API (Web API) is typically a defined set of HTTP request
messages and a definition of the structure of response messages, which is usually in an XML or
JavaScript Object Notation (JSON) format (Kono et al. 2009).

Whereas Web API is virtually a synonym for Web service, the recent trend is away from
SOAP-based services towards more direct Representational State Transfer (REST) (Fielding
and Taylor 2002) style communications (Battle and Benson 2008; Khare et al. 2004; Kwon et
al. 2009). REST is an abstraction of the architectural elements within a distributed hypermedia
system. Three classes of elements can be identified: components, or processing elements; data
elements; and connecting elements. REST ignores the details of component implementation and
protocol syntax and focuses on the roles of components, how their interaction with other
components is constrained, and how they interpret significant data elements (Fielding and
Taylor 2002). This focus results in the principle difference between REST and other network-
based architectures. It emphasizes a uniform interface between components. This generality
reduces the overall system complexity though it decreases efficiency.

The POSIX (Portable Operating System Inteface for Unix) standard defines an API that allows
a wide range of common computing functions to be written such that they may operate on
different systems, such as MacOS X, and various Berkeley Software Distributions (BSDs)
(Leathrum and Liburdy 1995; Severance 1999); however, making use of this requires re-
compiling for each platform. A compatible API, on the other hand, allows compiled object code
to function without any changes to the system implementing that API (Rezende et al. 2009).
This is beneficial to software providers because they may distribute existing software on new
systems without producing and distributing upgrades. Users may install older software on their

3

new systems without purchasing upgrades, although this generally requires that various
software libraries implement the necessary APIs as well.

A plug-in (or plugin) is a set of software components that adds specific capabilities to a larger
software application (Mezini and Lieberherr 1998). The host application provides services that
the plug-in can use, including registration and a protocol for data exchange. Plug-ins depend on
the services provided by the host application and do not usually work by themselves.
Conversely, the host application operates independently of the plug-ins, making it possible for
end-users to add and update plug-ins dynamically without needing to make changes to the host
application. Open APIs provide a standard interface, allowing third parties to create plug-ins
that interact with the host application (Poo and Chew 1996; Sousa and Freitas 1998). A stable
API allows third-party plug-ins to continue to function as the original version changes and to
extend the life-cycle of obsolete applications (Mclellan et al. 1998). Software developers can
implement plug-in frameworks using libraries written in several computer languages: (1) Pugg
and OFX (C++); (2) NetBeans Platform and Java Plug-in Framework (Java); (3) twisted and
PyUtilib (Python); and (4) .NET and Compact Plugs (.NET). Applications support plug-ins for
several reasons. Plugins allow third-party developers to create capabilities that extend an
application and thus support new features. They also help to reduce the size of an application
and separate source code from applications that may have incompatible software licenses.

Specific examples of applications that use plug-ins:

• Email clients use plug-ins to decrypt and encrypt email.

• Graphics software uses plug-ins to support file formats and process images.

• Media players use plug-ins to support file formats and apply filters.

• Microsoft Office uses plug-ins (better known as add-ins) to extend the capabilities of its
application by adding custom commands and specialized features.

• Packet sniffers use plug-ins to decode packet formats.

• Remote sensing applications use plug-ins to process data from different sensor types.

• Audio spectrum analysis applications can accept plug-ins for third-party digital signal
processors.

• Software development environments use plug-ins to support programming languages.

• Web browsers use plug-ins (often implementing the NPAPI specification) to play video
and presentation formats and a plethora of other things e. g. Adobe Acrobat, Microsoft
Office, Sivler Light, DBsign Web Signer, etc.

Designing and implementing a large and complex software system is a difficult task. Two well-
recognized software engineering paradigms have been developed to deal with this challenge
(Figure 1.1): (1) component-based software engineering (CBSE)(Crnkovic, 2001); and (2)

4

service-oriented software engineering (SOSE) (Breivold and Larsson 2007). CBSE is an
established approach that supports building systems for distributed and web-based applications
through the composition and assembly of software components. CBSE facilitates management
of complexity and increases usability while shortening the time to market. The requirements of
Web computing and network-based applications and systems are motivators for the
development of SOSE applications, which utilize services as fundamental elements in software
solutions. These paradigms have continued development along parallel tracks but with different
focus. Their approaches and technologies are similar because SOSE evolved from CBSE
frameworks (Tsai 2005). These similarities can lead to confusion in applying them effectively.

Component models specify the standards that components need to follow during composition
and interaction. Current research topics in CBSE include Quality of Service (QoS), error
predictability, component interference and classification, identification and selection,
adaptation, and testing and deployment techniques. As suggested by this list of current research
topics, CBSE does not address all the complexities associated with varying platforms,
protocols, and devices, as well as Web-based issues. A key concept is that components are the
building blocks of CBSE. The components can be deployed independently and may be
composed by third parties (Crnkovic et al. 2007; Crnkovic and Larsson 2002). This necessitates
a degree of modularization that allows for evolution of components that have independent
development paths. The individual components are assembled using glue code to form an
application. The composition is made from several component instances that are connected and
interact together. Components must conform to rules that are established by a specific
component model. Consequently, the practicality of incorporating components of different
component models is relatively limited; however, compliance to a certain technology may also
lead to advantages in optimization of solutions by the specific technology. Another result of this
paradigm is that the degree of encapsulation is flexible, from a black box to a white box that
exposes all of the implementation.

SOSE, or Service Oriented Architecture (SOA), implementations rely on a mesh of software
services (Fountain 2003). Services are the fundamental elements for developing applications
and solutions (Papazoglou and Van Den Heuvel 2007) using a range of elements (Figure 1.2).
This paradigm supports the development of rapid, low-cost, and easy composition of distributed
applications in heterogeneous environments. Services comprise unassociated, loosely coupled
units of functionality that have no calls to each other embedded within them. Each service
implements one action, such as filling out an online application for an account, or viewing an
online bank statement, or placing an online booking or airline ticket order. Rather than services
embedding calls to each other in their source code, they use defined protocols that describe how
services pass and parse messages using description metadata. SOA developers associate
individual SOA objects by using orchestration and choreography (Peltz 2003). In the process of
orchestration the developer associates software functionality (the services) in a non-hierarchical
arrangement using a software tool that contains a complete list of all available services, their
characteristics, and the means to build an application utilizing these sources. The composite
service is built by composing service descriptions and the realization of the service composition
is during run time when the service providers are discovered and bound (Breivold and Larsson
2007).

5

Service-based applications have three main parts: (1) a provider; (2) a consumer; and (3) a
registry (Huhns and Singh 2005). A minimal definition of a service can include the following
two criteria (Parastatidis et al. 2005):

• A service is the logical manifestation of some physical or logical resources (e.g.,

databases, programs, devices, humans) and/or some application logic that is exposed to
the network;

• Service interaction is facilitated by message exchanges.

The great promise of SOA suggests that the marginal cost of creating a new application is low
because all of the required software already exists to meet the requirements of other
applications. Ideally, one requires only orchestration to produce a new application (Stojanovic
et al. 2004). SOA features loose coupling, in contrast to the functions that a linker binds
together to form an executable, or to a dynamically linked library, or to an assembly. SOA
services also run in safe wrappers (such as Java or .NET) and other programming languages
that manage memory allocation and reclamation, allow ad hoc and late binding, and provide
some degree of indeterminate data typing. These ideas are represented by a number of design
principles (Breivold and Larsson 2007; Parastatidis et al. 2005):

• Boundaries are explicit. The boundaries of a service are well defined and other services

do not see the internal workings, implantation details, or resource representations of a
service.

• Services are autonomous. Service implementations are developed and evolve
independently from one another.

• Services share schema, not classes. In SOAs, no single set of implementation-specific
abstractions (classes) spans an entire application. Instead, services share contracts that
define the structure of the information that they exchange.

• Policies determine service compatibility. Services interact with one another only after it
has been determined that they can meaningfully exchange information

Web services can implement either component-based or service-oriented architecture. Web
services make functional building-blocks accessible over standard Internet protocols
independent of platforms and programming languages (Sacha et al. 2010). These services can
represent either new applications or just wrappers around existing legacy systems to make them
network-enabled (Qu et al. 2007). Implementations can use one or more of these protocols and,
for example, might use a file-system mechanism to communicate data conforming to a defined
interface-specification between processes conforming to the SOA concept. The key is
independent services with defined interfaces that can be called to perform their tasks in a
standard way, without a service having foreknowledge of the calling application, and without
the application having or needing knowledge of how the service actually performs its tasks.

6

These principles can be refined into the following key concepts for software development in
modern applications (Bennett et al. 2001):

• meet necessary and sufficient requirements—overengineered systems are not required;

• personalization—tailored to individual user’s requirements;

• self-adapting—reflective processes are required to monitor use and implement changes
to meet user requirements, interface styles, and work patterns;

• fine-grained—small, simple units that cooperate through rich communication structures,
thus providing resistance to failure and facilitating self-adaptation and personalization;

• transparency—viewed as a single abstract object even when distributed across platforms
and geography.

These principles are necessary to develop demand-led software services, which are required for
emergent organizations with continual change (i.e., engineering for emergent solutions).

Web services are required to satisfy high quality standards and automated test tools are
necessary to improve quality of services (Bertolino and Acm 2009; De Melo and Silveira
2010). Such tools for headless services (including message and database services along with
web services) are much more difficult to implement. The REST (Representational State
Transfer) architectural model (Figure 1.3) has been used with some success (Chakrabarti et al.
2009). Another challenge relates to providing appropriate levels of security (Li et al. 2009).
Security models built into an application may no longer suffice when an application exposes its
capabilities as services that can be used by other applications (Kovac and Trcek 2009;
Michelsen and Ieee 2007).

The term “Web 2.0” is associated with web applications that combine mature implementation
techniques, the mashing of existing Web services into value-added applications, and emphasis
on community and collaboration, as well as the establishment of direct distribution platforms
for user-generated content (Boll 2007). A Web 2.0 site allows users to interact and collaborate
with each other in a social media dialogue as consumers of user-generated content in a virtual
community (Lin 2007). The client-side/web browser technologies used in Web 2.0 development
are Asynchronous JavaScript and XML (Ajax), Adobe Flash and the Adobe Flex framework,
and JavaScript/Ajax frameworks. Multiple data sources are accessed more easily with
technologies like XML Remote Procedure Call (XML-RPC), REST, RSS (i.e., Really Simple
Syndication), Atom, and mashups, which facilitate the subscription, propagation, reuse, and
intermixing of Web content.

Web 2.0 can be distinguished from the classical Web by three characteristics (Ankolekar et al.
2008):

7

• Community – Contributors collaborate and share information easily, which produces an
emerging result that could not be achieved by each individual.

• Mashups – Data from different sites are pulled together to provide new values, thus
allowing handcrafted products merged from disparate sources.

• Ajax – The technology contained in this methodology has enabled responsive user
interfaces that allow the other components to work properly.

Web APIs allow the combination of multiple services into new applications known as mashups,
which are Web applications developed using contents and services available online (Yu et al.
2008). Mashups typically serve a specific (short-lived) need and are composed of easy-to-use
Web technologies. Generally, however, integrating enterprise data and applications into a useful
mashup requires programming skill and knowledge about the databases used in the composite
application. Several tools have been developed to assist users in developing their own mashups:
(1) Yahoo Pipes (http://pipes.yahoo.com); (2) Google Mashup Editor
(http://editor.google.mashups.com); (3) Microsoft Popfly (www.popfly.ms); (4) Intel Mash
Maker (http://mashmaker.intel.com); and (5) Quick and Easily Done Wiki
(http://services.alphaworks.ibm.com/qedwiki). These mashup tools are based on a browser
whereas traditional integration technologies offer desktop applications.

The mashup paradigm comprises the objects of integration (components) and how they are
glued together (composition logic). The Component Model (CM) can be characterized by type,
interface, and extensibility. Type can be data, application logic, or user interface. The interface
can consist of combinations of the create-read-update-delete (CRUD) interface and GUI
elements exposed to the user. Extensibility permits the user to create new components or extend
the CM to new requirements. The Composition Model (CoM) determines how components are
integrated to form the mashup. The CoM output type can be data, application logic, or user
interface, depending on whether the composition provides data, programmable APIs, or user
interfaces. The orchestration style (definition and synchronization of components’ execution)
can be defined as flow-based, event-based, or layout-based. Data passing can be by dataflow or
blackboard (i.e., variables) approaches. Finally, a composition can be instance-based or
continuous. Mashups are deployed in a standalone fashion on a Web server that may be
managed by the developer or a third-party (e.g., Google). A mashup can be assembled on a
server via PHP or Ruby or on the client, typically using JavaScript inside a Web browser.
Mashups are about simplicity, usability, and ease of access. These requirements preclude
feature completeness or extensibility. Further evolution of the mashup paradigm depends on the
future availability of a user-interface component model, middleware for user interface
integration, and the identification of appropriate component and composition models.

Web 2.0 draws together the capabilities of client- and server-side software, content syndication
and the use of network protocols. Web 2.0 sites provide users with information storage,
creation, and dissemination capabilities that were not possible in the environment now known
as “Web 1.0” or the classical Web. There are serious challenges in the information quality and
security for Web 2.0 applications, however, because of a lack of editorial control over user-
uploaded data (Almeida et al. 2010; Davidson and Yoran 2007).

8

The complement to Web 2.0 is the Semantic Web (Greaves and Mika 2008), which has quietly
evolved from the need for integrated and uniform access to information sources and services as
well as intelligent applications for information processing (Decker et al. 2000; Hellman 1999;
Nachouki and Quafafou 2011; Staab et al. 2000; Trillo et al. 2010). The Semantic Web was
developed in response to the need to identify a service’s capability sufficiently to permit its
discovery, deployment, composition, and synthesis (Kona et al. 2007) (Figure 1.4). This
approach includes methods utilizing USDL (Unified Service Description Language), OWL-S
(Semantic Web Ontology Language), WSML (Web Service Modeling Language), and WSDL-
S (Semantic Web Service Description Language). The discovery of available services through a
repository (service registry) is fundamental if a query is to be answered using a composition of
several services.

An underlying concept for the Semantic Web is an ontology (Community Ontology in Figure
1.4), which is defined as a formal and explicit specification of a shared conceptualization
(Medjahed and Bouguettaya 2005). Ontologies are critical to enabling semantics-driven data
access and processing. Ontology is easily expanded to the concept of a community of Web
services, which can be used to define a metadata ontology, which allows the description of
other concepts within the community. Ultimately, communities are created by community
providers (e.g., government agencies or businesses), which use the community ontology as a
template. These communities are published in a registry (e.g., UDDI) so that they can be
discovered by service providers. The Internet Reasoning Service (IRS-III) is an example of an
execution environment that enables semantic descriptions of a deployed Web service to be used
during discovery, mediation, composition, and invocation activities (Dietze et al. 2007).
Mediation is the definitive activity of IRS-III because it mediates between a service requester
and service providers. This kind of broker utilizes a SWS Library, where semantic descriptions
of WS, and the reference Domain Ontologies and Knowledge Bases (instances) are stored.

Objectives

This software engineering effort supports both basic and applied applications, which could be
approached with divergent existing technologies. The intent of this effort, therefore, is to
identify and demonstrate Web-based approaches that can be implemented either in a restricted
environment or openly on the Web. Some aspects of the work are motivated by the objectives
of the ARCOAS (ASW Reach-back Cell Oceanographic Analysis System) project, which must
mesh with existing and planned technologies at NAVOCEANO. Web-based applications are in
their infancy at NAVOCEANO, and this makes the task of selecting available Web approaches
more flexible. This freedom will be explored in this work as it pertains to the development of
the software architecture model (e.g., component-based or SOA).

The applied side of this effort is a continuation of the ARCOAS software. ARCOAS is a
component-based desktop application with limited Web implementation through its use of the
ArcMap application from ESRI (Environmental Systems Research Institute;
http://www.esri.com). The core analysis and mapping functions are executed on the client using
a local ArcGIS license. Supplemental add-in functions have been written in C# which was
used to build customizations of ArcMap resulting in a tailored desktop application. A goal
under the ARCOAS project is enhancing the Web-based functionality of the ARCOAS
application. Thus, we include these objectives into the work discussed in this report. These

9

include implementation of a data model specified by NAVOCEANO, a WS database client as
specified by NAVOCEANO, and access to external WS that will supply both GIS and other
types of data (e.g., observations). The WS client will be developed in compliance with the Open
Geospatial Consortium (OGC) requirements (Bulatovic et al. 2010; Mccreedy et al. 2009).

The motivation of this work from the basic research side is in the display and analysis of ocean
model results and observations in a Web browser application. The objectives are to implement
both Google Earth and ArcGis Explorer applications in the framework of a browser in order
to facilitate storing, accessing, and analyizing disparate data types in a user-friendly format. A
fundamental objective is thus to migrate data access through a Web server instead of mounted
file systems. This work will examine the applicability of both component-based and SOA
technologies to this purpose.

