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ABSTRACT

Eulerian velocity fields are derived from 300 drifters released in the Gulf of Mexico by The Consortium for

Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE) during the summer 2012

Grand Lagrangian Deployment (GLAD) experiment. These data are directly assimilated into the Navy

Coastal Ocean Model (NCOM) four-dimensional variational data assimilation (4DVAR) analysis system in

a series of experiments to investigate their impact on the model circulation. The NCOM-4DVAR is a newly

developed tool for data analysis, formulated for weak-constraint data assimilation based on the indirect

representer method. The assimilation experiments take advantage of this velocity data along with other

available data sources from in situ and satellite measurements of surface and subsurface temperature and

salinity. Three different experiments are done: (i) A nonassimilative NCOM free run, (ii) an assimilative

NCOM run that utilizes temperature and salinity observations, and (iii) an assimilative NCOM run that uses

temperature and salinity observations as well as the GLAD velocity observations. The resulting analyses and

subsequent forecasts are compared to assimilated and future GLAD velocity and temperature/salinity ob-

servations to determine the performance of each experiment and the impact of the GLAD data on

the analysis and the forecast. It is shown that the NCOM-4DVAR is able to fit the observations not only in the

analysis step, but also in the subsequent forecast. It is also found that the GLAD velocity data greatly im-

proves the characterization of the circulation, with the forecast showing a better fit to future GLAD obser-

vations than those experiments without the velocity data included.

1. Introduction

Modern ocean forecasting using numerical models has

advanced significantly in the past 20 years. Models, such

as the Princeton Ocean Model (POM; Blumberg and

Mellor 1987), the Regional Ocean Modeling System

(ROMS; Shchepetkin and McWilliams 2003, 2005;

Marchesiello et al. 2001), the Navy Coastal Ocean

Model (NCOM; Martin 2000; Barron et al. 2006), and

the Hybrid Coordinate Ocean Model (HYCOM; Bleck

2002) are capable of producing very accurate ocean

simulations for regional and global applications at reso-

lutions ranging from tens of kilometers to a few hundred

meters. Despite recent advancement, numerical model-

ing continues to suffer from inherent errors associated

with unresolved processes, inaccurate parameterizations,
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errors in specified surface and/or boundary conditions,

and errors in the initial conditions. As such, if a model

simulation were to continue uncorrected, the forecast

trajectory will inevitably veer away from reality as the

effects of these errors accumulate.

Because of the impact ofmodel error, frequent updating

of the model trajectory from available observations is

a key component of any ocean or atmospheric fore-

casting system. Data assimilation (DA) provides the

means to produce suitable state estimation from which

the model can be periodically adjusted to move the

forecast trajectory closer to reality. For ocean fore-

casting, this need is important when attempting to ac-

curately simulate ocean currents at regional scales. On

large scales, existing oceanmodels do an adequate job of

resolving the oceanic flow from the placement of the

Gulf Stream to the Kuroshio. However, at regional and

mesoscales, where the prediction of individual tracers or

drifters are important for search and rescue operations

or hydrocarbon/chemical spill simulations, the ocean

models lack sufficient accuracy; therefore, it is important

to be able to properly constrain the model simulation, at

the prescribed resolution, with actual observations of

ocean current velocities.

There has been some work in the area of assimilating

ocean velocity observations to improve the character-

ization of model currents. These have taken the form of

simple nudging methods (Fan et al. 2004) to the more

complex variational methods (Taillandier et al. 2006;

Nilsson et al. 2012). Ocean velocity DA has also seen

variety regarding the form of the observation to be used,

specifically Lagrangian (i.e., following the flow) or

Eulerian (stationary). Traditional Eulerian measurements

consist of point measurements from acoustic Doppler

current profilers (ADCP) or high-frequency (HF) radar

surface current measurements that measure the speed

and direction of the ocean currents at a fixed location in

space. Lagrangian data are collected from data-gathering

devices on board any passive tracer, such as drifters or

surface floats. Eulerian observations can be assimilated

directly into the ocean model as the form of the data

matches that of the model variable. Lagrangian data, on

the other hand, must be handled differently as the data

here consists of position—time measurements, not ocean

velocity directly. There have been numerous attempts to

assimilate Lagrangian data, either by deriving Eulerian

velocity from the dataset by calculating the change in

drifter position over some time scale (Hernandez et al.

1995; Ishikawa et al. 1996), or by assimilating the La-

grangian data directly by evolving a series of tracers

within themodel simulation thenminimizing the distance

between the observed and model tracers via some DA

scheme (Molcard et al. 2003; Ozgokmen et al. 2003;

Taillandier et al. 2006; Nilsson et al. 2012), or by state

augmentation via a Kalman filter scheme (Ide et al. 2002;

Kuznetsov et al. 2003; Salman et al. 2006). Molcard et al.

(2005) point out that the former method, dubbed

‘‘pseudo-Lagrangian,’’ can be problematic if the data

sampling period exceeds the Lagrangian time scale,

which is usually on the order of 1–3 days for ocean

surface velocity measurements and 7–15 days for the

ocean interior.