The basic and applied aspects of this work have an unknown degree of overlap with respect to
the use of Web-based versus desktop applications to achieve these objectives. The overriding
principle that will steer this work is the development of common software (e.g., middleware)
that can be used in both component-based and Web applications, and the potential to use both
Web 2.0 and Semantic Web Services (SWS) approaches in both the secure operational
environment at NAVOCEANO, as well as the less-restrictive research environment at NRL.

10

Tables and Figures

Table 1.1

Network Link to Remote URL: • KML data is updated frequently by the
author

• KML data is less than 2-3 megabytes
• KML data is not accessed very often

Network Link to local file on hard drive: • KML data is rarely updated
• KML data is larger than 2-3 megabytes
• KML data is frequently accessed

Network Link Not Necessary: • KML data is very small (less than 100K)

11

Figure 1.1. Comparison of typical activities during the development process in CBSE and
SOSE. The top row lists the steps in the software engineering process. The middle row shows
the step in CBSE, which is more focused on finding existing components, whereas the bottom
row shows the steps in SOSE, which is driven more by identifying services as represented by
the dashed box to the right (Breivold and Larsson 2007)

12

Figure 1.2. Elements of SOA (Dirk Krafzig, Karl Banke, and Dirk Slama, Enterprise SOA.
Prentice Hall, 2005). The fundamental element is the Service, which is made fulfilled using
contracts, implementations, and interfaces. Analogously, the service is available through the
registry, a bus, and a frontend.

http://en.wikipedia.org/wiki/File:SOA_Elements.png

13

Figure 1.3. Schematic of styles contributing to REST (Representational State Transfer): RR =
replicated repository; $ = cache; CS = client-server; CSS=client stateless server; C$SS = client
cache stateless server; LS = layered system; S = stateless; VM = virtual machine; COD = code
on demand; U = uniform interface (Fielding and Taylor 2002).

14

Figure 1.4. Model for Semantic Web Services (Medjahed and Bouguettaya 2005). (a) The
community providers assign values to the attributes of the metadata ontology (community
ontology), which (b) advertises its requirements with a service registry. (c) A service provider
then identifies the community, of which it may be a member, and (d) registers its services with
the community.

15

2. GoogleVision

Preliminary work has been completed on a component-based Web application using Google
Earth to view user-supplied images of model results. The pictures were generated using
MATLAB and stored on the local filesystem as part of previous studies. This work will be
described first because is one of the fundamental components of a potential Web API for navy
purposes.

Overview of Google Earth

Google Earth is a virtual globe, map and geographical information program that was originally
called EarthViewer 3D, which was created by Keyhole, Inc, a company acquired by Google in
2004. It maps the earth’s surface by the superpositioning of satellite and aerial images on a 3D
globe. User data can also be added as layers. Google Earth is also a Web Map Service client.
Three-dimensional geospatial data are implemented using the Keyhole Markup Language
(KML).

The internal coordinate system of Google Earth is geographic coordinates (latitude/longitude)
on the World Geodetic System of 1984 (WGS84) datum (Kumar 1988; True and Ieee 2004). A
general perspective projection is used, which is similar to the orthographic projection, except
that the point of perspective is near-earth rather than at infinity (deep space). Images’ dates
vary. The image data can be seen from squares made when Digital Globe Coverage is enabled.
The date next to the copyright information is not the correct image date. Zooming in or out
could change the date of the pictures. Many of the international urban image dates are from
2004 and have not been updated whereas most U.S. images are kept current. The baseline
resolution is 15 m, but higher resolution (~ 1 m) is available for U.S. and Europe.

Google Earth incorporates a layer called Geographic Web that includes integration with
Wikipedia and Panoramio (i.e. a mashup). The Google Ocean feature allows users to zoom
below the surface of the ocean and view the 3D bathymetry; it supports ~ 20 content layers.
Historical Imagery allows users to access earlier images of many locations.

Currently, every image created from Google Earth using satellite data provided by Google
Earth is a copyrighted map. Any derivative from Google Earth is made from copyrighted data
that, under United States copyright law, may not be used except under the licenses Google
provides. Google allows non-commercial personal use of the images (e.g. on a personal website
or blog) as long as copyrights and attributions are preserved. By contrast, images created with
NASA's globe software, World Wind, use the Blue Marble, Landsat, or USGS layers, which are
in the public domain and can be freely modified, redistributed and used for commercial
purposes.
The Google Earth API is a free beta service, available for any web site that is free to consumers.
The plug-in and its JavaScript API allow users to place a version of Google Earth into web
pages. The API does not have all the features of the full Google Earth Application but enables
3D map applications. The Google Earth plug-in is currently available for Microsoft Windows
(2000, XP, Vista, and 7) and Apple Mac OS X 10.4 and higher (Intel and PowerPC). To date
the plug-in supports the following layers:

• Terrain

16

• Roads
• Buildings
• Borders
• 3-D Buildings

Data importing features and techniques

Google Earth supports several methods for importing and displaying user-supplied data. These
were explored as potential pathways for entering both observations and model results. The free
version only imports image files or text. Google Earth Pro can import a variety of formats,
including vector data. These topics are explained in detail in the user guide
(http://earth.google.com/userguide) and are only introduced here.

KML FILES

The Keyhole Markup Language is an XML grammar and file format for modeling and storing
geographic features such as points, lines, images, polygons, and models for display in Google
Earth, Google Maps and other applications. You can use KML to share places and information
with other users of these applications. You can find example KML files on the KML Gallery
and Google Earth Community site (http://bbs.keyhole.com). A KML file is processed by
Google Earth in a similar way that HTML and XML files are processed by web browsers. Like
HTML, KML has a tag-based structure with names and attributes used for specific display
purposes. Thus, Google Earth acts as a browser of KML files (i.e., earth browser). You can use
KML to:

• Specify icons and labels to identify locations on the planet surface
• Create different camera positions to define unique views for each of your features
• Use image overlays attached to the ground or screen
• Define styles to specify feature appearance
• Write HTML descriptions of features, including hyperlinks and embedded images
• Use folders for hierarchical grouping of features
• Dynamically fetch and update KML files from remote or local network locations
• Fetch KML data based on changes in the 3D viewer
• Display COLLADA textured 3D objects

IMAGE OVERLAYS

It is possible to put an image on top of Google Earth’s surface in the 3D viewer. Furthermore,
there is a way to make Super-Overlays (explained below). There are three types of specific
overlays: PhotoOverlay, ScreenOverlay, and GroundOverlay. An overlay is created by
specifying what image file to display (from computer disk, LAN, or WWW), how to fit its
boundaries, and where it is located. Most image formats are accepted, except for EPS and PS
files. The PNG and GIF formats can be modified to change the transparency by the viewer. The
overlay image must have a North-Top orientation and be a simple cylindrical projection (i.e.
Lat/Lon WGS84 projection). A PhotoOverlay allows for specific viewpoints on a certain sector
of Earth in a rectangle, full or partial cylinder, or sphere. A ScreenOverlay is used to show
static images like a logo, a compass, or HUDs (heads-up displays). A GroundOverlay drapes an

17

image on to the terrain. An overlay can be created interactively using a dialogue box but this
method is not used in this work because it is too labor intensive for multiple images.

You can place Web Mapping Service (WMS) image overlays in Google Earth. These are
mapping images that are provided through a WMS over the Internet. They can show you
specific information, such as weather maps and charts, topographical maps, alternate high
resolution satellite imagery.

NETWORK LINKS

This feature allows for KML or KMZ files on a network (LAN or WAN) to be saved on a
specific webpage that can be linked to through the KML/KMZ file. This allows automatic
updating of images into Google Earth. If utilized with Regions, Network Links have the
possibility of loading large amounts of data. KML network links import static data as well as
data streaming using a CGI (Common Gateway Interface) script or compiled program (e.g.,
PHP, C, Python, and Perl).

Some general guidelines for using network links are included in Table 2.1. A network link
contains a <Link> element with an <href> (a hypertext reference) that loads a file. The <href>
can be a local file specification or an absolute URL. Despite the name, a <NetworkLink> does
not necessarily load files from the network. The <href> in a link specifies the location of an
image file used by icons in icon styles, ground overlays, and screen overlays, a model file used
in the <Model> element, and a KML or KMZ file loaded by a Network Link. The specified file
can be either a local file or a file on a remote server. In their simplest form, network links are a
useful way to split one large KML file into smaller, more manageable files on the same
computer.

There are a few important rules to follow in creating network links. These are briefly stated
here and explained using the Patos Lagoon example. The tutorial from Google Earth states that
relative path is allowed, but this only applies for directories below the server directory. The
browser and other Web applications cannot see the file system as such. It is acceptable to use
links, however, as long as they are created on the server; short cuts do not work the same for
Google Earth. One of the best reasons for using a network link is to implement dynamic web
services. The content can be modified and served either by generating new KML files or by
using links on the server side. This will be discussed more below.

REGIONS

Regions are a powerful KML feature that allows you to add very large datasets to Google Earth
without sacrificing performance. Data is loaded and drawn only when it falls within the user's
view and occupies a certain portion of the screen. Using Regions, you can supply separate
levels of detail for the data, so that fine details are loaded only when the data fills a portion of
the screen that is large enough for the details to be visible. Any Feature can contain a Region. A
Region affects visibility of a Placemark's geometry or an Overlay's image. Regions define both
culling and level-of-detail behavior of the affected geometry or overlay. Regions are inherited
through the KML hierarchy and affect the visibility of Features that are defined lower in the
hierarchy.

18

In KML, some classes are derived from a base class. For convenience, we refer to the base class
instead of listing all of the derived classes. For example, Feature refers to any KML element
that is derived from Feature (Document, Folder, GroundOverlay, NetworkLink, PhotoOverlay,
Placemark, and ScreenOverlay). Geometry refers to any geometric element in KML (i.e., Point,
Polygon, LinearRing, LineString, Model, and MultiGeometry). Overlay refers to the elements
derived from Overlay: GroundOverlay, PhotoOverlay, and Screen Overlay.

A Region has a <LatLonAltBox> that defines a bounding box for your data. Objects associated
with this bounding box are drawn when the Region comes within view and the projected
onscreen size of the <LatLonAltBox> falls within the specified pixel range for that Region. The
second important concept related to Regions is that of Level of Detail, or LOD for short. Since a
computer screen has a limited amount of space, it is most efficient to set things up so that large
amounts of data are loaded only when there are enough pixels to display the data adequately.
When the Region is taking up a relatively small portion of the screen, the LOD mechanism
allows the KML author to specify a dataset with lower resolution to be substituted for the full-
resolution data. This lower-resolution dataset loads faster. You can also specify a fade extent for
a Region, which allows an object to transition gracefully from transparent to opaque, and back
again. Fade ranges are optional, but they prevent the “pop” effect between LineStrings or
Polygons of different resolutions. Fading is very expensive in terms of performance and should
not be used with imagery.

A common use of Regions is to nest them with the larger Regions associated with coarser
resolution and the smaller, inner Regions associated with increasingly finer LOD. As the user’s
viewpoint moves closer, Regions with finer LOD replace the previously loaded Regions with
coarser LODs.

SUPER-OVERLAYS

A super-overlay is a hierarchy of Regions and NetworkLinks that can be used to serve a large
set of imagery efficiently. Tiles of appropriate resolution are loaded as portions of the imagery
area come into view, with higher resolution tiles loaded as the viewpoint nears. It’s a waste of
effort to try to display a 7008-by-6720-pixel image on a 1024-by-768 screen. What's more, if
the user is miles above the earth's surface, all that data might be crammed into a handful of
pixels, and performance is dismal. Super-overlays allow you to take advantage of
NetworkLinks and their ability to load the data associated with a Region if it is active (i.e.,
within view and whether its projected size is appropriate to the current viewpoint). If you
subdivide the original image into a hierarchy of images with increasing levels of detail, Google
Earth can load the imagery that best fits the current view.

To produce a super-overlay, an original (large) image is subdivided into hundreds of small
GroundOverlays. These overlays, or tiles, (Sample, 2010; Potmesil 1997) are arranged in a
hierarchy. To create a super-overlay, you need to: (1) Prepare the imagery by subdividing it into
manageable chunks (256-by-256 pixels is recommended), and (2) Create the KML files that set
up the Regions, Links, Network Links, and, in this case, the files containing the
GroundOverlays. For each image, prepare a KML file that associates the ground overlay with a
Region and a NetworkLink. Each KML file in this set has the following elements:

19

• Region (with LatLonAltBox, minLodPixels, and maxLodPixels so that Google Earth can
determine whether the Region is active at any given time)

• set of NetworkLinks to the child files (the tiles in the next level of the hierarchy)
• the ground overlay for this Region

COMMON GATEWAY INTEFACE (CGI)

CGI is the standard that defines how the Web server software delegates the generation of web
pages to a text-based application (Gundavaram, 1996). These are commonly known as CGI
scripts, which can be written in any programming language, but scripting is often used. The
CGI provides an interface between the Web server and the client, usually a Web browser. The
creation of CGI scripts requires a Web server. In the future, a Web server can and should be
used to create and update KML codes.

PLACEMARKS

Placemarks are one of the easiest features to put into Google Earth. They can be created using
the Placemark tool. Name the placemark, and in the description box a link, image, chart, or
even a video can be embedded into the description. Place WGS84 coordinates in the
appropriate text boxes. It is more convenient for automation to use a KML file to determine
placemarks. You can specify a custom icon for the Placemark, and add other geometry elements
to it. There are three kinds of place marks: simple, floating, and extruded. The KML code for a
simple placemark (Figure 2.1) includes an XML header (line 1 in every KML file), a KML
namespace declaration (line 2 in every KML 2.2 file), and a <Placemark> object. The
placemark contains the following elements: a <name> that is used as the label; a <description>
that appears in the balloon attached to the Placemark; and a <Point> that specifies the
<coordinates> of the Placemark on the Earth's surface (longitude, latitude, and optional
altitude).

What users commonly think of as a placemark in Google Earth is actually a <Placemark>
element with a <Point> child in KML. A Point Placemark is the only way to draw an icon and
label in the 3D Viewer of Google Earth. By default, the icon is the familiar yellow pushpin. In
KML, a <Placemark> can contain one or more geometry elements, such as a LineString,
Polygon, or Model. But only a <Placemark> with a Point can have an icon and label. The Point
is used to place the icon, but there is no graphical representation of the Point itself. You can add
links, font sizes, styles, and colors, and specify text alignment and tables (see
http://code.google.com/apis/kml/documentation/KML_Samples.kml).

Animation notes

Google Earth does not allow animations (e.g., animated GIF) to be used as overlays. To
animate in Google Earth, a series of overlay image files are imported with time data included in
a KML file. However, you could embed animations into the <description> popup in the tags, as
well as embedding videos in the description. The method used in this work (Figure 2.2) is
discussed in the Atchafalaya Bay example.

The <TimeSpan> tag encloses <begin> and <end> tags, which indicate the start and end dates
for each image within a loop. Date and time are defined using XML schema time: yyyy-mm-

20

ddThh:mm:ss, where hours are 0 to 23. The time stamp was computed uniquely for the
examples discussed in this report because of time inconsistencies in the original files. This
problem can be avoided by following the XML schema time for file names. It also works in
ArcGIS Explorer; however, a colon “:” cannot be part of a file name for Windows platforms.
When importing an image into Google Earth using WGS84 coordinates, it may be necessary to
rotate and resize the image to make it display properly in the 3D viewer. This requires some
user action and several adjusmetnts of the coordinates in the image’s properties’s location tab
(or the KML file). It is important to convert the coordinates to decimal form because KML does
not parse minutes and seconds.

Creating KML files with Perl scripts

It is possible to use Perl scripts to generate KML files that would otherwise be very tedious to
create. The basic block within the KML file that needs to be reproduced for each time-stamped
image file to be displayed consists of only a few tags (Figure 2.2). The first two lines are
required for the KML parser. The 3D viewer will import the images into a folder as indicated
by the <Folder> tag (e.g., Atchafalaya_Tracer). The individual image will be a
<GroundOverlay> named “tracer_1997-12-21T00:00:00.gif”. The <TimeSpan> tag indicates
the interval, which is taken as the time interval for which this image is valid. For this example,
the <begin> date is the date of the file. The <Icon> tag is a Link-Object, which holds the Web
address of the file to be imported. The last set of tags defines the <LatLonBox> to use as the
boundaries of the image. The last two lines close the </Folder> and </kml> tags. They come
after all desired files are inserted. If only one image were to be imported, this could all be done
by hand, but the large number of files typically used (eight for this example) requires automated
processing.

We have created KML files using Perl scripts during the GoogleVision project. These scripts
are very convenient for writing out text files because of the ease of processing strings and
numbers with Perl. An example script (Figure 2.3) shows the components of the KML creation
process. A listing of required image files to import into Google Earth is obtained using the
operating system as shown at statement (1). The KML file is opened and the header and main
tags inserted at (2). Assign the bounds by trial and error at (3). This is uncertain because the
images may include white space around the plot and the Lat/Lon must be found for the edges of
this white space. We ran the Perl script and opened the resulting KML file in the 3D viewer to
adjust these coordinates. We loop over all of the files from the specified directory at statement
(4) and replace the file name with the XML schema discussed above. Write the KML body out
with the Perl variables $start_dtg and $end_dtg in the <TimeSpan> tag. Place the other
variables in the appropriate tags and write the footer to the file after the loop completes. An
example of the image overlay can be seen in Figure 2.4. Note that the image includes the entire
page, whose coordinates had to be placed in the <LatLonBox> tag.

Examples

This section will present results using the methods developed under the GoogleVision project.
Each of the sample regions incorporates some of the techniques described above. The original
model simulations were completed during several research projects at NRL (Cobb et al. 2008;
Keen and Holland 2010). They are shown here to demonstrate the GoogleVision methods.

21

If a Windows OS computer is used to construct the images and place them in the web folders,
the permissions must be changed manually on the Linux computer that is hosting the web page
to allow reading by the world (i.e. chmod 744). The default permissions are 740, which do not
allow reading by the web server. Another very important requirement is that the latitiude and
longitude for ALL images referenced in a KML file to be opened by GoogleEarth be in the
same reference system (e.g., longitudes all negative or all positive; i.e., no mixing as in -90 and
270).

ATCHAFALAYA BAY, LOUISIANA

This example demonstrates several useful techniques: (A) displaying a series of image files as
an animation using a Perl-generated KML file; (B) a placemark; (C) a screen overlay; and (D) a
balloon with user-supplied data. No local files are used. It also demonstrates two ways to
introduce user-supplied data—as screen overlays and links that can be opened in a browser. All
of these displays can be shown on the same view (Figure 2.4).

The KML file (Figure 2.2) for the initial image file of the simulated tracer distribution (Figure
2.4A) contains only a few tags to display one image. This file produces a folder named
“Atchafalaya_Tracer” in Google Earth; within this folder is a GroundOverlay file named
“tracer_1997-12-21T00:00:00.gif”, which is applicable for time span <begin> to </end>. An
icon (image) is produced from the link, http://gserver/Atchafalaya/CONC1_z1m_h000.gif, with
corners defined by the <north>, etc. tags. The Perl script that produces the full kml file for all
images is shown in Figure 2.3.

The Google 3D viewer also shows a placemark at Cypremort Point, as indicated by the standard
thumbtack icon (Figure 2.4B). This icon can be changed by the user. In order to display the
icon, the <LookAt> tag is required (Figure 2.5). The placemark location is set by the
coordinates of the point using the tags. Note that the longitude needs to be entered twice for the
placemark to be displayed and the <range> is the distance in meters to the target from the
viewer (altitude). Additional data can be displayed in the 3D viewer using a screen overlay
(Figure 2.4), in the example this is the timeseries plots of wind to the left. The screen overlay
does not move within the viewer but remains fixed. The example is placed in its current
position using a KML file (Figure 2.6) that defines the overlay and screen reference points
using <overlayXY> and <screenXY> tags, respectively, where the XY tags range from 0 to 1.
Note that the file is located on the server. This file was created in a text editor but it could easily
be created for dynamic data using a script or program.

A balloon feature can be used to insert a variety of user-supplied data. The balloon used in the
Atchafalaya project (Figure 2.4D) is colocated with the Cypremort Point placemark. When
clicked, its icon (the default is the same as for a placemark) opens a balloon containing links to
the same images that are displayed in the screen overlay. The KML file (Figure 2.7) that was
used shows only one way the balloon feature can be used. This example defines a balloon
template with the <Style> and <BalloonStyle> tags. A placemark is then identified and the
<ExtendedData> tag is used to incorporate the selected images. Note that the placemark using
the “dataBalloon” style defined in the file, where “data1” and “data2” are dummies for the
image locations. As with the simple placemark, the <LookAt> tag is required to display the
balloon. The click event is a part of the extended data. Also, note the <range> tag, which
defines the distance in meters from the placemark for displaying the point.

22

PATOS LAGOON, BRAZIL

The model results for the Patos Lagoon simulations are displayed in the Google Earth 3D
viewer (Figure 2.8) in a similar manner as Atchafalaya Bay. The animation consists of a series
of images (Figure 2.8A). The additional feature (Figure 2.8B) is a dynamic screen overlay that
will plot whatever new image is available. This section discusses this method.

The main web page for Patos Lagoon is “Cassino_Beach_Main.htm”. The table for links has an
<href> line with a reference to a KML file called “Todays_Image.kml” (Figure 2.9), which is
the static part of the Web service. The main tag in this KML file is the <NetworkLink> tag,
which has a name and description in addition to a <Link> tag for the actual target. Note that the
target is a KML file. This file would be generated by a script. However, the link in
“Todays_CrossSection.kml” (Figure 2.10) refers to a static image file. This file,
“Todays_CrossSection.gif” is a link created on the server to a file with a more specific name.
This operation could have been accomplished as easily using a script to create the KML file that
referred to the original file rather than a link.

ST. LOUIS BAY, MISSISSIPPI

This example shows how Regions can be used to display different levels of detail in a
simplified manner. The basic functionality that makes it possible for GoogeEarth to display the
range of data in such an efficient manner is the Region. There are at least two ways this
construction can be used to display images. A very useful method is to use regions to display
more detail for the same area. This concept is shown for the model bathymetry for St. Louis
Bay in Figure 2.11. The axes are omitted because they were not useful for the overlapping
images of this example. A more useful example, which also shows how the images overlap on
the earth layer, demonstrates the increased resolution for vectors, which are always difficult to
examine (Figure 2.12). The vectors smoothly increase in density as the view zooms in or pans
around the domain. The highest resolution for this simulation was ~100 m. Note the coarser
resolution vectors to the right (the next quadrant was not processed for this example).

A second technique is to plot inner nests within a larger domain. These higher resolution grids
can be displayed as the view moves over them. Figure 2.13 demonstrates the result for the
Mississippi Bight/Sound and St. Louis Bay area. The script (Figure 2.14) shows how <Folder>
is used to nest subregions. The previous example (Figure 2.12) used a <Folder> within the
intermediate plot to introduce the highest resolution images. The nested method is much easier
to complete and produces a smoother result but it is not always applicable. These samples were
completed manually but it would be necessary to use a script of some kind, and probably a
better graphics program, to make this a powerful data visualization tool.

Another feature becomes available when multiple Regions are used. The transparency of the
different layers can be adjusted to permit overlapping image viewing. This can allow, for
example, vectors to be plotted over the model grid in GoogleEarth without creating special
images. This is demonstrated in Figure 2.15.

SAN FRANCISCO BAY AND HUNTERS POINT

The San Francisco Bay example is very similar to the St. Louis Bay case except that the
smallest model grid uses a resolution of only 30 m. The scale change from the full bay model
(Upper panel in Figure 2.16) to the Hunters Point grid (lower right panel) is substantial. These

23

images were constructed directly from MATLAB without subsectioning as in the St. Louis Bay.
One consequence of this is that the highest resolution data cannot be presented. Compare to
Figure 2.12C to see the difference in resolution. In order to achieve this, it will be necessary to
find a more automated tool for making the plots. Some adjustment of the <Lod> controls
(Figure 2.14) is necessary for a smooth transition between Regions as well.

24

Tables and Figures

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
 <Placemark>
 <name>Simple placemark</name>
 <description>Attached to the ground. Intelligently places itself
 at the height of the underlying terrain.</description>
 <Point>
 <coordinates>-122.0822035425683,37.42228990140251,0</coordinates>
 </Point>
 </Placemark>
</kml>

Figure 2.1. Simple placemark KML file.

25

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
 <Folder>
 <name>Atchafalaya_Tracer</name>
 <GroundOverlay>
 <name>tracer_1997-12-21T00:00:00.gif</name>
 <TimeSpan>
 <begin>1997-12-21T00:00:00</begin>
 <end>1997-12-21T03:00:00</end>
 </TimeSpan>
 <Icon>
 <href>http://gserver/Atchafalaya/CONC1_z1m_h000.gif</href>
 </Icon>
 <LatLonBox>
 <north>30.080356</north>
 <south>28.658767</south>
 <east>-90.798731</east>
 <west>-92.784731</west>
 </LatLonBox>
 </GroundOverlay>
</Folder>

 </kml>

Figure 2.2. Example kml file to display one image file at a time. This block would be repeated
for other time-dated images through the <TimeSpan> tags.

26

#!/usr/bin/perl
use POSIX;
use the original file names for WinOS !!

$filedir = "Atchafalaya";
@files = `cd $filedir ; ls | grep gif`; (1)

open FILE, ">Atchafalaya_Tracer.kml" ; (2)

my @kmlheader = qq(<?xml version="1.0" encoding="UTF-8"?>
 <kml xmlns="http://www.opengis.net/kml/2.2">) ;
print FILE "@kmlheader" ;
my @kmlheader = qq(
 <Folder>
 <name>Atchafalaya_Tracer</name>);
print FILE "@kmlheader" ;

$number = $count ;
my $count = ("0") ;
get the dates from the renamed files--these don't seem to work with
WinOS!!

$dir = "$filedir/STD_DTG_FILES";
@filedates = `cd $dir ; ls | grep gif`;

$east = -90.798731; (3)
$west = -92.784731;
$north = 30.080356;
$south = 28.658767;

$start_dtg = "1997-12-21T00:00:00";
$end_dtg = "1998-01-18T21:00:00";
$timestep = 3;
#print @files;
$nn = 0;
$nt = 0;
$maxn = scalar(@files);
print"$maxn\n";

foreach $file (@filedates) { (4)
 $infile = $files[$nn];
 $file1 = $filedates[$nn];
 chomp ($file1);
 chomp ($infile);
 $start = index ($file1, "_") + 1;
 $stop = index ($file1, ".");
 $cnt = $stop - $start;
 $start_dtg = substr($file1, $start, $cnt);
 if ($nn < $maxn-1) {
 $file2 = $filedates[$nn + 1];
 chomp ($file2);
 $end_dtg = substr($file2, $start, $cnt);
 } else {
 $file2 = $file1;
 chomp ($file2);

27

 $start = index ($start_dtg, "T") + 1;
 $newdtg = substr($start_dtg, $start, 2);
 $end_dtg = $start_dtg;
 $cnt = 2;
 $hour += ($timestep * $nt);
 if ($hour > 21) { $hour = 0; }
 $newdtg = substr($end_dtg, $start, $cnt,
sprintf("%2.2d",$hour));
 if ($nt > 7) {
 $nt = 0;
 $newday = 19;
 $start = index ($start_dtg, "T") - 2;
 $newdtg = substr($start_dtg, $start, 2);
 $newdtg = substr($end_dtg, $start, $cnt,
 }
 }
 $nt++;
 $nn++;
 my @kml = qq(
 <GroundOverlay>
 <name>$file1</name>
 <TimeSpan>
 <begin>$start_dtg</begin>
 <end>$end_dtg</end>
 </TimeSpan>
 <Icon>
 <href>http://gserver/$filedir/$infile</href>
 </Icon>
 <LatLonBox>
 <north>$north</north>
 <south>$south</south>
 <east>$east</east>
 <west>$west</west>
 </LatLonBox>
 </GroundOverlay>) ;
 print FILE "@kml" ;
}

my @kmlfooter = qq(</Folder>);
print FILE "@kmlfooter" ;
my @kmlfooter = qq(</kml>);

print FILE "@kmlfooter" ;

Figure 2.3. Example of a Perl script to create a kml file for a series of image files as ground
overlays.

28

Figure 2.4. Screen shot of Google Earth showing the techniques discussed for the Atchafalaya
example: (A) ground overlay of an image file; (B) placemark; (C) screen overlay; and (D)
balloon. The ground overlay would be produced by the kml file in Figure 2.2 and animated
using the Perl script from Figure 2.3 to create a kml file to overlay a series of time-stamped
images.

29

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">

 <Placemark id="cypremortPointWind">
 <name>Cypremort Wind Observations</name>
 <LookAt>
 <longitude>-91.872</longitude>
 <latitude>29.719</latitude>
 <range>200440.8</range>
 </LookAt>

 <Point>
 <coordinates>-91.872,29.719,0</coordinates>
 </Point>
 </Placemark>
</kml>

Figure 2.5. Example Kml file for a placemark icon in Figure 2.4B.

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">

 <ScreenOverlay>
 <Icon>

 <href>http://gserver/Atchafalaya/Cypremort_Wind_NG.gif</href>
 </Icon>
 <overlayXY x="0" y="0" xunits="fraction" yunits="fraction"/>
 <screenXY x="0" y=".2" xunits="fraction" yunits="fraction"/>
 </ScreenOverlay>
</kml>

Figure 2.6. Sample Kml file for the simple screen overlay plotted in Figure 2.4C.

30

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">

 <Document>
 <name>Cypremort Data</name>
 <Style id="dataBalloon">
 <BalloonStyle>
 <text>
 <![CDATA[
 $[data1]
 $[data2]
]]>
 </text>
 </BalloonStyle>
 </Style>
 <Placemark id="cypremortPointWind">
 <name>Cypremort Data</name>
 <styleUrl>#dataBalloon</styleUrl>
 <ExtendedData>
 <Data name="data1">

 <value>http://gserver/Atchafalaya/Cypremort_Wind_NG.gif</value>
 </Data>
 <Data name="data2">

 <value>http://gserver/Atchafalaya/Cypremort_Wind_Obs.gif</value>
 </Data>
 </ExtendedData>
 <LookAt>
 <longitude>-91.872</longitude>
 <latitude>29.719</latitude>
 <range>200440.8</range>
 </LookAt>
 <Point>
 <coordinates>-91.872,29.719,0</coordinates>
 </Point>
 </Placemark>
 </Document>

</kml>
Figure 2.7. Sample Kml file to display the balloon feature for the winds at Cypremort Point
(Figure 2.4D).

31

Figure 2.8. Screen shot of the Patos Lagoon data, showing (A) the particle simulations and (B)
the network link to an updated image file for a cross-section of salinity.

32

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">

 <NetworkLink>
 <name>Todays_Image</name>
 <visibility>0</visibility>
 <description>This is an updated Cross Section</description>
 <flyToView>1</flyToView>
 <Link id="txs">

 <href>http://gserver/Cassino/Todays_CrossSection.kml</href>
 <viewRefreshMode>onRequest</viewRefreshMode>
 </Link>
 </NetworkLink>
</kml>

Figure 2.9. Example kml file to access a dynamically updated image file as in Figure 2.8A.

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">

 <ScreenOverlay>
 <Icon>

 <href>http://gserver/RESULTS/Todays_CrossSection.gif</href>
 </Icon>
 <overlayXY x="0" y="0" xunits="fraction" yunits="fraction"/>
 <screenXY x="0" y=".2" xunits="fraction" yunits="fraction"/>
 <size x=".4" y=".4" xunits="fraction" yunits="fraction"/>
 </ScreenOverlay>
</kml>
Figure 2.10. Example Kml file (Todays_CrossSection.kml) used to load dynamic image files in
Figure 2.8B.

33

Figure 2.11. The top panel shows the St. Louis Bay model grid. The lower consists of the four
sub-regions used to display higher resolution data. This plot uses the same number of points for
all of the regions.

34

35

Figure 2.12. Regions plots of current vectors over contours of surface concentration of the
tracer for the St. Louis Bay model. (Top) A plot of every 5th grid point. (Middle) Every 3 grid
cell. (Bottom) Every grid cell. The <Regions> views are adjusted to minimize overlap while
allowing a smooth transition between image sets. The maximum current is 1.6 m/s and the
maximum concentration is 430 dimensionless units.

36

Figure 2.13. Images showing the use of Regions for nests. The top image is a screen print of the
~800 m Mississippi Bight grid. The lower image is the zoomed-in screen showing the 100 m
grid with the coarse grid in the background. The script to set these regions up is shown in
Figure 2.14.