For this work, deriving Eulerian velocity measurements

from the drifter positions from the Grand Lagrangian

Deployment (GLAD) experiment is not problematic, as

the sampling time is every 5min (Pojc et al. 2013,

manuscript submitted to Nature); therefore, derivation

of reasonably accurate Eulerian velocities is possible.

This effort aims to assess the impact of Eulerian velocity

data, derived from the GLAD drifter locations, on

a simulation of the Gulf of Mexico using NCOM. These

observations are assimilated via the four-dimensional

variational data assimilation (4DVAR) representer

method (Bennett 1992, 2002; Chua and Bennett 2001;

Kurapov et al. 2009, 2011) employed by the NCOM-

4DVAR (Ngodock and Carrier 2013). These observations,

along with available remote and in situ observations of

temperature and salinity are used to initialize a series of

4-day forecasts. These analyses and forecasts are exam-

ined by comparison to future GLAD-derived Eulerian

velocity observations and traditional temperature/salinity

observations in an attempt to evaluate the impact of the

assimilated velocities on the analyses and subsequent

forecasts.

This paper is organized in the following manner: sec-

tion 2 provides a discussion of the forecast model and

the accompanying assimilation system; section 3 pro-

vides an overview of the GLAD experiment as well as

the data processing methodology used to derive Eulerian

values from the drifter position data; section 4 presents

the design of the experiments used to evaluate the impact

of the GLAD data on the ocean analysis and forecast;

section 5 provides a discussion of the experiment results

followed by a general summary and a discussion of fu-

ture work in section 6.

2. Forecast model and analysis system

a. The Navy Coastal Ocean Model (NCOM)

NCOM is selected as the ocean forecast model for this

work and is capable of producing forecasts of tempera-

ture, salinity, ocean currents, and sea surface height for

regional and global applications. It is a primitive equa-

tion model with a free-surface and a generalized vertical

coordinate that can be configured with terrain-following

free-sigma or fixed-sigma, or constant z-level surfaces in
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a number of combinations (Barron et al. 2006). The

model employs the Mellor–Yamada level-2.5 turbu-

lence closure parameterization (Mellor and Yamada

1982) for vertical diffusion and the Smagorinsky scheme

(Smagorinsky 1963) for horizontal diffusion.

The model domain for this experiment extends from

188–318N to 798–988W using a spherical coordinate

projection at a horizontal resolution of 6 km. The model

has 50 layers in the vertical, with 25 free-sigma levels

extending to a depth of 116m with constant z-levels

extending down to a maximum of 5500m with the depth

of the first subsurface layer at 0.5m. The model resolu-

tion is coarse compared to other simulations of the Gulf

of Mexico, but was necessary because of the computa-

tional expense of the NCOM-4DVAR, which can be

many times more expensive than the forward model

(Ngodock and Carrier 2013). Lateral boundary condi-

tions are provided by the global NCOM model at 1/88
resolution (every 3 h) and surface atmospheric forcing,

such as wind stress, atmospheric pressure, and surface

heat flux is provided by the 0.58 Navy Operational

Global Atmospheric Prediction System (NOGAPS)

model every 3 h (Rosmond et al. 2002); river forcing is

provided at all river in-flow locations in the Gulf of

Mexico domain.

b. The NCOM four-dimensional variational
assimilation system (NCOM-4DVAR)

The DA system selected for this work is the NCOM-

4DVAR developed using the dynamical core of the

forward NCOM model. The NCOM-4DVAR is a vari-

ational assimilation system based on the indirect rep-

resenter method as described by Bennett (1992, 2002)

and Chua and Bennett (2001). This system has been

described in detail by Ngodock and Carrier (2013), and

a full derivation of the representer method can be found

in Chua and Bennett (2001), therefore, only an overview

is provided here. The representermethod aims to find an

optimal analysis solution as the linear combination of

a first guess (i.e., prior model solution) and a finite

number of representer functions, one per datum

û(x, t)5 uF(x, t)1 �
M

m51

b̂mrm(x, t) , (1)

where û(x, t) is the optimal analysis solution, uF(x, t) is

the prior forecast, rm(x, t) is the representer function for

the mth observation, and b̂m is the mth representer co-

efficient. The representer coefficients can be found by

solving the linear system:

(R1O)b5 y2Hxf , (2)

where O is the observation error covariance, y is the

observation vector, H is the linear observation operator

that maps the model fields to the observation locations,

xf is the model vector, and R is the representer matrix

and is equivalent to HMBMTHT (M is the tangent linear

model, or TLM; MT is the adjoint of NCOM; B is the

model error covariance; and T denotes the linear

transposition). Since the matrix R1 O is symmetric and

positive definite, (2) can be solved for b iteratively using

a linear solver, such as the conjugate gradient method.

From (2) it is clear that the b̂m for each representer can

be found by integrating the adjoint and TLMover some

number of minimization steps until convergence. Once

found, b̂m is acted upon by (1), involving one final

sweep through the adjoint and TLM to find the optimal

correction.

In the NCOM-4DVAR, b̂m is found with a precondi-

tioned conjugate gradient solver. The preconditioner

here follows from Courtier (1997) to introduce a change

of variable in the minimization step described in (2),

where b is redefined as u5
ffiffiffiffi
O

p
b so that (2) can now be

expressed as

(
ffiffiffiffiffiffiffiffiffi
O21

p
R

ffiffiffiffiffiffiffiffiffi
O21

p
1 I)u5

ffiffiffiffiffiffiffiffiffi
O21

p
(y2Hxf ) . (3)

This transformation ensures that there is a lower bound

of 1 for the eigenvalues, which ensures that the condition

number will remain reasonably small.