37

<?xml gversion="1.0" encodin="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
 <Document>
 <name>Mississippi Bight</name>
 <Region>
 <LatLonAltBox>
 <north>30.7166</north>
 <south>29.3048</south>
 <east>-87.66235</east>
 <west>-89.9552</west>
 </LatLonAltBox>
 <Lod>
 <minLodPixels>128</minLodPixels>
 <maxLodPixels>1024</maxLodPixels>
 </Lod>
 </Region>
 <GroundOverlay>
 <name>Mississippi Sound</name>
 <Icon>
 <href>SuperOverlay/MSB_BATHY_G1.jpg</href>
 </Icon>
 <LatLonBox>
……
 </LatLonBox>
 </GroundOverlay>
 <Folder>
 <Region>
 <LatLonAltBox>
 <north>30.38</north>
 <south>30.2325</south>
 <east>-89.2325</east>
 <west>-89.3833</west>
 </LatLonAltBox>
 <Lod>
 <minLodPixels>256</minLodPixels>
 </Lod>
 </Region>
 <GroundOverlay>
 <name>St Louis Bay</name>
 <Icon>
 <href>SuperOverlay/MSB_BATHY_G2.jpg</href>
 </Icon>
 <LatLonBox>
……
 </LatLonBox>
 </GroundOverlay>
 </Folder>
 </Document>
</kml>
Figure 2.14. Sample kml file (slb_u.c_region.kml) for generating the Regions in Figure 2.13.
Note that all latitude and longitudes must be positive or negative. Mixed reference systems give
unreliable results in Google Earth.

38

Figure 2.15. Screen shot showing overlapping images from St. Louis Bay. The model grid is
shown as the lowest layer. Note the channel inside the bay as well as the deep areas within the
sound. Above this are the contour plot of the tracer concentration and vectors for surface
currents. The transparency is adjusted using the slider at the lower left of the window. It is
adjusted to one-half for the Mississippi Bight layer (highlighted in the Places menu above the
slider).

39

Figure 2.16. Screen shots of the San Francisco Bay nests. These Regions overlap as they refine
the area around Hunters Point (lower left). However, even the highest resolution plot is
insufficient to show all of the grid cells—it displays every third cell. This is why the extra plots
from the St. Louis Bay simulation are necessary to see all of the data. These plots are much
easier to make, however.

40

3. ASW Reach-Back Cell Oceanographic Analysis System (ARCOAS)

Background

Also known as the ASW Reach-back Cell Oceanography Analysis System (ARCOAS), this less
generic name is rooted in the original requirement to support naval operations in anti-submarine
warfare (ASW). At NAVO, the oceanographers and forecasters in the ASW Reach-back Cell
(RBC) analyze ocean and atmospheric data to build a comprehensive picture of the
environment in operational areas of interest. Various tools in MATLAB, on web servers, and
other specialized software tools were used, adding to the complexity of the analysis process.
The ever increasing volume of measurements in the ocean and atmosphere, and expanding
numerical modeling prediction capability, called for a single, multi-purpose user interface with
a concise set of software tools for the user to complete the analysis in an organised work flow.
ARCOAS offers a certain environment and language in which the oceanographer is familiar
and comfortable, while providing environmental information in a common geographic
reference frame.

Allen et al. (2008) use the GIS (Geographic Information System) in a workflow approach in
which model predictions and observational data are merged and visualized in a geospatial
context for analysis. Here the conversion to GIS format of the data of interest is described as
well as the implementation of standards for input and output of the map server used in ArcIMS
(Arc Internet Map Server).

Software Approach

ARCOAS consists of ArcMap with customizations built into an add-in that includes a user
interface and tools to manipulate data. ArcMap is a powerful software package using GIS
technology developed by Environmental System Research Institute (ESRI), Inc.
(http://www.esri.com/). A highly flexible programming language used in Microsoft
applications, Visual C#, provides a rapid development path for invoking the GIS functionality
of ArcMap coupled with other components such as the NetCDF (Network Common Data
Format) library of functions and Zed Graph, a flexible graphics package. Thus, ARCOAS is
designed and built with an object-oriented approach that incorporates listeners, dialog boxes,
interactive displays, clickable buttons all put together to offer the user tools tailored to the work
at hand.

Applications

The primary focus of the oceanographers in the ASW RBC is to assess the level and confidence
in the data and model output in depicting the current and predicted structure of the ocean. One
goal is to provide a level of certainty to other users of the data and model output as it affects
their applications (e.g. algorithms for ocean acoustics) and their own interpretations on which
critical mission decisions are made. The first step is to quickly locate the data with respect to
the earth, a step at which a GIS is inherently quite proficient. Figure 3.1 shows a world map
view rendering available domains from numerical models: (1) the global Navy Coastal Ocean
Model (NCOM) run at NAVOCEANO; (2) the Coupled Ocean Analysis and Forecast
Prediction System (COAMPS®) run at Fleet Numerical Meteorology and Oceanography Center
(FNMOC) in Monterey, California; and (3) WAVEWATCH III™ run at FNMOC and NRL

41

Stennis. Once located, data can be visualized as shown in Figure 3.2 where the view is zoomed
to a model domain to focus on the locations of the plotted profiles and the layer rendering the
model output of surface water temperature. Other items rendered are locations of
environmental measurements such as from expendable bathythermographs (XBTs) and Argo
floats collecting ocean profiles of temperature and salinity; remotely sensed data tracks taken
by radar altimeters on polar orbiting satellite platforms measuring sea surface height (SSH)
variations; and multi-channel sea surface temperature (MCSST) data derived from brightness
temperatures measured from satellites.

Although Figure 3.2 shows a myriad of observation points within this prospective region of
interest, further analysis can be performed on specific observation data using a guided process
of elimination and selection. Figure 3.3 shows a plot of profiles of measured and modelled,
time-coincident parameters at a specific location for comparison. More interesting is the
comparison of the overlaid sonic layer depths (SLD) computed based on the plotted profiles.
SLD is highly sensitive to variations of the thermohaline structure which directly affects
performance of acoustic systems supporting ASW.

Additional capabilities provided in the user-interface structure of ARCOAS include layer
mathematics, animations, cross-sections, various drawing functions, a highly configurable set-
up utility, exporting presentable graphics, and model performance statistics.

Functionality

The following key points make ARCOAS functionality unique. Interaction between map and
menus allows for ease of selection of data and provides a means to narrow down the choices
based on location and other pertinent information simultaneously. Accessing data sets without
thinking about files takes away from the user the burden of interpreting what kind of data is
desired though data discovery by file system search which can be sometimes quite cryptic and
laborious to investigate. Spawning external programs or tool boxes is convenient because users
can stay focused in one software environment, letting the computing environment to implement
various software packages or algorithms. Interacting with data wherever they originated helps
the user stay organised and on task, so that updates and changes are immediate, where they
need to be, and without confusion.

Implemented using a GIS display and associated GUIs, users can display geophysical data
derived from observations collected in a variety of ways, their locations on the map and
information about that data in tables and graphs. Geophysical parameters made available in
four dimensions can be displayed on the map in 2-dimensional layers that can be enhanced for
visualisation. Typically, this form of data, i.e., “dataset”, typically comes from numerical
model in the form of NetCDF files. Geophysical data for the purposes of supporting Naval
operations, both observations and model predictions of oceanographic and meteorological
parameters, include temperature, salinity, currents, wind, humidity, pressure, and, water
elevations.

Interfacing with Data Services

Since ArcMap is the application on which ARCOAS runs, data services that are available to
ArcMap are inherently available to ARCOAS, though the current version does not directly

42

access any data other than on the local file system, such as flat files, shapefiles, GRID files,
netCDF and HDF files, and geodatabases. The broader data access made possible with ArcMap
(and ArcGlobe and ArcScene for that matter, all described at http://www.esri.com/) also
includes services such as ArcGIS, ArcIMS, Web Features Services (WFS), and Web Map
Services. It is safe to say that whether the data are handled through a local geodatabase or a
remote map server on the web, data accessibility could be transparent to the user. ArcCatalog is
the accompanying data management application for users to manipulate data services or just
browse the data.

The geodatabase is an object-relational database approach for storing spatial data serving as a
“container” for holding data sets, which in legacy systems consist of shapefiles, raster files, and
GRID files. Since the geodatabase can hold multiple feature classes in one place as well as
raster layers and tables, it can provide a convenient method for keeping a project with
topological information relating all the data contained therein. Data can also be stored or
published at a service site in much the same way. Taken to the next level, geodatabases and
geodata services can be managed by the ArcGIS server, which enables more concepts and
capabilities.

Access to the data services as described above while using ArcMap (which could also mean
while using ARCOAS) as the client can be done with the “Add Layer” button, which presents a
menu of choices in the spirit of accessing any of the data in one place. The compliance with
OGC standards makes this all possible in a general way. Maps and imagery as described above
are examples. Other clients, such as ArcGIS Explorer (freely available GIS viewer) can work
as a client for data services such as ArcGIS Server, ArcIMS, ArcWeb Services and WMSs, all
describe at the ESRI web site. Furthermore, the ArcGIS Web Mapping APIs allow embedding
into applications browsers as plug-ins to make them clients for accessing and manipulating
geodata.

ARCOAS has specific functions that save the current project not only in an MXD file, but also
puts together an accompanying geodatabase file as specified by the user. Since any given
project may access multiple sources, from a remote service or the local file system, users cannot
assume that all the data used in the current project will be available later. Therefore, users have
to be aware of what data needs to be stored in the project geodatabase for later use.

43

Tables and Figures

Figure 3.1. Global view of atmospheric and ocean prediction model domains available for
analysis. The colour-coded boxes correspond to domains organized in groups in this case by
type of model, including global NCOM subsections, COAMPS, and WAVEWATCH III. The
table of contents on the left indicates what is available for display. The inset dialog box is the
interface for bringing up a data layer from output of a model domain. In this case a region in
the northeastern Indian Ocean was selected and a raster data layer of temperature at the surface
from NCOM is displayed.

44

Figure 3.2. The raster layer of surface temperature from global NCOM in the northeastern
Indian Ocean and the satellite-derived MCSST (see Figure 3.1), showing that they are fairly
consistent with each other. Measured SSH points along tracks taken with a radar altimeter for
one day and profile measurement points limited to the NCOM domain are plotted on the map as
well. Greener points are newer. One selected point indicated by the arrow corresponds to
plots in Figure 3.3.

45

Figure 3.3. The point selected by the arrow in Figure 3.2 corresponds to this plot of the profiles
of measured and modelled temperature and salinity. The SLD levels overlaid on the profile
plots are calculated based on both measured and modelled parameters and show how sensitive
SLD is to the ocean thermohaline structure.

46

4. GServer Web Service

The Apache HTTP Server Project is an effort to develop and maintain an open-source HTTP
server for modern operating systems (httpd.apache.org). It has been on the internet since April
1996. The project is jointly managed by a group of volunteers located around the world.
Actions and errors generated by Apache web server for gserver are written to the following
files:

 /var/log/httpd/gserver-access_log

 /var/log/httpd/gserver-error_log

These are useful for debugging the Web server and cgi scripts. The prototype Web Server being
used in this work is

http://gserver:8000/Home_Page_for_Google_Earth_Project.Beta.htm

A Web Server can be made to respond to special requests from a client, even just using wget, in
order to obtain certain types of data offered by the server. For example, a server at FNMOC
was developed to make available spectral data at every grid point of the globe as it was output
by a global ocean wave model. A well-contrived http request in a broker language that is
interpreted at the server would cause software at the server to produce the data in some format
ready for the delivery to the web client. This server side software could be a data collector of
some sort that simply queries the data base (or just a file system of files) and assembles files in
an expected format. It could use the request in which the user-specified points form the basis
for a model run that will include these locations in a model domain and provide the output in
the expected format with some additional post-processing.

Generating Forms with CGI scripts

This demonstration is focused on the Regional Simulation Database button from the main menu
of Gserver. All of the databases that show up under Gulf of Mexico are from Gerris. The
available databases are listed in file, database.gv, which is currently located in:

 http://gserver/Databases (/home/keen/GoogleVision/Databases)

The entries are: (1) region; (2) database name; (3) longitude; (4) latitude; (5) file system path;
(6) date (YYYYMMDDHH): (7) time (MM:SS); (8) domain size (km); (9) number of
variables; and (10) a list of space-separated variable names. These are used to search the
databases by the cgi scripts. This discussion focuses on example scripts listed below (Located
in /home/keen/GoogleVision/SCRIPTS):

 Home_Page_for_Google_Earth_Project.Beta.htm
 form_get_region.py
 form_get_databases.py
 form_read_msb_gfs.py

47

 form_plot_variable_msb_gfs.py
 read_msb_gfs.py
 read_databases.py
 interp_idw.py

The process begins on the GoogleVision home page (Figure 4.1). This is an html document, but
selecting the Regional Simulation Databases link instantiates the form_get_region.py cgi script
using the following line:

 ...

 <tr><td>Regional
Simulation Databases</td></tr>

 ...

The name of this script follows a useful convention of beginning with the keyword, form, to
indicate that it is used to create an html form for sending to a web browser.

This is a simple form with two components: (1) a drop-down list of available regions that
contain accessible databases read from the file, databases.gv, and (2) an action bar labelled
“List Available Databases”. This script consists of print statements that are interpreted by a web
browser using the Content-type:text/html tag. Sections of this script are shown below to
demonstrate the general form of the cgi script that creates a form for interacting with a browser:

 #!/usr/bin/python
 from numpy import *
 import os, sys
 import cgi, cgitb
 from read_databases import *
 print "Content-type:text/html\r\n\r\n"
 print "<html>"
 print "<head>"
 print "<title>Model Simulation Databases</title>"
 ...
 print "<body>"
 ...
 numrg = Read_Regions (region)
 numdb = Read_Databases (dbname, dbpath, dbdtg, dbnvar)
 for dbi in range (numdb):
 index = dbi
 Read_Variables (index, var, dbnvar[dbi])
 print "<form action=\"http://gserver/cgi-bin/form_get_databases.py\">"
 ...
 print "<select name=\"region\">"
 while cnt < numrg:
 print "<option value=\"%s\">%s</option>" % (region[cnt], region[cnt])
 cnt = cnt+1
 print "</select>"
 print "<input type=\"submit\" value=\"List Available Databases\">"
 ...
 print "</body>"
 print "</html>"

48

Note that a backslash is the escape character that indicates the the double quotes inside the
string are characters and not string delimiters. This script sends a sequence of print statements
to the browser, which are interpreted as an html document that produces the page to request all
available databases for a selected region (Figure 4.2). These include “Gulf of Mexico” and
“Arabian Gulf”. Only the Gulf of Mexico is currently active. When this region is selected and
the List Available Databases button is selected, the form action tag from the file above is
invoked and the cgi script, form_get_databases.py', is instantiated.

This form (Figure 4.3) reads the databases.gv file and lists all of the databases for the selected
region in a drop-down box. The labels in the box include the database name, location
(longitude, latitude), size of the simulation domain, and the date assigned to the results. These
details are intended to help select a database. Clicking on the Open button invokes the action
associated with the form, which in this case executes the cgi script, form_read_msb_gfs.py.

Information from a form is entered in one of the boxes as shown. This request is passed to the
invoked cgi script through the QUERY_STRING environmental variable. This string includes
the entire request sent to the server from the client browser (e.g.,
“database=Mississippi_Bight_GFS-OM004&variable=current&lat=30.4&lon=271.8”). The
parts of the string are read from the html lines within select and input tagged sections from the
script, form_read_msb_gfs.py:

 ...
 print "<select name=\"database\">"
 print "<option value=\"%s\">%s</option>" % (database, database)
 print "</select>"
 ...
 print "<select name=\"variable\">"
 while v < len(var):
 print "<option value=\"%s\">%s</option>" % (var[v], var[v])
 v = v+1
 print "</select>"
 ...
 print "<label>Latitude: <input name=\\"lat\\" size=\\"12\\"></label>"
 ...
 print "<label>Longitude: <input name=\\"lon\\" size=\\"12\\"></label>"
 ...

This code accompanies the page to select a variable and location to extract from a database
(Figure 4.4). The while loop prints the available variables read from the databases.gv file into
the list box. This form has four user-selected entries before it is submitted to invoke the script,
form_plot_variable_msb_gfs.py, which is not actually a form at this time. It will become one
when a file download feature is added.

The three scripts listed at the top of this section that do not begin with form are modules that
include helper functions for accessing the databases and interpolation. Individual databases will
probably require a form and possibly a module (e.g., form_read_msb_gfs.py,
form_plot_variable_msb_gfs.py, and read_msb_gfs.py) to be supplied by their originator. There

49

must be a cgi script for each database because of differences in the data formats. This may be
unnecessary for some model output but it does allow for standardization of the database access
procedure. This places the responsibility of accessing the data accurately on the producer of the
database rather than every person (or program) that accesses it.

The form_plot_variable_msb_gfs.py cgi script does not generate a form. Instead, it returns the
requested information to the browser. The currently available data consist of interpolated time
series of values for the selected lat/lon from all of the files in the database. The interpolation
procedure is in a module, interp_idw.py. The time series of requested variable is written to a file
in the GoogleVision/download_tmp directory. This file has the form:

 $DATABASE_NAME-$VARIABLE_NAME_lat$LATITUDE_lon=$LONGITUDE.txt

The name given to this ASCII file is supplied along with the database reader script. This
capability will be implemented using a file download script in the future.

 Mississippi_Bight_GFS-OM003_surf_el_lat29.4_lon271.8.txt

Maps of variables are commonly used for both model development and operational simulations.
These will be implemented using scripts to make color fill images of selected variables for
regions/vertical slices/times. In order to test this potential plotting function, we have completed
preliminary tests for handling this within the database cgi scripts themselves. The more
standard approach is to use libraries and complete plotting packages to process the files. It
might be easier, however, to include more primitive functions directly in the cgi scripts if
dynamic queries and responses are to be used.

Image Generation in a CGI script

A test was conducted to see how much effort is expected to get a demonstration effort working.
There are two approaches to passing an image to the client: (1) save the image as a file and pass
it; or (2) stream the image directly without the added steps of creating and storing a file.

First we examine approach (1). This test uses an image of a color test pattern directly written by
the program, make_ppm.c, which writes a simple set of color triples to a file in the ppm
format. This format is not accepted by the browsers so it must be converted to an acceptable file
type using the system (“convert”) function. The original red-green-blue test pattern from this
file (not shown) is poorly reproduced by the jpeg (Figure 4.5A) but the gif conversion (Figure
4.5B) is very accurate. There was an error in attempting to upload the gif file to this Wiki
because it was apparently corrupted and showed no image. I opened the screen dumps in
Powerpoint and saved them both (the jpg and gif files) as jpg files. This resulted in good
transformation of the originally corrupted ppm file from the convert program. This needs to be
examined further. An error (Figure 4.6) occurs when the image file is in the cgi-bin directory
but it may be due to other reasons as well.

A test was completed for passing an image file to the browser using an image content type. This
works as long as the image is not in the cgi-bin directory. This has been successfully
implemented. The result (Figure 4.7) can be compared to the direct result (Figure 4.1). This
capability will be added to the database cgiscripts in addition to the time series extraction. The

50

conclusion for method (1) is that we can dynamically produce images and pass them to a client.
This method has been implemented in the script, form_plot_variable_msb_gfs.py using the
Matplotlib utilities. This is very similar to Matlab but with fewer lines of code. Combined plots
of two variables (e.g., u and v currents) are plotted (Figure 4.8), saved, and displayed in the
browser with the following Python code:
 import matplotlib
 matplotlib.use('Agg')
 import pylab
 ...
 pylab.plot(hr, tsu)
 pylab.plot(hr, tsv)
 pylab.xlabel ('Hours after ' + dtg[0])
 pylab.ylabel ('M/S')
 pylab.title ('East (blue) and North (red) Currents at ' + latstr + ' N, ' +
lonstr + ' E')
 filename = top + database + '_' + variable + '_lat' + latstr + '_lon' +
lonstr + '.png'
 pylab.savefig(filename)
 if test == 1:
 pylab.show()
 filename = database + '_' + variable + '_lat' + latstr + '_lon' + lonstr +
'.png'

 print " " % ('/download_tmp/', filename)
 ...

The second method is more desirable because of fewer steps to program and keep track of. It
also does not introduce potential collateral problems associated with file access on the server.
This requires some modification of the plotting procedures to pipe the output as raw data to the
browser.

Ocean Data Mining

Serve the data from a static data base or request data creation on the spotthat is the question.
The answer depends on the over-riding concern, saving time or space? A static data base of
spectra produced ahead of time by a model such as WAVEWATCH III can be output in a file
containing a snapshot of spectra for every grid point with grid spacing of 0.5 degrees from as
far south at 70 degrees S and and far north as 65 N. This snapshot (restart) file can be used to
store the spectral state of the model for the entire domain but it is about 535 MBytes. For a day
every hour the volume of data adds up to 12.6 GBytes. One year of model output would add up
to 4.5 TBytes.

The Global NCOM data base is a good example of the difficulty of dynamically accessing large
files using a web server (Figure 4.10). A plot of sea surface height (see Figure 4.11) was
completed within the allocated time-out but the currents for one year cannot be accessed in a
timely manner because of the need to unzip them. Python can read a zipped file using the Gzip
module but it has to write the data to a temporary file to access them using the NetCDF4
functions. There are also twice as many data values for vector data.

To run this model dynamically from nothing but an archive of winds fields from a global
atmospheric model such as NOGAPS requires that the wind input be assembled for an ample

51

period of time before the time of interest for a sufficient spin-up. A period of a week for a given
domain would require that the global model spin up for a week ahead of time. Total run time
could take in the order of about 10 minutes, post-processing a few more minutes.

A happy medium might be the storage of periodic restart files, say one per week, so that you
would never need more than a week restart, and all the data from the start is not part of a spin-
up. This is reasonable to satisfy most hindcast requests.

This question has been investigated with respect to extracting basin-scale results (N. Pacific)
for decadal periods. The resulting subsampled fields of surface currents from the 1/8° NCOM
global fields have been used to study the distribution of flotsam in the N. Pacific (aka Great
Pacific Trash Vortex). The fields were applied to a particle tracking model.

DATABASES

The databases are added to this list as they are made available; i.e., as reader software is written
and incorporated into the GServer web page. The permanent databases that are included are
described in this section.

Global NCOM 1/8°
Table 4.1 summarizes the contents of the database. The files are contained within a series of
subdirectories under the top folder, /u/NCOM:
 eas16_tides- model geometry netcdf files; no results
 glb8_2a- model geometry netcdf files; no results
 glb8_2b- years 1998-2001
 daily files
 compressed (gz) netcdf files for ssh, sss, sst, ssu, and ssv
 glb8_2c- years 1998-2002
 daily forecast files (τ = 0-168 hour)
 netcdf files for ssh, sske, sst, sss, ssv, ubh, and vbh
 glb8_2f- years 1997-2008 in subdirectories (see Table 1)
 glb8_3a- 30 Aug 2007 (nowcast and 72 hour forecast)
 glb8_3ac- years 2006-2008 in subdirectories
 daily nowcast files (τ = 0 hour)
 netcdf files for ssh, sss, sst, ssu, and ssv
 glb8_3b- years 2008-2012
 3-hour netcdf files
 netcdf files for ssh, sss, sst, ssu, ssv, s3d, t3d, u3d,v3d
 glb8_3b_hc- years 2007-2008
 3-hour netcdf files
 netcdf files for ssh, sss, sst, ssu, ssv, s3d, t3d, u3d,v3d

This list is a brief summary only. There are a number of other databases that are not on this file
system. These are discussed in the following document:
 /home/fitzgrld/ncom1/README.NCOM_CATALOG

Some of these have a reading script/program available but they are not part of a database at this
time. This section will focus on only those (see Table 4.1) that are relevant to the North Pacific
trash vortex study summarized as:

52

• NCOM_glb8 (0.0 E, 0.0 N): Size = 40075: Date = 1997070100 (1 July 1997 to 29 Aug
2008 12:00) /u/NCOM/glb8_2f/nc

Global Ocean Observations
The ocean observations consist of satellite, ship, glider, and buoy data from many locations.
These data are available locally at the following location:
 /u/prob/ncoda/data/navoqc

The variables consist of:

 altim: altimetry
 goes: geostationary operational environmental satellite
 lac: NOAA local area coverage
 mcsst: multichannel sea-surface temperature
 profile: expendable bathythermographs
 First file is 1 Nov 2007
 ship: ship-board observations
 ssmi: special sensor microwave imager

These are stored in subdirectories under navoqc_public/. These data files are read by a Fortran
program (ocn_obs.f):

 /u/LBSFI/spence/ocn_obs_reader/ocn_obs

 Here is an example use:
 [user]$/u/LBSFI/spence/ocn_obs_reader/ocn_obs profile 2007110900

 ****** Reading PROFILE Data ******
 file date time group: 2007110900
 data directory path: /u/prob/ncoda/data/navoqc/navoqc_public
 number profiles: 1367
 max number levels: 561
 file version number: 3

 profile call sign : "22522 " 1
 profile latitude : 8.95
 profile longitude : 108.46
 profile observed DTG : "200711090148"
 profile received DTG : "200711090404"
 DBDBV bottom depth : 93.0
 profile data type codes : 5 33
 temp data type : " Drifting BUOY Temp"
 salt data type : " MODAS Salinity"
 observed temperature levels : 10
 observed salinity levels : 0
 temperature gross error : 1.0000
 salinity gross error : 1.0000
 sea surface height anomaly : -999.0000
 sea surface temperature : 26.52
 security classification : "U"
 depth temp clm_std tmp_err tmp_prb clm_tmp mds_tmp

53

 13.0 -999.00 1.19 0.06 1003.000 26.82 26.48
 18.0 -999.00 1.16 0.06 1003.000 26.76 26.45
 23.0 -0.08 1.14 0.06 1.000 26.68 26.34
 28.0 0.04 1.16 0.06 1.000 26.56 26.19
 33.0 -999.00 1.18 0.06 1003.000 26.44 26.05
 38.0 0.04 1.22 0.06 1.000 26.29 25.92
 43.0 0.20 1.29 0.09 1.000 26.12 25.79
 48.0 0.08 1.36 0.10 1.000 25.95 25.67
 53.0 0.16 1.42 0.10 1.000 25.77 25.52
 58.0 0.12 1.51 0.11 1.000 25.52 25.35

…continued columns:

 glb_tmp rgn_tmp glb_std rgn_std tmp_xvl tmp_xsd
 26.58 -999.00 0.37 -999.00 26.87 1.18
 26.59 -999.00 0.35 -999.00 26.81 1.16
 26.54 -999.00 0.34 -999.00 26.74 1.14
 26.48 -999.00 0.34 -999.00 26.64 1.16
 26.39 -999.00 0.33 -999.00 26.52 1.18
 26.23 -999.00 0.32 -999.00 26.40 1.22
 26.16 -999.00 0.38 -999.00 26.25 1.29
 26.12 -999.00 0.52 -999.00 26.11 1.35
 25.95 -999.00 0.72 -999.00 25.93 1.41
 25.67 -999.00 0.97 -999.00 25.59 1.50

This program can be used to accumulate data to validate the ocean model database from
NCOM. This may require modification of the source code, however, ocn_obs.f. There is an
alternative file, ocn_obs_new.f but this had a memory error when compiled with gfortran.
More later...

The following Matlab scripts also access these databases:

 /home/rowley/matlab/ocnqc

 load_altim_qc.m
 load_mcsst_qc_simple.m
 load_ncoda_qc_profile_full.m
 load_ssmi_qc.m

WEB SERVER SOFTWARE

The underlying method is to implement reading software through the GServer web page
(gserver:8000). This is being done as discussed for the web server documentation. There is
some redundancy with that document and the reader should check both. The opening page to
the GServer web server is:
http://gserver:8000/Home_Page_for_Google_Earth_Project.Beta.htm

This is the page that is being actively developed at this time (Figure 4.1). Selecting the
Regional Simulation Databases button opens a Python cgi-script (form_get_region.py), which
sends a form to the browser. This form has a drop-down list from which the Global database is
selected. When the List Available Databases button is selected, the cgi-script,
form_get_databases.py is invoked and creates a new form that lists the global databases. An
example is the first database listed above. The name is based on the request to the form from

54

the previous form. The coordinates are general; in this example, they indicate it is centered at
the intersection of the equator and prime meridian. The size is the breadth of the domain, which
in this example is the Earth circumference. The date is the starting date for the database. When
a database is selected, the form_read_Global.py cgi-script is called (Figure 4.10).

Figure 4.10 shows the form for selecting a single point for data extraction. When a variable and
location/time selections are made, the cgi-script, form_plot_variable_NCOM_glb8.py is called
as the action. This script actually accesses the database and creates the requested output. An
example can demonstrate the output from this form. We can plot SSH for the period 1998-2002
at longitude 180.892 E, latitude 29.4 N (Figure 4.11). The straight line in the figure represents
bad files from the database, in this case SSH exceeded 2000 m at this location.

DATABASE ACCESS

Each database is unique. No standards have been applied to the output. Most of those available
do use NetCDF files but without standard variable names or output formats. This necessitates
very specific cgi-scripts to read them. Ideally, these scripts will be supplied by the creator of the
database. This is not the case. The global NCOM database is described as an example of the
types of issues to be aware of in constructing a web-accessible database and its required reader
software. The variability of this database can be seen in Table 4.1.

There is substantial variation in the data availability for multiyear scales. This makes the reader
more difficult to write. These variations must be incorporated using Exception catching. As an
example of this method, consider the following Python code for reading a packing attribute
name from a NetCDF file, which may not be present in the file/database. Some of the global
data are packed and some are not.
 nc = Dataset (ncfile, 'r')
 while True:
 try:
 uDataMin = nc.variables['U_Velocity'].pack_min[k]
 uDataMax = nc.variables['U_Velocity'].pack_max[k]
 ubits = nc.variables['U_Velocity'].pack_nbits
 break
 except AttributeError:
 print "Attribute not found: File not packed."
 break
 ncU = (nc.variables['U_Velocity'][k, :, :])
 nc.close()

There are several steps to complete to successfully read a database entry. There is one entry for
each time within the requested interval. The current configuration for the global databases uses
only fields for 00:00 on each day. These are not averaged. These are listed in dtg.YYYY files
in /home/keen/GoogleVision/Databases/NCOM_glb8. The model output levels are also listed in
files, zm.txt and model_zm.nc.
 1. Find the file containing the variable, which may be in one of several

directories
 2. Uncompress any files as indicated in Table 1
 3. Find the requested variable in each file
 4. Fetch the variable from the file
 5. Interpolate to the requested location

55

File exceptions can occur at steps (1)-(4). Exception handling can make the variable extraction
easier to code. For example, Figure 4.11 shows 6 years worth of SSH but no data were read for
approximately days 1200-1700. The cgi-script prints an error file with all bad data points listed.
This file is important for identifying valid fields and understanding their causes. A typical
ERROR file is:
download_tmp/NCOM_glb8__ERROR_ssh_Surface_lat29.4_lon217.8_1997-2002.txt

This file shows that values of SSH exceed 2.7×103 on 17 May 1998, 31 Aug 1999, and 357
times between 20 Jun 2000 and 30 Sep 2002. The long string of bad values in Figure 4 are
associated with continuous excessive SSH between Feb and Dec 2001. This is not a problem of
the web server, howeverlet the user beware.

The extraction steps above are written into the database retrieval software. The directories are
constructed using the top directory and any date-dependent sub-folders (e.g., “1998”). Only 3D
files are compressed. These can be accessed directly by NetCDF 4 in Python but the individual
variables cannot be extracted without writing out the contents to a temporary file. These files
are written to /tmp on the server host (e.g. typhoon).

The initial purpose of this work is to extract surface currents. This can be done by either
retrieving them from the u3d and v3d files or the ssu and ssv files (see Table 4.1). The latter is
preferable because it skips step (2), which is time consuming, but not all years contain daily
fields of surface currents; these variables are only available from 2001 through 2008.
Nevertheless, this approach will be used for the time being until the usefulness of the additional
3.5 years can be determined. These files are all uncompressed and the frequency is a standard 3
hours. However, we will continue to use the daily values from the database listings.

DATABASE PRODUCTS

The database consists of a number of different variables like those listed in Table 1. These are
useful of themselves for evaluating the ocean state predicted by the model. This instantiation of
the ocean can be compared to others (e.g. satellite images). There are several ways in which
ocean instantiations can be constructed from the data base: (1) time series of model variables at
specified locations; (2) maps of variables at different depths; (3) cross-sections of lat/lon and
depth, or random orientations; (4) phase plots of lat/lon/depth versus time. These products can
be used to generate derived fields that can be used for problems like the Pacific Trash Vortex.
The previous section has demonstrated the time series plots of SSH at interpolated points
(Figure 4.11). The same can be done for the surface currents.

The cgi-script, form_plot_variable_NCOM_glb8.py extracts a subdomain using the menu
(Figure 4.12A), which contains an input box for the requested output domain. The input data
are output as csv and saved to the download directory below the GoogleVision home (e.g
/export/home/typhoon/keen/GoogleVision/download_tmp/BOXFILES). The format of these
files includes the variable name (e.g., ssu), depth (e.g., Surface), lat and lon, box size (e.g., 0.5),
and input file date (e.g., 2001031700):
 NCOM_glb8_ssu_Surface_lat29.4_lon217.8_box=0.5_2001031700.csv

The requested lat/lon is the center of the region and the box is centered on this location (Figure
4.12B). The file contains longitude, latitude, and eastward and northward surface currents (e.g,
for ssu). An example of a map is the 30-day average surface currents for the N. Pacific (Figure

56

4.13). These plots are sent directly to the browser as described above and saved as files. The
original values are written to files as shown above.