The background and model error covariance in

NCOM-4DVAR follow thework ofWeaver andCourtier

(2001) and Carrier and Ngodock (2010) where the error

covariance is univariate. This is deemed acceptable as

the application of the tangent linear and adjoint models

in theminimization and final sweep providemultivariate

balance constraints through the linearized dynamics. It

has been shown (Yu et al. 2012) that omitting linear

balance constraints does not lead to a significant deg-

radation of the final solution in terms of the fit to ob-

servations. The univariate error covariance can be

further decomposed into a correlation matrix and the

associated error variance such that

B5SCS , (4)

where S is a diagonal matrix of the error standard de-

viation andC is a symmetric matrix of error correlations.

In NCOM-4DVAR the error standard deviations of the

background are used at the initialization of the tangent

linear model only, whereas the model error (also con-

tained in the matrix S) is used when the adjoint forces

the tangent linear model during integration (i.e., as the

tangent linear model integrates forward in time). This
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allows the weak constraint method to correct for the

initial condition error while also adjusting the forward

model trajectory based on the specification of the model

error. The error correlation, for both the model and the

background errors are not directly calculated and stored

in NCOM-4DVAR; rather, the effect of the correlation

matrix acting on an input vector is modeled by the so-

lution of a diffusion equation following the work of

Weaver and Courtier (2001). For a full explanation of

this method, we refer the reader toWeaver and Courtier

(2001) or Yaremchuk et al. (2013); for a description of

the implementation of this method in NCOM-4DVAR,

we refer the reader to Carrier and Ngodock (2010) or

Ngodock (2005).

3. Data and processing

With a Gulf of Mexico Research Initiative (GoMRI)

award, the Consortium for Advanced Research on Trans-

port of Hydrocarbons in the Environment (CARTHE)

conducted an unprecedented large-scale deployment of

300 custom-built drifters in the northern Gulf of Mexico

in the summer of 2012. Equipped with GPS positioning,

the drifters are capable of reporting their positions every

5min, allowing for excellent temporal resolution and for

accurate estimates of the Eulerian velocity along the

drifter track. The drifters are drogued to a depth of 1m

(Pojc et al. 2013, manuscript submitted to Nature).

Although the NCOM-4DVAR system can be adapted

to assimilate drifter positions because of the available

adjoint of the momentum equation, it is decided for

the sake of convenience to use the drifter data to esti-

mate the Eulerian velocities, which could be more easily

assimilated into the model using the existing assimila-

tion architecture without the need to update or alter the

existing forward, tangent linear, and adjoint codes. The

basic principle behind the derivation of Eulerian ve-

locity from a Lagrangian data source involves the cal-

culation of the distance traveled by the drifter over some

time scale. In practice, however, the calculation is more

complicated due to noisy position values and non-

physical accelerations, such as a drifter being removed

from the water by the crew of a passing ship. The GLAD

drifter observations are highly nonstationary, and there-

fore, can simultaneously represent multiple scales at

once. This makes filtering the observations very difficult,

because filtering the larger scales of motion will overly

smooth the small-scale velocity values. Therefore,

a multistep process is used to derive Eulerian velocities

from the GLAD drifter position data. First, the in-

stantaneous velocity and its associated acceleration

vector (i.e., change in instantaneous velocity from one

velocity location to the next) are computed. The algorithm

cancels any data point where the velocity magnitude

exceeds the threshold maximum of 3m s21 or if the data

rotation exceeds the maximum threshold of 2p (3 h)21.

No subsequent data from a particular drifter are in-

cluded in the processing if the drifter travels more than

80 km in 12 h, or if the drifter travels less than 100m in

12 h. The remaining velocities are sampled at the

smallest possible constant interval and are filtered to

remove high-frequency noise (cutoff of 2 3 Nyquist,

roughly 1/10min). The velocity values are then com-

puted at each remaining position and the data are

stored.

In addition to the derived Eulerian velocity data,

other available sources of data are used in this study.

Both remotely sensed and in situ ocean observation data

are assimilated from (Geostationary Operational Envi-

ronmental Satellite) GOES-East sea surface tempera-

tures (SSTs), Argo profiling floats (Roemmich et al.

2001), expendable bathythermographs (XBT), and

drifting buoys. These data are gathered and quality

controlled using the operational data preparation utility

from the Navy Coupled Ocean Data Assimilation

(NCODA) system (Cummings 2005). These data are

collected, preprocessed and used within the NCOM-

4DVAR assimilation window at their respective obser-

vation times. It should be noted that no altimeter data

are assimilated in this work. This is done in order to

properly evaluate the impact of the velocity observations

in the assimilation. Since altimeter observations help

constrain the mesoscale features, it can be used to correct

ocean velocity as well. In this present work, corrections

made to the mesoscale features and the ocean velocity

can be directly attributed to the assimilation of the drifter

observations alone.