The vector plot output in Figure 4.13 suggests that there is a maximum resolution that is useful
for our purpose. We can use this example to estimate the output cell size from the number of
cells displayed in the vector plot: 10° ÷ 0.125° = 80 cells. It is possible to reduce requested
output to be <100 cells along any axis. This may be unnecessary, however, because the user can
potentially zoom in to clear up the images as needed.

The reduction of model output is being implemented using the Python arrays, uavg and vavg,
which include subsampled output on a reduced region. The cgi-script
form_plot_variable_NCOM_glb8 is designed to work from the command line by manually
editing to make the variable, test = 1. This is much faster, especially when there are file-system
latency issues. The result from this procedure is much clearer to read (Figure 4.14).

The effect of the subsampling is seen in Figure 4.15. This indicates that care must be taken in
specifying the output resolution or the result may not be suitable for the intended purpose. It
would also be useful to have an accurate maximum current printed in the title for each plot
because they do not use a standard vector length scale. The values in the NetCDF files also do
no reflect those used in the subsampled plots. The final preliminary output for this cgi-script is
shown in Figure 4.16. Note that the current vectors are given in cm/s. These scripts,
form_read_Global.py and form_plot_NCOM_glb8.py, can be modified for other variables.
They also need to be broken down into reusable code.

57

Tables and Figures

Table 4.1. File/output characteristics of the NCOM Global 1/8 ° data base for 1997-2008.

Year(s) Variables 2D/3D Output
Frequency (hr)

Compressed
(2D/3D) Notes

1997 ssh*, s3d, t3d,
u3d, v3d 6/24 n/y *24 hr frequency through 30 Jun

1998
ssh*, sst, ssu%,
ssv%, s3d, t3d,
u3d, v3d

6/24 n/y * 3 hr frequency ; % 1 month
frequency

1999 ssh, sst, s3d, t3d,
u3d, v3d 6*/24 n/y NA

2000 ssh, sss, sst, s3d,
t3d, u3d*, v3d* 3/6 n/y * 12 hr frequency

2001-
2002

ssh, sss, sst, ssu,
ssv, s3d, t3d,
u3d, v3d

3/12 n/y NA

2003
ssh, sss, sst, ssu,
ssv, s3d, t3d,
u3d, v3d

3/6* n/y#
* 12 hr frequency before 1 Jul and
after 1 Oct 12:00; # uncompressed
for 1 Jul - 1 Oct 12:00

2004
ssh, sss, sst, ssu,
ssv, s3d, t3d,
u3d, v3d

3/3@ n/n#

@ 6 hr frequency before 1 May
and between 1 Jun and 1 Sep; 12
hr frequency from 1-31 May;
compressed for 1 Feb - 30 Apr
18:00

2005
ssh, sss, sst, ssu,
ssv, s3d, t3d,
u3d, v3d

3/3 n/n NA

2006-
2008

ssh, sss, sst, ssu,
ssv, s3d, t3d,
u3d, v3d

3/6 n/n NA

58

Figure 4.1. Screen dump of the GoogleVision home page. The button for finding a model
database is labelled "Regional Simulation Databases".

59

Figure 4.2. Screen image of the html form for selecting a model region.

60

Figure 4.3. Page for selecting a database from the Gulf of Mexico region.

61

Figure 4.4. Form created by script form_read_msb_gfs.py to interpolate a set of fields to a time
series.

62

Figure 4.5. A. Test pattern converted to a jpeg file. B. Test pattern converted to a gif file.

Figure 4.6. Error from the browser when it attempted to show the images from Figure 1.

63

Figure 4.7. Screen dump from gserver web site for the images from Figure 1.

64

Figure 4.8. Plot from the MSB region made with the Matplotlib utilities.

65

Figure 4.9. Opening page for the GServer:8000 page in the Oceanography division. The
database portal is through the Regional Simulation Databases button.

66

Figure 4.10. Form for reading specific variables and dates from the NCOM global database.

Figure 4.11. NCOM global model output at 24-hr intervals for 1997 to 2002 at 180.892° E,
29.4° N.

67

Figure 4.12. A. Menu for the global NCOM results. The Output Box Size (Deg.): box is used to
extract a subarea from the entire database extent. B. Image of the N. Pacific Ocean as described
in the menu from A. The islands are Midway Islands, NW of Hawaii.

Figure 4.13. Browser result for December average surface currents and time series at the center
of the output box.

68

Figure 4.14. A. Jan 2006 average currents subsampled to 1/4°. B. Jan 2001 average currents
subsampled to 1° for the N. Pacific.

69

Figure 4.15. A. Jan 2006 average currents subsampled to 1/4°. B. Jan 2001 average currents
subsampled to 1° for the N. Pacific.

70

Figure 4.16. Example of output from the NCOM global 1/8° database.

71

5. Component Integration: Ocean Drifter Web Services

Introduction

A Lagrangian particle-tracking algorithm was also applied to potential contaminant transport
within San Francisco Bay and Mississippi Sound (Keen and Holland, 2010). This model is
useful for near-field studies like that at Hunters Point, San Francisco (Figure 5.2A) as well as
longer transport paths within the full estuary (Figure 5.2B). The aqua particles have a settling
speed of 10-3 mm/s, which is representative of fine clay flocs and particles. The yellow particles
have a settling speed of 10-2 mm/s, which is more typical for large flocs and silt. The
bathymetry is represented by shading. The vectors are the surface currents calculated by NCOM
on the 30-m grid. Current speed (m/s) is indicated by shading as shown on the colorbar.

Drifter Model

The original drifter model is written in Fortran; the code was originally part of the ECOM
(Estuary and Coastal Model) modeling system. The tracer and particle code, in addition to the
sedimentation algorithm, were removed and formed into the HQCM (HydroQual Contaminant
Model) system that includes the particle tracking model. This HQCM module was used for both
Eulerian and Lagrangian simulations in several coastal transport studies (Keen and Holland,
2010).

DESCRIPTION

The current work is further decomposing this model into a particle tracking module. This
software is being developed from previous studies at NRL (Keen et al., 2006; Keen and
Holland, 2011). A commercial particle-tracking model was used by Keen et al. (2006). The
particle tracking model uses three-dimensional current fields (u, v, w) and Gaussian random-
walk dispersion [Lu et al., 2002]. A particle’s location (x, y, z) after a time step Δt is given by:
 (1) xt+1 = xt + (u ⋅ Δt) + (ΔDLT ⋅ u/s) + ΔDH0

 (2) yt+1 = yt + (v ⋅ Δt) + (ΔDLT ⋅ v/s) + ΔDH0

 (3) zt+1 = zt + (w ⋅ Δt) + ΔDV0

where: u = x-directed velocity; ΔDLT = horizontal dispersion; s = current speed; v = y-directed
velocity; ΔDH0 = neutral horizontal dispersion; ΔDV0 = neutral vertical dispersion; w = vertical
velocity. The dispersion terms are given by:

 (4) ΔDLT = (6 ⋅ KD1 ⋅ Δt)1/2 ⋅ RAND-11

 (5) ΔDH0 = (6 ⋅ KD2 ⋅ Δt)1/2 ⋅ RAND-11

 (6) ΔDV0 = (6 ⋅ KDV ⋅ Δt)1/2 ⋅ RAND-11

where KD1, KD2, and KDV are dispersion coefficients with values of 0.002, 0.002, and 0.0002
m2/s, respectively. The dispersion terms are randomized for fractional values from -1 to 1 using
the RAND-1

1 term, which has a Gaussian distribution. Particles are introduced at specified
points using a fixed production rate of 2 particles per day. As a particle settles through the
water column, equations (1) to (6) are solved at its new level before the settling velocity is

72

applied. When the particle reaches the bottom it is deposited and cannot be resuspended. This
method was applied for a year of archive results for the Papua New Guinea area (Figure 5.1).
xamining particles in Groups 63 through 91 released at this location.

The model represented by equations (1) through (6) has been modified for a web-based
application as described herein. Particle movement within the model coordinate system is
accomplished using three terms: (a) advection by the 3D currents from a hydrodynamic model;
(b) a random-walk component using the background mixing, horcon; and (c) sub-grid-scale
diffusion based on the embedding flow, with smagcon and/or the Smargorinsky algorithm. The
resulting terms are slightly different from Equations 1 through 6 above because the coordinates
are in fractions of the local coordinate system, and the flow terms, u/s and v/s are not multiplied
by a random coefficient, ΔDLT. The modified equations are:

xt+1 = xt + Δx1 + Δx2 + Δx3

Δx1 = Δt ⋅(u/hx)

Δx2 = ΔDLT ⋅ [2⋅Δt(Kc/Prh)/ hx2]½

Δx3 = Δt × Δx,y[(hy/hx) ⋅ Ah⋅D]/(PrhhyhxD)

where: Ah = Kh⋅hxhy × [Δxu2 + Δyv2 + 0.5⋅(0.25⋅Δyu + 0.25⋅Δxv/Δx)2]½

 Δt = time step

 hx, hy = local cell dimensions along x and y axes

 Kc = constant horizontal eddy diffusivity

 Kh = dimensionless coefficient used in Smagorinsky diffusion term, Ah

 Prh = horizontal Prandtl number

 Δx,y = spatial gradient along both x and y axes

 D = local water depth

The model structure can be defined using classes, which are contained in the following class
files:
 time.f: time_ymdhm_to_1980minutes; time_1980minutes_to_ymdhm

 utils.f: gasdev; ran2; utils_smag

 particle.F: particle_main; particle_position; particle_position_write;
particle_position_read

 grid.F: grid_new_ascii; grid_read_ascii; grid_read_nc;
grid_new_vertical; grid_corners

 io.F: io_read_nc_fluxes; io_read_ascii_ssu; io_strlenf77;
io_printint; io_getreal; io_getint

 transform.F: transform_point_bilinear_u; transform_point_bilinear_v;
 transform_point_bilinear_w; transform_point_bilinear_h;
 transform_point_bilinear_aam; transform_point_bilinear_kh;
 transform_point_bilinear_ud; transform_point_bilinear_vd;
 transform_point_idw_init; transform_point_idw_interpolate

73

The following files are also used:

 Header file: hqcm-TEST.inc, hqcm-glb8.inc

 Build files: HqParticle.pkg, Makefile

 Fortran 90 source code: nf90_handle_err.f90

 Executable: HqParticle_Linux.ex

The last is the executable file. There are no parameter input files; these values are defined as
parameters in the header file, hqcm-glb8.inc.

 restart: if true, a file will be read to continue a previous simulation
with continuous dates but not time steps

 dtgstart: WHOI format start date for simulation series (e.g., 200503150000)

 dtgrestart: WHOI format restart date (e.g., 200503150000)

 dtgstop: WHOI format stop date for current run (e.g., 200503150000)

 logunitp: flag for writing a log file (not equal to 6, name = runlog-
YYYYMMDDHHMM.txt)

 hydfreq: frequency in hours to read a new set of forcing files

 printfreq: frequency to update the particle location files for each source
(hours)

 dti: time step in seconds

 horzmix: CONSTANT = use the value of horcon

 SMAGORINSK = calculate using Smagorinsky (1964) algorithm

 vertmix: set to CONSTANT to use a value of khcon instead of reading from
a file

 vertflux: set to CONSTANT to have no vertical transport of particles
instead of reading from a file

 horcon: constant value of horizontal mixing (m2/s)

 smagcon: coefficient used in Smagorinsky horizontal mixing
(dimensionless)

 hprnu: ratio of particle mixing to the horizontal mixing by the
background flow

 khcon: constant value of vertical mixing coefficient to use (m2/s)

 vprnu: ratio of particle mixing to the vertical mixing of momentum
(kh)

 cmax: maximum value of concentration after conversion from particles
(not implemented)

 relhr: frequency of particle release (hours)

 npart: number of particles per release

 nconv: total number of releases before conversion of particles

 to concentration (not implemented)

74

 (note: total no. of particles in system = npart × nconv)

 irelsthr: beginning hour of particle release

 npclass: number of particle classes

 nsource: no. of sources of particles

 epf: error/message print frequency in seconds

 srclon: array of longitudes for particle sources

 srclat: array of latitudes for particle sources

 srcname: array of names of particle sources (max length = 10 characters)

The horizontal mixing processes are controlled by model variable horzmix. The background
mixing is always calculated; if it is not desired, horcon must be set to zero. If horzmix =
SMAGORINSK or MODEL, the flow-dependent term is either calculated or read from files,
respectively. Thus, setting horzmix equal to CONSTANT will turn these off no matter what
value of smagcon is set in the input file (particle.in).

The output consists of a file for each source location. This text file contains the following
columns: (1) longitude; (2) latitude; (3) depth below surface; (4) model day for current output;
(5) source number; (6) particle group number (i.e., time since beginning of simulation); (7)
particle number within group.

The original model used the concept of a group to represent the age of particles. For example,
all of the particles released from all sources are assigned to group 1, and older groups of
particles are increased to the next higher group. Thus, the oldest particles have the largest group
number. This is a way of dealing with the age of particles that chemically react with the
environment. However, it is not possible to plot individual particle tracks without special
output. The current version replaces this algorithm by assigning the group number to all newly
created particles. This means that the oldest particles are in group 1. This allows paths to be
tracked more easily.

OPERATION

This is an overview of the model operation. This description consists of three parts: (1) the
coordinate system, or reference frame; (2) particle tracking; and (3) particle movement. A good
understanding of part (2) is important to maximize the usefulness of the results. The
computation of (3) is the area that will probably require additional work in the future because of
differences in grids and forcing fields. This discussion omits the forcing fields because they are
nonstandard and special software is required for new applications.

The model operates in a general curvilinear coordinate system for the horizontal plane. The
input/output indices are in longitude and latitude. These are converted to the corners of the axes
by subroutine grid_corners. This function converts the georeferenced coordinates to meters
from index (0,0) in the curvilinear coordinates. It must be modified for applications other than a
Cartesian grid, which is its current configuration. Particle positions within this model
coordinate system are transformed to longitude and latitude for output using xcor and ycor,

75

which are not used for tracking particles during a simulation. Instead, individual particles are
tracked using arrays, xp, yp, and zp for the x, y, and z axes. These locations are real number that
are fractions of cell (i, j). This is done in a dead-reckoning fashion with each new position
calculated using the forcing fields from the last position, starting with the location of its source.
The vertical coordinate system is based on z levels at fixed depths (meters negative downward)
that decrease down: e.g., -1, -2,...-10, which are converted to zp.

Every particle released during a simulation is tracked individually and unique identifiers are
written to the output files. There is one output file for each source (e.g.,
PARTICLE_FPP_201101010000.TXT). The date in the file name is the input parameter
dtgstart, or dtgrestart if the current simulation is restarted from a previous run. Each particle is
identified by its source, group, and particle number. The sources are input from the parameter
list. A group of particles is released at frequency relhr and remains tagged as a common group.
The current mode has been modified from the original as follows. As particles were released,
they became members of group 1, which therefore always contained the newest particles. This
is difficult to use to track individual particles, however, because a particle's group changes
every release. This has been avoided by leaving particles in the group to which they are
assigned upon release. Thus, group 1 contains the oldest particles and individual particles can
be tracked throughout any length simulation. Any number of particles (up to npartm) can be
released every time. This is useful to evaluate the impact of randomness at sub-grid-scales is
described in the next paragraph. This description of particle properties allows any combination
or release times to be identified and plotted. For example, the simulation of particles released
immediately following the nuclear accident at Fukushima Power Plant Number 1 between 11
March and 1 April, 2011, can be simulated using a run that starts on 1 January 2011 by
examining groups 63 through 91.

The new particle positions are calculated in the main program, particle_main. The random
coefficients, ΔDLT, are calculated by functions, utils_gasdev and ran2. Subroutines
transform_point_bilinear_ud, etc., interpolate the hydrodynamic fields to the current particle
position, and the Smagorinsky coefficient field Ah is calculated for each new current field by
subroutine utils_smag. Analogous equations are used for the y and z axes, except with vertical
mixing constant and diffusion coefficients in variables khcon and vprnu, respectively.

The drifter model is fast but it is convenient to have the capability of initializing the particle
locations in the case of an accidental stoppage or to evaluate the tracks. This has been
implemented using a couple of added functions. The input parameters (contained in file,
particle.in) now include a date-time group for the simulation to be used as a restart source
(dtgstart) as well as an added variable for the date-time to restart (dtgrestart). The dtgstart
variable is used as part of the particle file (e.g., PARTICLE_ship_01_200603090000.TXT)
used to initialize all existing particles up to the day after the initial date-time, which is
transformed into a day since dtgstart. These longitudes and latitudes are transformed into grid
coordinates (i.e., 1.0, 1.001, etc) by subroutine read_particle and passed to the calling program
along with the source, group, and particle numbers associated with each line in the file. These
values serve as the first locations for the continuing computations. Note that the run length in
the header file refers to the entire simulation series including the previous simulations from
dtgstart.

76

The restart capability has been tested on the NPAC domain (Figure 5.3). A drifter simulation
was started on 9 March 2006 00:00 (200603090000) and run for 174.5 days. These results are
discussed as part of Case 2 below. This simulation was restarted on 30 August 2006 00:00 and
continued until day 297.5, at which time the model ran out of forcing fields from the NCOM
1/8° database. The surface currents at station ship 01 for this interval (Figure 5.4) show a daily
signal as well as a 90 day cycle in eastward currents. The northward current is also weakest
during this time.

The resultant distribution of all particles (npart = 2) and groups (i.e., daily; relhr = 24) at the
end of the simulation (Figure 5.5A) shows a lot of spreading in the western Pacific near the
Kurishio current area. This plot includes particle locations from both particle files:
PARTICLE_ship_02_200603090000.TXT and PARTICLE_ship_02_200608300000.TXT.
The plotted date thus only includes particles from the latter file. A track from particle 1 in
group 1 (the first group released) (Figure 5.5B) shows results from both files, however. The
blue line is the newer particles (through 30 Aug 2006) and the red is the location of the end of
the year.

Analysis Methods

Supporting software for this work consists of two types: (1) processing raw files into formats
suitable for use in the model and postprocessing by software like Matlab; and (2) scripts and
programs used for visualization and graphics

DATA PROCESSING

The North Pacific Trash Vortex application uses the data from NCOM 1/8° database, which are
stored in NetCDF files. These are processed into csv files using the cgi-bin script
form_plot_variable_NCOM_glb8.py. These files are placed in directories after being processed
by a shell script rewrite_csv.sh, which replaces dashes with “-9999”. The resulting files are
prepended with “new_” to distinguish them from the originals. They are readable by all of the
programs in use for this project. The raw output (csv) files are in the spatial and temporal
subsample frequencies defined in the extraction Python script; currently these are 1/4° and 24
hours, respectively.

The original drifter model does not interpolate any forcing fields. It uses each time-stamped
field until the next is required and it runs on the grid file supplied with the csv files (e.g.,
GRID_0284x0138.TXT). This has been modified for using monthly mean fields to interpolate
in time. The raw files are averaged in time (30 days) using a Matlab script,
time_space_average.m. This script produces files called
 mean_Jan2001_ssu.csv-> new_NCOM_glb8_ssu_Surface_lat25.0_lon190.0_box=100-
40_2001011500_cell0.25.csv@

These are linked to files of the old naming convention to avoid special cases. However, the file
dates that are available are listed in a text file, time.in. This is used to read the hydrodynamic
field dates. The header row has been removed in order for the Fortran program
io_read_ascii_ssu (file io.F) to read them the same was as the raw csv files. The spatial
interpolation is completed by the transformation subroutine as is currently done, so no further
processing for spatial simulations is required.

77

VISUALIZATION AND GRAPHICS

The results from the model are processed with Matlab scripts:
 /home/keen/PROJECTS/Drifter_Studies/Software/test_bathy_01.m

is used to process Case 1. The results from the North Pacific using the global NCOM 1/8°
results are plotted with:

 /home/keen/PROJECTS/Drifter_Studies/Software/npac_glb8.m

 /home/keen/PROJECTS/Drifter_Studies/Software/plot_vectors_npac.m

Script, npac_glb8.m currently produces 10 figures.

• Figure 1 is the location of six particle sourcess plotted over bathymetry.
• Figure 2 is a plot of all particles/groups from the simulation. If a particle was ever at a

location, it is plotted.
• Figure 3 plots the path of a specified particle/group.
• Figure 4 is a time series plot of east and north currents at six particle source locations

(e.g., YH-HI). These are interpolated directly from the global database by the Python
script form_plot_variable_NCOM_glb8.py when it extracts the currents. They are read
from a text file (e.g., FORCING_ship_01_200608030000) with space-delimited fields,
time, u, and v.

• Figures 6-11 are time series plots of the dimensional forcing terms used to calculate a
particle's new location.

The script, plot_vectors_npac.m, is used to plot a cut-out of the subsampled vectors from the
global database. The data are read from files (e.g.,
new_NCOM_glb8_ssu_Surface_lat25.0_lon190.0_box=100-40_201103110000_cell0.25.csv,
which are created from the original csv files from the Python script,
form_plot_variable_NCOM_glb8.py. The original files contain "--" where NODATA values
existed in the original NetCDF files. These could not be read by Matlab, so a shell script,
rewrite_csv.sh, replaces these bits with “-9999”, which appears to work fine in Matlab. This
Matlab script plots surface currents over contours of the divergence of the surface currents. The
divergence is calculated by the Matlab function, div.

STATISTICAL METHODS

The particle distributions are analyzed in two ways: (1) normalized cumulative Lagrangian
separation (Liu and Weisberg, 2011); and (2) cumulative (time/space) particle distributions,
which can be used to calculate PDF's (LaCasce, 2008). These are calculated using the M0T0S0
experiment from 2001 as a base run. The separation distance is calculated between the same
particle from the same group in paired analyses. The separation distance dn is used to calculate
a normalized separation as shown in Figure 5.6. From this index, a trajectory skill score is
defined. This index is calculated by the Matlab script separation_index.m.

78

Model Verification

This section demonstrates that the calculations are consistent with the equations and that the
basic functionality is robust.

CASE 1: IDEALIZED DOMAIN WITH TIDES AND VARIABLE WIND

A standard test domain (Figure 5.7) consists of a N-S oriented straight shoreline on the west
with a uniformly dipping bottom. The forcing consists of semidiurnal tides and a weak
southerly wind. Particles originate at grid cell (3, 15, 1), where the indices refer to the x, y, and
z axes, respectively. The forcing is supplied by flux files from NCOM, which are the transports
(m3/s) in the east (Figure 5.8A) and north (Figure 5.8B) directions. These are converted by the
drifter model into velocities. The available fields are interpolated in time as required.

The results of the drifter computations are output as a series of longitudes and latitudes for each
particle. The first example uses one release time with only one particle; the results (Figure 3)
are thus readily interpreted as being the subsequent location of one particle. The resulting
output also includes only one group. All of the particle locations reported for 24 hours from this
simulation demonstrate the dominance of tidal flow (Figure 5.9A). Note that the entire range of
positions only spans 10 m in the x direction and 8 m parallel to the y axis.

The trajectory reflects two processes: (1) advection by tide and wind flow; (2) mixing from the
model output, including a random component. This example neglects (2), however, but the
interaction of tides and wind flow is apparent. These points can be joined with a line to form a
path. This is a potential alternate output method for lower particle numbers like this (Figure
3B). Figure 5.10A shows the same path for group 1 as Figure 5.3B but the addition of another
group produced at 12 hr has no impact on the first group's path. Note, also, that the second
group does not plot at the origin because the output time does not exactly coincide with the
release time.

These simulations do not use horizontal (horcon = 0) or vertical (khcon = 0) mixing in order to
reproduce the path of group 1. When a vertical mixing coefficient of khcon = 0.0001 is used
(Figure 5.10B), a different result is produced because the transport/velocity field is three
dimensional and the particle is randomly moving between layers. The random component of
process (2) produces different results for the number of particles because an index dum is used
to generate the random component from subroutine gasdev. However, this is only pseudo-
random because the results are reproduced for simulations with the same number of particles.

The final simulation is intended to demonstrate the overall performance of the model. This run
is for 5 days, with 3 particles released from the source every 12 hours. Both vertical and
horizontal mixing were turned on (khcon = horcon = 0.0001). The resulting distribution
(ignoring depth) at day 5 (Figure 5.11) shows the overall northward drift of the coastal flow.

CASE 2: NORTH PACIFIC FROM GLOBAL NCOM

This is the preliminary validation study for the Pacific Trash Vortex study. The domain (Figure
5.3) extends across the North Pacific, centered on the Hawaiian Islands. The forcing consists of
daily surface currents from the Global 1/8° NCOM archive. Particles originate at grid cell (140,
25, 1), where the indices refer to the x, y, and z axes, respectively. The forcing is two-

79

dimensional only and the drifter model has been modified to run this particular case with a
compiler option (-DRUN_GLB8). This simulation is 30 days in duration.

The time step is 6 hours. The forcing is supplied by unstructured current files from NCOM,
which are interpolated in space only. The time interpolation needs to be done later, but it is not
critical for the large scale of this problem. The general trend can be seen in Figure 5.12; the
flow is predominantly westward with a weakening in the middle of March.

We can complete an analysis of this simulation as for Case 1. The particles are released every
24 hours and their location printed at 12 hr intervals. There are thus 30 groups, with group 1
being 30 days old. A plot of groups 1 and 15 (Figure 5.13) shows the steady westward transport
of surface particles by the north equatorial current (see below). The blockiness of the paths is an
artifact of the plotting function, prtpart, that should be improved.

The final verification of the particle model is a 180 day simulation using 2 particles per release.
The distribution of particles after 160 days (Figure 5.14A) clearly follows the North Equatorial
current to the west with a scatter of particles at the western extreme of their tracks. The tracks
for individual particles released at 0 and 15 days (group 15) shows that they have been caught
by an eddy near 160° (Figure 5.14B). We can see that the younger particle (blue line) overshot
but then was trapped on the western side of the eddy and begins to follow the same path as the
older one.

The simulation stopped on August 31 because the particle step exceeded the grid size, which is
~35 km. The normalized score has the advantage of negating the bias in error for regions with
strong flows, like the Kuroshio Current. The error in particle location (Figure 5.15A) indicates
large differences when the particle originating from the shipping lane between Yokohama and
Hawaii is influenced by these currents. This particle took a NE track (Figure 5.14B) before
turning east in the KESS. The distances traveled by these matched particles (Figures 5.15B and
C) are the very similar because they use the same forcing. The normalized separation distance
(Figure 5.15D) reflects differences in travel time as well as error. There is a potential problem,
however, if leg lengths are short. Extreme values of D/Lo can occur. We will handle these by
assigning a maximum to the output. This is discussed by Liu and Weisberg (2011), who suggest
a value of ~1 for these cases.

The total particles are saved to the files. These can be plotted as number of particles in each
grid cell for all time steps. These are plotted as individual contours or as total plots (Figure
5.16) by Matlab script, particle_pdf.m. Differences between test experiments and the baseline
are used in later work.

Some cells, especially those near dynamic sources, are reoccupied numerous times. These are
counted only once for this metric, which is a measure of spreading. This can be transformed
into an area by multiplying with the cell area (0.35° × 0.3°) ⋅ 111.1172 km. This is an estimate
only since area is not conserved on the analysis grid. This parameter is calculated in Matlab
script, particle_pdf.m.

Matlab script particle_path.m calculates the trajectory parameters for particle 1 from group 1.
The output consists of the following statistical parameters for each source location: (1)
cumulative surface area, Ac; (2) total path length for the first particle released, Lt, 1 (km); (3)
mean path length for the first particle released, Lm, 1 (km); and (4) mean trajectory speed (m/s),
Sm, 1.

80

Visualization with ArcGIS

For the area covering much of the northern Pacific centered on Hawaii, addressing the Pacific
Trash vortex, modeled surface currents were derived from a long-term set (one year) of NCOM
fields in terms of daily averages. These fields are the bases for the modeled drifter results that
are ingested in ArcGIS. The output from the drifter model consists of hundreds of thousands of
records, each with longitude, latitude, depth, fraction of the day, source, group number, and
particle number and file (Table 5.1). One group of two tracers up to 348 groups was released
once a day throughout the year. The data records are ordered by day, and all released drifter
locations are recorded every half a day. The group number represents the day minus one of
release and was tracked for not more than 195 days. Thus, the two drifters from group 1 are
among the oldest on the list, their final resting places at around 120.88 W and 27.065 N
amongst a number of other early release drifters.

After converting the ASCII output into a CSV file, the data were added to the ArcGIS catalog
(Add Data button) and incorporated as a table that is plotted on the map (Display XY Data…).
More that 200,000 points are plotted in Figure 5.17, many of which are overlapping each other
at specific nearest-grid locations, and not all of these points are apparent. Refreshing the map
takes significant time. Nevertheless, this data processing step facilitated analysis of the output
such as finding the oldest point on the list.

More information about the data can be displayed when we change the plotting attributes. In
Figure 5.18 the group number is plotted by colour with a scale such that green indicates the
most recent and red is the oldest. Naturally, we would have thought that the the points furthest
away from the source (i.e. from San Francisco Bay) would be the oldest, but distances traversed
by individual drifters vary widely. There are a significant number of red values plotted closer
to the source indicating that many drifters did not move far. Realizing that we still have this
issue with overlapping points as they are stuck to nearest grid locations (an aspect of the model
output we cannot control here), the points we see are the last ones that arrived at that location.
This indicates that points close to the source were not visited much more in the course of the
model run. For example, according to an interrogation at a red point locatedn in the northern
part of all the plotted points, the newest of 106 co-located points was released on day 60, and
no other points arrived there since.

It would be convenient to plot the distribution of drifters but, had the model drifter program
output values at more realistic locations, then we would be able to see a better distribution. A
simple KMZ exporter tool was used in ARCOAS that resulted in the display in Figure 5.18.
This is really a PNG file converted from the original features plotted in ArcMap, preserving the
information about the age of the last arriving drifters.

81

Tables and Figures

Table 5.1. ArcGIS table of values resulting from the drifter model whose source was out of the
mouth of the San Francisco Bay.

82

Figure 5.1. The distribution of particles after one year of integration. Topography is overlaid on
model results using MODIS imagery. The yellow particles represent clay minerals and the blue
represent finer particles (Keen et al., 2006).

83

Figure 5.2. Particle tracking results for San Francisco Bay. A. Particle distributions near
Hunters Point computed by a particle tracking algorithm for Jan. 2004. Particles were released
at the locations indicated by the circles. B. Particle distribution in San Francisco Bay after 15
days (red pluses) and 28 days (blue pluses) for Feb. 2004. The hydrodynamic forcing is from
the NCOM SFB grid (300 m). One particle was released every 24 hr just south of HPS (red
circle).

84

Figure 5.3. North Pacific bathymetry. The particle source is indicated by the white +.

85

Figure 5.4. Time series of NCOM 1/8° global surface currents at 188.943665° W, 12.304348°
N.

86

Figure 5.5. Particle tracking results for North Pacific with NCOM 1/8° database. A. All
particles present in the simulation on Day 297.5 (31 Dec 2006 24:00) with a source in the
south-central Pacific. B. Path of one particle for the simulation from 3 Mar to 31 Dec 2006
(Group 1, particle 1).

87

Figure 5.6. Schematic of the definition of the separation distance calculation (Liu and
Weisberg, 2011).

88

Figure 5.7. Test grid 1 bathymetry. The source is indicated by the white

89

Figure 5.8. Surface transports from NCOM near the river mouth indicated by the cross in
Figure 1. A. Eastward Positive. B. Northward Positive

90

Figure 5.9. Particle locations after 24 hours for Case 1. A. All positions printed at 3 hr
intervals. The circle diameter increases with age. B. Same as A but with the locations connected
by a path. Each path segment is 3 hours long.

91

Figure 5.10. Particle locations after 24 hours for Case 1 with two groups. A. Same as Figure 3B
but with the locations of group 2 indicated by blue boxes and a blue path. Each path segment is
3 hours long. B. Same as A but with khcon = 0.0001.

92

Figure 5.11. Final distribution of particles after 5 days. Both horcon and khcon = 0.0001. Older
particles are smaller.

93

Figure 5.12. Surface currents interpolated to the location of particles indicated in Figure 6. The
values are not interpolated in time, resulting in the jagged appearance.

94

Figure 5.13. Particle locations after 30 days for Case 2. A. All positions printed at 12 hr
intervals. B. Same as A but with the locations connected by a path. Each path segment is 12
hours long.

95

Figure 5.14. Results for 180 day simulation of Case 2. A. All final positions at day 160. B.
Tracks of group 1 (day 0) and group 15 (day 15) for the entire simulation.

96

Figure 5.15. Path analysis for an experiment using the Smagorinsky mixing with smagcon =
0.1 compared to baseline at 12 hour intervals. (A) Separation distance; (B) and (C) path
trajectory lengths for baseline and test, respectively; and (D) normalized separation distance
using the baseline path length.

97

Figure 5.16. Baseline model cumulative particle count. This plot includes all particle locations
for 2001 at time steps of 12 hours. Only one particle was used because there is no mixing.

98

Figure 5.17. Points sampled in Figure 1 from the example data set of drifters seeded at San
Francisco Bay. Points are coloured by group, the latest being the most green.

99

Figure 5.18. KMZ converted from ArcMap features on display in Google Earth.