4. Experiment design

The forecast and analysis experiments are conducted

to ascertain the impact of theGLADdata on theNCOM

forecast and to determine if their inclusion within the

data stream improves the forecast of near-surface ocean

currents. The experiments shown in this work cover the

time period between 1 August and 30 September 2012

and are located in the region where the GLAD drifters

are deployed during this time frame. During this time,

the loop current has already shed an eddy that is located,

for the majority of the experiment, near the central Gulf

of Mexico. Figure 1 (left panel) shows a composite im-

age of sea surface height (SSH) observations taken from

the available altimeters between 20 and 30 September

2012 and processed by the NCODA data preparatory

suite. The estimated heights are shown here, not the

anomalies, for a more direct comparison to the model
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SSH field, shown in Fig. 1 (right panel). This model SSH

field is valid on 30 September 2012 (taken from a free-

run NCOM solution). To estimate the sea surface height

from the observation data, a long-term mean SSH field

fromHYCOM has been interpolated to the observation

locations and added to the anomalies. Figure 1 indicates

that the loop current has shed an eddy, now located near

the central Gulf of Mexico. The NCOM solution in

Fig. 1 shows that the forecast model has captured the

general location of the eddy and its separation from the

loop current, although the shape and positioning does

not exactly match the altimeter data (its position being

offset to the west from the observations).

The location of theGLADdrifter observations covers

much of the central Gulf of Mexico throughout the ex-

periment time frame. Figure 2 shows the location of the

processed GLAD drifter velocity data from 1 August to

30 September 2012 (positions plotted daily). It can be

seen in Fig. 2 that the GLAD drifter velocity data has

a high concentration of observations near the northern

Gulf Coast, but still with good coverage farther south

near the loop current and the region of the loop current

eddy.

a. Analysis procedure

For this study, the observations are assimilated in

a weak-constraint mode in order to have full control

over the correction of the model trajectory and to at-

tempt to account for sources of model error that we

believe have the largest contribution to the forecast er-

ror in surface current velocity. The initial condition er-

ror for each of the following experiments is set as 2.08C
for temperature, 0.5 practical salinity unit (psu) for sa-

linity, 0.2m s21 for velocity, and 0.1m for SSH. These

errors have been set by examining the innovation values

of the 96-h forecasts from the free-running NCOM

model as compared to available observations. The 96-h

forecast is used to estimate the initial condition error

due to the update cycle employed in this work (see

section 4b). These values are uniform across the ocean

model domain, mainly to aid in the convergence rate of

the assimilation system, but also the values set here are

representative of the average error across the domain.

These values are reduced at depth as exp(z/z0), where

z0 5 1000m and z is 0 at the surface and negative at

depth (Yu et al. 2012). This is deemed acceptable as it is

not expected that the ocean model will be largely in

error at depth, especially considering that we are mostly

interested in the accuracy of surface currents. Themodel

errors are assumed to be due to errors in the specified

atmospheric surface forcing for this study. This is

deemed reasonable as ocean currents at the surface are

strongly affected by surface wind stress. As such, the

errors are assumed to be 10% of the average value of

each surface forcing field through the assimilation win-

dow, which corresponds to roughly 40Wm22 for the

combined solar and temperature fluxes, 0.25 Pa for

the surface wind stress, and 4.03 1027 psum s21 for the

surface salinity flux. These error values are then con-

verted to the units of the ocean model variables (i.e.,

FIG. 1. (left) Composite of observed sea surface height (SSH) values from 20 to 30 Sep 2012 (value of the observation

indicated by color bar in meters). (right) NCOM model SSH solution, valid 30 Sep 2012.

FIG. 2. Location of each GLAD drifter velocity observation from

1 Aug to 30 Sep 2012 (observations plotted at daily intervals).
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heat flux to ocean temperature, wind stress to ocean

velocity) and applied directly to the ocean variables of

temperature, salinity, and velocity. The scale of the

initial andmodel errors is taken to be roughly equivalent

to the Rossby radius of deformation, which for the Gulf

of Mexico ranges between 30 and 40 km and is fixed in

time. Although the background error scales are static in

time, the time-evolving, flow-dependent scales are ap-

plied via the dynamics provided by the tangent linear

and adjoint of NCOM.

Each of the observations is also assigned errors. In

operational data assimilation, the observation error is

a combination of the estimated instrument error and the

assumed representative error, with the latter set to ac-

count for features that may be present in the dataset that

the model does not resolve. For this experiment each

observation is assigned a static error that does not vary

in space or time, again to aid in the convergence of the

assimilation system. The temperature and salinity ob-

servation errors are representative of the values pro-

duced by the operational data processing system

employed by the U.S. Navy. The errors are set as 0.28C
for temperature, 0.1 psu for salinity, and 0.02m s21 for

velocity. The velocity error is found as a consequence

of the GLAD data processing. The dataset used to

compute the velocities for this work was the 15-min

interval dataset derived from the GLAD position data.