100

References

Adala, A., and N. Tabbane. 2010. Discovery of semantic Web Services with an enhanced-
Chord-based P2P network. International Journal of Communication Systems 23: 1353-
1365.

Allen, G., Bogden, P., Creager, G., Dekate, C., Jesch, C., Kaiser, H., McLaren, J., Perrie, W.,
Stone, G. W. and Zhang, X. 2008. Towards an integrated GIS-based coastal forecast
workflow. Concurrency and Computation: Practice and Experience, 20: 1637–1651

Almeida, J. M., M. A. Goncalves, F. Figueiredo, H. Pinto, and F. Belem. 2010. On the Quality
of Information for Web 2.0 Services. Ieee Internet Computing 14: 47-55.

Ankolekar, A., M. Krotzsch, T. Tran, and D. Vrandecic. 2008. The two cultures: Mashing up
Web 2.0 and the Semantic Web. Journal of Web Semantics 6: 70-75.

Anonymous. 2000. UDDI project. Online Information Review 24: 465-465.

---. 2001. WSDL goes to W3C for standardization. Dr. Dobbs J. 26: 18-18.

Battle, R., and E. Benson. 2008. Bridging the semantic Web and Web 2.0 with Representational
State Transfer (REST). Web Semantics: Science, Services and Agents on the World Wide
Web 6: 61-69.

Bennett, K. and others 2001. An architectural model for service-based software with ultra rapid
evolution, p. 292-300. Ieee International Conference on Software Maintenance,
Proceedings - Systems and Software Evolution in the Era of the Internet. Proceedings -
Ieee International Conference on Software Maintenance.

Bertolino, A., and Acm. 2009. Approaches to Testing Service-Oriented Software Systems.
Assoc Computing Machinery.

Bittencourt, M. L., E. G. Borges, E. F. Carvalho, and R. A. Augusto. 2008. An application
service provider for finite element analysis. Advances in Engineering Software 39: 899-
910.

Boll, S. 2007. MultiTube - Where multimedia and Web 2.0 could meet. Ieee Multimedia 14: 9-
13.

Breivold, H. P., and M. Larsson. 2007. Component-based and service-oriented software
engineering: Key concepts and principles, p. 13-20. In P. Muller, P. Liggesmeyer and E.
Maehle [eds.], SEAA 2007: 33rd EUROMICRO Conference on Software Engineering and
Advanced Applications, Proceedings. Euromicro Conference - Proceedings. Ieee Computer
Soc.

Bulatovic, V., T. Ninkov, and Z. Susic. 2010. Open Geospatial Consortium Web Services in
Complex Distribution Systems. Geod. List. 64: 13-29.

Carone, T. E. 1996. Middleware and three-tier client/server development - Transaction
managers are key to distributed-processing success. Dr. Dobbs J. 21: 16-+.

Chakrabarti, S. K., P. Kumar, and Ieee. 2009. Test-the-REST: An Approach to Testing
RESTful Web-Services. Ieee.

101

Cobb, M., T. R. Keen, and N. D. Walker. 2008. Modeling the circulation of the Atchafalaya
Bay system during winter cold front events. Part 1: Model description and validation.
Journal of Coastal Research 24: 1036-1047.

Corno, G., Karl, D. M., Church, M. J., Letelier, R. M., Lukas, R., Bidigare, R. R., and Abbott,
M. R. (2007), Impact of climate forcing on ecosystem processes in the North Pacific
Subtropical Gyre. J. Geophysical Res., 112 (C4), Art. C04021,
doi:10.1029/2006JC003730.

Crnkovic, I., G. T. Heineman, H. W. Schmidt, J. Stafford, and K. Wallnau. 2007. Guest
Editorial. Journal of Systems and Software 80: 641-642.

Crnkovic, I., and M. Larsson. 2002. Challenges of component-based development. Journal of
Systems and Software 61: 201-212.

Crnkovic, I. 2001. Component-based software engineering — new challenges in software
development. Software Focus 2: 127–133.

Curbera, F., M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana. 2002. Unraveling
the Web services Web - An introduction to SOAP, WSDL, and UDDI. Ieee Internet
Computing 6: 86-93.

Davidson, M. A., and E. Yoran. 2007. Enterprise security for web 2.0. Computer 40: 117-119.

De Melo, A. C. V., and P. Silveira. 2010. Improving data perturbation testing techniques for
Web services. Information Sciences 181: 600-619.

Decker, S., P. Mitra, and S. Melnik. 2000. Framework for the semantic Web: an RDF tutorial.
Internet Computing, IEEE 4: 68-73.

Díaz, L., C. Granell and M. Gould, Case study: geospatial processing services for web-based
hydrological applications. In: J.T. Sample, K. Shaw, S. Tu and M. Abdelguerfi, Editors,
Geospatial Services and Applications for the Internet, Springer, New York (2008), pp. 31–
47

Dietze, S., A. Gughotta, and J. Domingue. 2007. A semantic web services-based infrastructure
for context-adaptive process support.

El-Bakry, H. M., A. M. Riad, Q. F. Hassan, A. E. Hassan, and N. Mastorakis. 2010.
Technology and Recent Development of XML Web Services, p. 110-136. In L. A. Zadeh et
al. [eds.], Recent Advances in Business Administration. Recent Advances in Computer
Engineering. World Scientific and Engineering Acad and Soc.

England, P., R. Allen, and R. Underwood. 1996. RAVE: Real-time services for the Web.
Comput. Netw. ISDN Syst. 28: 1547-1558.

Felber, P., C. Y. Chan, M. Garofalakis, and R. Rastogi. 2003. Scalable filtering of XML data
for Web services. Ieee Internet Computing 7: 49-57.

Fielding, R. T., and R. N. Taylor. 2002. Principled Design of the Modern Web Architecture.
ACM Transactions on Internet Technology 2: 115-150.

Fountain, T. C. 2003. Web Service Oriented Architecture: "Smart Operations" and IT strategy.
C S R E a Press.

102

Gordon, A. D. 2002. XML Web Services: The global computer?, p. 355-355. In R. BaezaYates,
U. Montanari and N. Santoro [eds.], Foundations of Information Technology in the Era of
Network and Mobile Computing. International Federation for Information Processing.
Kluwer Academic Publishers.

Greaves, M., and P. Mika. 2008. Semantic Web and Web 2.0. Web Semantics: Science,
Services and Agents on the World Wide Web 6: 1-3.

Hellman, R. 1999. A semantic approach adds meaning to the Web. Computer 32: 13-16.

Huhns, M. N., and M. P. Singh. 2005. Service-oriented computing: Key concepts and
principles. Ieee Internet Computing 9: 75-81.

Keen, T. R., Furukawa, Y., Bentley, S. J., Slingerland, R. L., Teague, W. J., Dykes, J. D., and
Rowley, C. D. (2006). Geological and oceanographic perspectives on event bed formation
during Hurricane Katrina. Geophys. Res. Let., 33, Paper L23614.

Keen, T. R., and K. T. Holland. 2010. The coastal dynamics of heterogeneous sedimentary
environments: Numerical modeling of hydrodynamics and mass transport in estuaries, p.
132. Naval Research Laboratory.

Khare, R., F. N. Taylor, and S. Ieee Computer. 2004. Extending the REpresentational State
Transfer (REST) architectural style for decentralized systems, p. 428-437. Icse 2004: 26th
International Conference on Software Engineering, Proceedings. International Conference
on Software Engineering.

Kona, S., A. Bansal, and G. Gupta. 2007. Automatic composition of semantic Web services.

Kono, N. and others 2009. Pathway Projector: Web-Based Zoomable Pathway Browser Using
KEGG Atlas and Google Maps API. Plos One 4: A47-A56.

Kovac, D., and D. Trcek. 2009. Qualitative trust modeling in SOA. Journal of Systems
Architecture 55: 255-263.

Kumar, M. 1988. WORLD GEODETIC SYSTEM 1984 - A MODERN AND ACCURATE
GLOBAL REFERENCE FRAME. Marine Geodesy 12: 117-126.

Kwon, Y., Y. Shigemoto, Y. Kuwana, and H. Sugawara. 2009. Web API for biology with a
workflow navigation system. Nucleic Acids Research 37: W11-W16.

Leathrum, J. F., and K. A. Liburdy. 1995. Formal test specifications in IEEE POSIX. Computer
Standards & Interfaces 17: 603-614.

Li, H. H., X. Y. Du, and X. A. Tian. 2007. A WSMO-Based semantic web services discovery
framework in heterogeneous ontologies environment, p. 617-622. In Z. Zhang and J.
Siekmann [eds.], Knowledge Science, Engineering and Management. Lecture Notes in
Artificial Intelligence. Springer-Verlag Berlin.

Li, J. X., D. C. Zhang, J. P. Huai, and J. Xu. 2009. Context-aware trust negotiation in peer-to-
peer service collaborations. Peer-to-Peer Networking and Applications 2: 164-177.

Lin, K. J. 2007. Building Web 2.0. Computer 40: 101-102.

Liu, B., M. H. Shi, and D. R. Chen. 2001. The simple object access protocol in Web Services
architecture. International Academic Publishers Ltd.

103

Maaref, B., S. Nasri, and P. Sicard. 1997. Application programming interface framework for
distributed environment based on object-oriented communications. Soc Computer
Simulation.

Malek, S., H. Ramnath Krishnan, and J. Srinivasan. 2010. Enhancing middleware support for
architecture-based development through compositional weaving of styles. Journal of
Systems and Software 83: 2513-2527.

Mccreedy, F. P., D. B. Marks, and Ieee. 2009. The Naval Research Laboratory's Ongoing
Implementation of the Open Geospatial Consortium's Catalogue Services Specification, p.
2796-2802. Oceans 2009, Vols 1-3. Oceans-Ieee. Ieee.

Mclellan, S. G., A. W. Roesler, J. T. Tempest, and C. I. Spinuzzi. 1998. Building more usable
APIs. Ieee Software 15: 78-+.

Medjahed, B., and A. Bouguettaya. 2005. A dynamic foundational architecture for semantic
Web services. Distributed and Parallel Databases 17: 179-206.

Mezini, M., and K. Lieberherr. 1998. Adaptive plug-and-play components for evolutionary
software development. ACM Sigplan Not. 33: 97-116.

Michelsen, J., and Ieee. 2007. For Net-Centric operations, the future of quality is federated:
Establishing horizontal trust in federated SOA application environments, p. 3133-3140.
2007 Ieee Military Communications Conference, Vols 1-8. IEEE Military Communications
Conference.

Moore, C. (2003), Trashed--Across the Pacific Ocean, plastics, plastics, everywhere. Natural
History, 112 (9), 46-51.

Nachouki, G., and M. Quafafou. 2011. MashUp web data sources and services based on
semantic queries. Information Systems 36: 151-173.

Osipov, M. A., O. L. Machul'sky, and L. A. Kalinichenko. 2000. Mapping the XML data model
into the object model of the SYNTHESIS language. Programming and Computer Software
26: 192-198.

Pais, V. F., S. Balme, H. S. Akpangny, F. Iannone, and P. Strand. 2010. Enabling remote access
to projects in a large collaborative environment. Fusion Engineering and Design 85: 633-
636.

Papazoglou, M. P., and W. J. Van Den Heuvel. 2007. Service oriented architectures:
approaches, technologies and research issues. Vldb Journal 16: 389-415.

Parastatidis, S., J. Webber, P. Watson, and T. Rischbeck. 2005. WS-GAF: a framework for
building Grid applications using Web Services. Concurrency and Computation-Practice &
Experience 17: 391-417.

Peltz, C. 2003. Web services orchestration and choreography. Computer 36: 46-+.

Poo, G. S., and C. G. Chew. 1996. Modeling of the XOM/XMP application programming
interface (API). Ieee Communications Magazine 34: 134-144.

Potmesil, M., 1997. Maps alive: viewing geospatial information on the WWW, Computer
Networks and ISDN Systems, Volume 29, Issues 8-13, Papers from the Sixth International
World Wide Web Conference, September 1997, Pages 1327-1342

104

Pullen, J. M. and others 2005. Using Web services to integrate heterogeneous simulations in a
grid environment. Future Generation Computer Systems 21: 97-106.

Putz, S. 1994. INTERACTIVE INFORMATION-SERVICES USING WORLDWIDE WEB
HYPERTEXT. Comput. Netw. ISDN Syst. 27: 273-280.

Qu, Z. Y., Y. T. Ge, K. Y. Jiang, and T. G. Lu. 2007. Key Issues in Building Web-based
Services. Ieee Computer Soc.

Ravat, F., O. Teste, R. Tournier, and G. Zurfluh. 2010. Finding an application-appropriate
model for XML data warehouses. Information Systems 35: 662-687.

Rezende, E. S., E. Dodonov, R. S. Ulson, M. A. Cavenaghi, and R. S. Lobato. 2009. Towards
Interoperability in P2P World: an Indexing Middleware for Multi-Protocol Peer-to-Peer
Data Sharing.

Sacha, J. and others 2010. Decentralising a service-oriented architecture. Peer-to-Peer
Networking and Applications 3: 323-350.

Sample, John T., E Ioup, 2010. Tile-Based Geospatial Information Systems: Principles and
Practices, ISBN 978-1-4419-7630-7. Springer Science+Business Media, LLC, 2010

Severance, C. 1999. Posix: A model for future computing. Computer 32: 131-132.

Shishir Gundavaram, S., 1996. CGI Programming on the World Wide Web, 433 pages, First
Edition, March 1996.

Sousa, P., and V. Freitas. 1998. A framework for the development of tolerant real-time
applications. Comput. Netw. ISDN Syst. 30: 1531-1541.

Staab, S. and others 2000. Semantic community Web portals. Computer Networks-the
International Journal of Computer and Telecommunications Networking 33: 473-491.

Stojanovic, Z., A. Dahanayake, H. Sol, and Ieee. 2004. Modeling and design of service-oriented
architecture, p. 4147-4152. 2004 Ieee International Conference on Systems, Man &
Cybernetics, Vols 1-7. Ieee International Conference on Systems, Man, and Cybernetics,
Conference Proceedings. Ieee.

Trillo, R., L. Po, S. Ilarri, S. Bergamaschi, and E. Mena. 2010. Using semantic techniques to
access web data. Information Systems 36: 117-133.

True, S. A., and Ieee. 2004. Planning the future of the world geodetic system 1984.

Tsai, W. T. 2005. Service-Oriented System Engineering: A new paradigm. Ieee Computer Soc.

Vandervoort, H. 1992. MIDDLEWARE - A CHECKLIST FOR MIGRATING TO
DISTRIBUTED COMPUTING. Morgan Kaufmann Pub Inc.

Villoldo, E. J., J. Serrat-Fernandez, and E. Luque. 2007. Improving Web Services
Interoperability with Binding Extensions, p. 873-879. Web Services, 2007. ICWS 2007.
IEEE International Conference on.

Wang, M., B. Y. Zhang, and J. W. Zhang. 2001. BES Monitoring & Displaying System.
Science Press.

105

Weis, F. 1996. Design of an object MMS Application Programming Interface. International
Society Computer S & Their Applications (Isca).

White, W. B., and Hasunuma, K. (1980), Interannual variability in the baroclinic gyre structure
of the western North Pacific from 1954-1974. J. Marine Res., 38 (4), 651-672.

Yu, J., B. Benatallah, F. Casati, and F. Daniel. 2008. Understanding mashup development. Ieee
Internet Computing 12: 44-52.

	1. Introduction
	Background
	Objectives
	Tables and Figures

	2. GoogleVision
	Overview of Google Earth
	Data importing features and techniques
	KML files
	Image overlays
	Network links
	Regions
	Super-overlays
	Common Gateway Inteface (CGI)
	Placemarks

	Animation notes
	Creating KML files with Perl scripts
	Examples
	Atchafalaya Bay, Louisiana
	Patos Lagoon, Brazil
	St. Louis Bay, Mississippi
	San Francisco Bay and Hunters Point

	Tables and Figures

	3. ASW Reach-Back Cell Oceanographic Analysis System (ARCOAS)
	Background
	Software Approach
	Applications
	Functionality
	Interfacing with Data Services
	Tables and Figures

	4. GServer Web Service
	Generating Forms with CGI scripts
	Image Generation in a CGI script
	Ocean Data Mining
	Databases
	Global NCOM 1/8
	Global Ocean Observations

	Web Server Software
	Database Access
	Database Products

	Tables and Figures

	5. Component Integration: Ocean Drifter Web Services
	Introduction
	Drifter Model
	Description
	Operation

	Analysis Methods
	Data Processing
	Visualization and Graphics
	Statistical Methods

	Model Verification
	Case 1: Idealized Domain with Tides and Variable Wind
	Case 2: North Pacific from Global NCOM

	Visualization with ArcGIS
	Tables and Figures

	References
	Blank Page
	Blank Page