The drifter position error is estimated at 10m. The

corresponding velocity error is taken as the sum of the

two position data points (;20m) divided by the time

interval between them (900 s). This yields a velocity

error of about 0.02m s21.

b. Selected experiments

Each experiment proceeds as a series of 4-day win-

dows from 1August to 30 September 2012. At the end of

each 4-day assimilation window, the forecast model is

run from the updated initial condition to provide the

background for the next 4-day assimilation period. A

free-run forecast (i.e., no assimilation) is also run in

order to compare the assimilation analysis and forecast

to a control to evaluate the impact of the assimilated

observations. In a series of preliminary experiments (not

shown), an attempt was made to evaluate the impact of

the temporal frequency at which the observations are

sampled for the assimilation. Three individual tests were

done, each consisting of one 4-day assimilation cycle and

subsequent 4-day forecast in which only the data sam-

pling is varied while ingesting available observations

every 6 h, 3 h, and hourly to determine which is the best

setting for this study. It was determined that sampling

observations every hour provides the best quality in terms

of analysis fit to the observations as well as subsequent

improvement to the forecast; the increased computa-

tional burden over less frequent observation input is

minimal. It is interesting to note that this test illuminates

the need for a larger number of velocity measurements

in the assimilation step to ensure a good analysis and

forecast fit to the observations. This is not surprising,

however, as the ocean velocity is highly variable in time

and space; therefore, more data are needed to properly

constrain the model. All subsequent experiments shown,

therefore, employ the hourly sampling strategy.

Two primary experiments are carried out to evaluate

the impact of the GLAD velocity observations on

the NCOM-4DVAR analysis and subsequent NCOM

forecast. These experiments are (i) a cycling analysis/

forecast run from 1 August to 30 September 2012 that

uses the NCOM-4DVAR to assimilate temperature and

salinity observations only (hereafter referred to as TS)

and (ii) a cycling analysis/forecast run from 1 August to

30 September where temperature and salinity observa-

tions are assimilated along with the GLAD velocity

observations by the NCOM-4DVAR analysis system

(hereafter referred to as ALL). The analyses of each of

these experiments are compared to the assimilated data

to evaluate the performance of the assimilation in terms

of the fit to the observations. The subsequent forecast

from each analysis is compared to unassimilated data in

the next analysis window (data that have yet to be as-

similated, i.e., examining the innovations prior to as-

similation). Theoretically, as data are assimilated by the

system, the subsequent forecasts should be improved

and, therefore, the size of the innovations in each sub-

sequent assimilation window will be smaller; this is ex-

amined in this study.

5. Results

As a first-order evaluation of the impact of velocity

data on the assimilation, the analysis fit to the assimi-

lated observations is examined. Typically, a variational

assimilation system should fit each of the assimilated

observations to within one standard deviation of the

observation error. To determine whether this criteria is

met for this work, a normalized error metric is in-

troduced as

Jfit5
1

M
�
M

m51

jym 2HmX
aj

sm

, (5)

where ym is themth observation,Xa is the analysis vector

in model space (Hm maps the model analysis to the

observation location), sm is the error standard deviation

of the mth observation, and M is the total number of

observations. By (5), if the analysis residual is within the
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prescribed observation error, the Jfit value should be at

or below 1.

Figure 3 shows the Jfit value for the temperature (top

panel), salinity (middle panel), and velocity (bottom

panel) observations from 1 August to 30 September,

2012; here the temperature and salinity observations are

assimilated, but velocity is not. Two experiment results

are shown in Fig. 3: the free-run (FR) NCOM back-

ground (solid) and the TS analysis (dash). This com-

parison is made to determine if the assimilation of

temperature and salinity observations improve the

analysis compared to the free-run solution.

Figure 3 shows that the assimilation of temperature

and salinity has greatly improved the observation fit

over that of the FR background, fitting both observation

types generally within the prescribed observation error.

The fit to velocity, here an independent data as the TS

experiment does not assimilate velocity, shows no im-

provement in the representation of the surface velocity

over that of the FR background. As one would expect,

this indicates that the assimilation of temperature and

salinity alone is not enough to correct the ocean velocity

field. One can examine the analysis in regards to with-

held observations as well. Because of the coarse reso-

lution of the forecast model grid, it is possible to

withhold a set of observations for each data type; in this

case, the available observations are thinned by removing

those observations that are considered redundant (i.e.,

within or at one correlation scale distance to an assimi-

lated observation). A subset of observations can be col-

lected from these withheld data to be used as further

validation of the analysis. Here, only those withheld

observations at a distance of at least 30–40 km from an

assimilated observation are considered; all withheld

observations that are at a distance less than this threshold

are not used in this evaluation. These data may not

necessarily represent purely independent observations;

however, evaluating the analysis against these observa-

tions does provide insight as to the performance of the

assimilation far from the location of included observa-

tions. Figure 4 shows the Jfit value of FR (solid) back-

ground and TS (dash) analysis to these withheld

observations. The fit to temperature is not quite as

good as to the assimilated observations, however, the

TS analysis still shows some improvement over the FR

background. The fit to salinity, on the other hand, shows

very little improvement over the FR background. The

error in salinity, especially during September, is large

with Jfit values exceeding 6. A further check of these

observations shows that a majority of them are located

near the northern Gulf Coast, in the Mississippi River

outflow region; these observations near the northern Gulf

Coast are more numerous in the month of September.

These specific salinity observations exhibit large in-

novations when compared to the free-run solution

(some greater than 3.0 psu). This is likely due to poorly

FIG. 3. The Jfit metric values for the NCOM free-run (FR) model solution (solid line) and TS

analysis solution (dashed line) measured against (top) assimilated temperature observations,

(middle) salinity observations, and (bottom)GLADvelocity observations. Valid from 1Aug to

30 Sep 2012.
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specified river inflow information in the model com-

binedwith incorrect near-surface ocean currents, as seen

in the velocity Jfit values in Fig. 4. It is important to note

that the Jfit values are normalized by the assumed ob-

servation error, which in this case is 0.l psu for salinity.

This factor, combined with the large innovations, results

in a large Jfit value for salinity.

Examining the forecasts generated from the 4DVAR

analysis in the TS experiment can be done by computing

the skill score relative to the FR forecast. The skill score

is a measure of the relative root-mean-square (RMS)

error in one forecast solution to another. Here, the RMS

error for the TS and FR forecasts are computed by using

all of the available temperature, salinity, and velocity

observations valid during the forecast period:

RMS5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M
�
M

m51

(ym 2Hmx
f )2

s
(6)

where M is the total number of observations, ym is the

mth observation, and xf is the model forecast solution. It

should be noted that the observations used to compute

the RMS error have not yet been assimilated as they are

compared here to the forecast, not the analysis; in this

regard, the data used in this comparison are independent

observations. The skill score is then computed by com-

paring the RMS error of the TS and FR forecasts as

SS5 1:02
RMSTS
RMSFR

. (7)

Equation (7) shows that if the RMS error of the TS

forecast is lower (higher) than the FR forecast, the skill

score metric will be positive (negative). If there is no

change, the skill score value should be nearly zero.

Figure 5 shows the computed skill score from the TS

experiment, relative to the FR solution, for each of the

96-h forecasts generated from the 4DVAR analyses ev-

ery 4 days for temperature (top panel), salinity (middle

panel), and velocity (bottom panel) from 1 August to

30 September 2012 (solid line shows the skill score value,

dashed line indicates zero skill score value). Figure 5

shows that the TS solution produces an improved fore-

cast in temperature and salinity during most of the ex-

periment time frame over that of the FR solution. For

salinity, the TS experiment generally outperforms FR in

September, with a few exceptions. There is almost no

improvement whatsoever in the velocity forecast. This is

not surprising given the analysis results shown in Figs. 3

and 4. Figure 5 suggests that the assimilation of tem-

perature and salinity alone does not constrain the model

solution enough in terms of the surface velocities.

Adding the GLAD-derived drifter velocity observa-

tions to the assimilation is done in the ALL experiment.

One concern that exists when combining multiple ob-

servation types in the same 4DVARminimization is that

one or more data types will be fit by the analysis at the

expense of another data type. There are many reasons

why this could occur, but is usually due to the relative

errors of each data type, the size of the innovations and

their contribution to the cost function, and the criteria

FIG. 4. As in Fig. 3, but for nonassimilated observations.
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for the convergence of the conjugate gradient algorithm.

Temperature observations, in particular, can be numer-

ous (especially at the surface) in comparison to other

data types and can often have larger innovations than

salinity or ocean velocities. Therefore, if the convergence

criterion is less strict, the algorithm may converge hav-

ing only fitted temperature observations properly. For

this reason, the analysis fit to temperature, salinity, and

velocity is compared to the TS analysis in Fig. 6. This

figure shows the Jfit value to determine the impact of the

FIG. 5. TS forecast skill score values, measured against NCOM free-run solution for (top)

temperature, (middle) salinity, and (bottom) velocity. Valid from 1 Aug to 30 Sep 2012. Skill

score indicated by the solid line and zero skill score value indicated by the dashed line.

FIG. 6. The Jfit metric values for the TS analysis solution (solid line) and ALL analysis so-

lution (dashed line) measured against (top) assimilated temperature observations, (middle)

salinity observations, and (bottom) GLAD velocity observations. Valid from 1 Aug to 30 Sep

2012.
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observations on this analysis and compares the analysis

error in temperature (top panel), salinity (middle panel),

and velocity (bottom panel) from the TS experiment

(solid) and theALL experiment (dashed). Here, it is seen

that theALL experiment continues to fit the temperature

and salinity observations well, nearlymatching the results

from the TS experiment (doing marginally better, in fact,

than the TS analysis in terms of salinity). This indicates

that the inclusion of the surface velocity data type in the

analysis has not degraded the analysis fit to the other

assimilated data types.

Figure 6 also shows that the assimilation of surface

velocity from the GLAD drifter data has greatly im-

proved the analysis fit to these observations over the TS

analysis. It can be seen that the ALL experiment fits the

velocity observations to within the prescribed error

through the last month of the experiment, although it

does have some trouble with the fit earlier through the

month of August. This is likely due to themodel analysis

and forecast adjusting to the surface currents during the

earlier portion of the experiment.

As with the comparison of the TS analysis and FR

background, the Jfit values for the TS and ALL analyses

using the withheld observations are computed; Fig. 7

shows this comparison. The Jfit value for temperature

indicates that the ALL analysis (dashed) fits the with-

held temperature observations just as well as the TS

analysis (solid). In addition to this, the ALL analysis

shows an improved fit to the withheld salinity observa-

tions when compared to the TS analysis. This suggests

that the assimilation of GLAD velocity observations

near the northern Gulf Coast is helping to constrain the

salinity gradients near the Mississippi River outflow

region, which results in a better fit to these independent

observations. The ALL analysis fit to withheld GLAD

velocity observations also shows improvement over the

TS analysis, even fitting the withheld observations to

within the prescribed data error during the latter half of

the experiment run.

Figure 8 examines the observation minus analysis

misfit, spatially, and by velocity component from 1 Au-

gust to 30 September for the u component (left panels)

and y component (right panels) from the TS analysis

(top panels) and ALL analysis (bottom panels); obser-

vation minus analysis misfits are plotted daily for ease of

viewing. Clearly, the ALL analysis fits the GLAD ve-

locity data better than the TS experiment, with most of

the misfit values near zero. The TS analysis appears to

have higher error in the central Gulf of Mexico in the

vicinity of the loop current eddy. The ALL analysis

appears to have reduced this error significantly and has

a better representation of the velocity field in the central

Gulf of Mexico than the TS analysis.

It has now been shown that the inclusion of velocity

observations leads to an improved surface velocity rep-

resentation (according to available observations) than

without velocity assimilation. To see the impact of these

observations on the subsequent forecast, Fig. 9 displays

the forecast skill score of the ALL 96-h forecasts, relative

to the TS forecasts using (7) for temperature (top panel),

FIG. 7. As in Fig. 6, but for nonassimilated observations.
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salinity (middle panel), and velocity (bottom panel).

The ALL forecast of temperature is just as good as the

TS solution, indicating that the ALL forecast is also

producing an improved temperature field over the FR

solution (as in the TS experiment). Interestingly, the

ALL forecast of salinity shows a significant improve-

ment over the TS forecast, especially through the month

of September. This is consistent with the results in Fig. 7

FIG. 8. GLADvelocity observation (top)minus TS analysis solution and (bottom)minusALL analysis solution for

the (left) u component and (right) y component of velocity. Difference values plotted daily from 1 Aug to 30 Sep

2012. Difference values in m s21 (magnitude indicated by the color bar).

FIG. 9. ALL forecast skill score values, measured against TS forecast solution for (top)

temperature, (middle) salinity, and (bottom) velocity. Valid from 1 Aug to 30 Sep 2012. Skill

score indicated by the solid line and zero skill score value indicated by the dashed line.
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that showed the ALL analysis fit the withheld salinity

observations better than the TS analysis. This result

suggests that the better fit to withheld salinity observa-

tions, along with the improved surface current represen-

tation, in the ALL analysis has helped to improve the

prediction of salinity in the ALL forecast relative to

the TS experiment. The bottom panel in Fig. 9 displays

the forecast skill score for the velocity field from theALL

experiment relative to the TS experiment. The skill score

is well above zero for themajority of the experiment time

frame, indicating that the improved velocity analysis in

the ALL experiment does indeed translate to an im-

proved forecast when compared to the TS experiment.

The improvement gained by the assimilation of the

GLAD velocity observations generally lasts the entirety

of each 96-h forecast, indicating that the improvement is

not short lived and thememory of the information gained

from the assimilation in the forecast is significant.

Examining the salinity forecast in TS and ALL more

closely, the majority of the improvement in the skill score

in Fig. 9 is from near-surface salinity observations near

the northern Gulf Coast. Figure 10 shows the absolute

difference between a set of near-surface salinity obser-

vations and the TS salinity forecast (left panel) and ALL

salinity forecast (right panel) for the period of 10–30

September 2012 in a subset region from the NCOM do-

main near the northern Gulf Coast (absolute difference

value indicated by the color bar). It is clear from Fig. 10

that the ALL salinity forecast is matching the observa-

tions much more closely than the TS forecast. Further

examining the forecast salinity within the same region as

Fig. 10 (with surface velocities overlaid) from 25 Sep-

tember 2012 from TS (Fig. 11, left panel) and ALL (Fig.

11, right panel) shows significant differences in the two

forecast salinity fields. The salinity forecast from TS

shows higher salinity values south of 288N with the

freshest water associated with the Mississippi River out-

flow confined nearest the coast. This differs from the

ALL salinity forecast, which shows generally lower sa-

linity values south of 288N, with an offshore eddy (cen-

tered at 26.58N, 918W) driving a current that is pulling

freshwater from the Mississippi River outflow farther

away from the coast into the central Gulf. It was shown in

Fig. 10 that the ALL surface currents are more accurate

FIG. 10. Observed salinity valuesminus (right) TS forecast solution and (left) ALL forecast solution, valid between

10 and 30 Sep 2012 (values in psu, indicated by color bar). NCOMmodel forecast fields are mapped to the observed

location at the appropriate time.

FIG. 11. (left) TS forecast salinity field and (right) ALL forecast salinity field, with surface velocity field overlaid

(vector plots), valid 25 Sep 2012.
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than TS (when compared to the GLAD velocity obser-

vations), and this region is covered quite well by the

GLADdrifters during this time frame, suggesting that the

surface currents seen in the ALL forecast in Fig. 11 are

likely more accurate than those of the TS forecast.

Therefore, it is likely that the improved near-surface

velocity forecast in ALL is driving the improved salinity

forecast when compared to the TS solution.

The assimilation of velocity observations can also

help improve the mesoscale eddy representation in the

model. This is due to the dynamical balance relationship

provided by the tangent linear and adjoint of the ocean

model; corrections to the surface velocity field can lead to

an improvement in the model surface elevation field.

Figures 12, 13, and 14 show the comparison of absolute

dynamic height (ADH; in meters) from the Archiving,

Validation, and Interpretation of Satellite Oceano-

graphic data (AVISO) product [this altimeter product

was produced by the Segment Sol multimissions

d’Altim�etrie, d’Orbitographie et de localisation precise

(Ssalto)/Data Unification and Altimeter Combination

System (Duacs) and distributed by AVISO, with support

from the Centre National d’�Etudes Spatiales (CNES) at

http://www.aviso.oceanobs.com/duacs/; Fig. 12], the TS

FIG. 12. Absolute dynamic height (ADH) from the AVISO product (this altimeter product

was produced by Ssalto/Duacs and distributed by AVISO, with support from CNES at http://

www.aviso.oceanobs.com/duacs/), valid 22 Aug 2012.

FIG. 13. As in Fig. 12, but for absolute dynamic height from the TS forecast solution.
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experiment (Fig. 13), and the ALL experiment (Fig. 14),

valid on 22 August 2012. When comparing TS and ALL

to the AVISO product in the region bounded by 228–
308N, 848–928W(i.e., the region covered by denseGLAD

velocity observations), there is a stark contrast between

the two model solutions. The TS ADH field exhibits one

large, elliptic eddy feature south of the Mississippi River

delta. This differs from theAVISO product that indicates

the eddy structure is smaller with an elongated ‘‘tongue’’

of high ADH extending to the south and east of the pri-

mary eddy (with regions of lower ADH to the north and

south of this tongue). The ADH field from the ALL

forecast exhibits an eddy structure much closer to the

AVISO product than does the TS forecast. The ALL

ADH field shows the same tongue structure with the

lower ADH regions north and south as in the AVISO

product, albeit with higher overall height values. This

indicates that the assimilation of surface velocity mea-

surements from GLAD has helped to constrain the

surface eddy field in the vicinity of the drifter observa-

tions. An examination of other time periods throughout

the ALL experiment show similar agreement with the

AVISO product (figures not shown).

6. Summary

The assimilation of surface velocity observations,

derived from GLAD drifter positions, within the weak-

constraint NCOM-4DVAR has been shown. By com-

paring the assimilation results in terms of the analysis

fit to the observations, as well as the subsequent forecast

fit to future observations between an experiment with

no velocity assimilation (TS) and an experiment with

velocity assimilation (ALL), we have been able to con-

clude that assimilating the surface velocity observations

leads to a substantial improvement in not only the

analysis fit, but also in the forecast as well. The assimi-

lation of velocity observations also led to an improved

salinity forecast, as shown in the comparison of the re-

sults from the ALL and TS experiments. This is likely

due to the fact that the assimilation of GLAD velocity

observations near the northern Gulf Coast is helping to

constrain the salinity gradients near the Mississippi

River outflow region, resulting in a better fit to these

salinity observations in that region. The forecast skill

score of the ALL forecast relative to the TS forecast

shows that the information gained in the assimilation of

velocity observations is not short lived, with improve-

ment in the velocity forecast in ALL over the TS ex-

periment shown to remain out to 96 h. It was also shown

that the assimilation of surface velocity measurements

can improve the model representation of the surface

elevation field. A comparison to the AVISO absolute

dynamic height product shows that the ALL experiment

captures the mesoscale eddy structure more accurately

than the TS experiment in the vicinity of the velocity

measurements. In short, it was shown that the assimila-

tion of temperature and salinity observations alone in

the 4DVAR does not properly constrain the model

representation of the surface flow field in the Gulf of

Mexico. The results of this study suggest that surface

velocity measurements can be used to help constrain the

model flow field and, therefore, the mesoscale eddy

structures. Assimilating surface velocity information

can help to correct the model representation of the

surface elevation field as well as help to constrain the

FIG. 14. As in Fig. 12, but for absolute dynamic height from the ALL forecast solution.
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tracer fields, specifically the surface salinity. The results

shown in this study suggest that surface velocity obser-

vations can have a profound impact on the model solu-

tion, not only on the representation of the flow field, but

across other ocean variables as well.

Now that the assimilation of surface velocity obser-

vations has been shown to work well when the velocity

observations take the Eulerian form, attention can be

given to the Lagrangian assimilation of theGLADdrifter

observations in their native Lagrangian form. To do this,

the capability to evolve model drifters within the NCOM

solution will be added in the near future. Once this is

done, the NCOM-4DVAR can be used to minimize the

distance between the model and observed drifter posi-

tions (using a suitable measurement functional), thereby

propagating this information to the model Eulerian ve-

locity fields in the analysis step. The results of a future

Lagrangian data assimilation effort with GLAD data will

be compared to this work to determine if there is any

improvement in the accuracy of the velocity analysis and/or

forecast over the pseudo-Lagrangian DA method, and

if so, it will determine if the gain is substantial. This

question will be investigated in a future experiment and

subsequent paper.
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