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ABSTRACT

A variational data assimilation system is developed for the stationary, homogeneous portion of the wave

model SimulatingWaves Nearshore (SWAN). The system is based on a numerical adjoint constructed for the

discrete forward SWAN code; its performance is compared to that of an earlier system based on a discretized

analytical adjoint (Walker; Veeramony et al.). This paper describes the development and validation of in-

dividual numerical adjoint subroutines, followed by the testing and evaluation of the assimilation system as

a whole with an idealized twin experiment and with data fromDuck, North Carolina. In the twin experiment,

the present system performs on par with that of Walker. Estimates of wave spectra and spectral statistics also

compare well to measured spectral data at Duck, North Carolina. The error in these estimates is partly due to

the exclusion of nonlinear source and sink terms from the adjoint and partly due to different spectral pro-

cessing techniques used for different types of instruments.

1. Introduction

The wavemodel SimulatingWaves Nearshore (SWAN)

(Booij et al. 1999) solves the spectral action balance

equation [Eq. (1)] to produce nearshorewave forecasts and

climatologies. It is widely used by the coastal modeling

community and is part of a variety of coupled ocean–wave–

atmosphere model systems. In forecasting wave conditions

for specific locations or events, boundary conditions for the

local SWANdomains are generally obtained from regional

or global simulations with WAVEWATCH III (Tolman

2009) and the Wave Model (WAM; WAMDI 1988). The

accuracy of nearshore wave estimates is highly dependent

on the quality of these boundary inputs. Even small errors

in wave energy, period, and direction at the boundary can

grow significantly as SWAN propagates a wave field into

shallowwater.With a system that utilizesmeasured data to

correct the boundary condition for the SWANmodel, such

errors can be considerably reduced.

The principal spectral action balance equation in

SWAN may be expressed as

›N

›t
1 $

* � (C*N)5
Stot
s

, (1)

where N is the spectral action density, obtained by

dividing the spectral energy density by an intrinsic

representative wave frequency s. The first term of

Eq. (1) expresses the rate at which the action density is

changing with time. In the second term, the propagation

of action density in both physical (x, y) and spectral (s, u)

space is represented by the dot product of vector gra-

dient $
*

5 (›/›x, ›/›y, ›/›s, ›/›u) with vector velocity

C
*
5 (Cx,Cy,Cs,Cu) and action density N. The vector

C
*

represents the propagation rate of wave energy and

includes contributions from both wave group velocity

and ambient current. On the right-hand side of Eq. (1),

Stot is a consolidated spectral source term that may

include contributions from nonlinear wave–wave in-

teractions, wind wave forcing, dissipation due to

breaking, bottom friction, and whitecapping [see Booij

et al. (1999) for additional details]. Once initialized with

bathymetry, boundary wave data, initial conditions, and

source term configuration, SWAN solves Eq. (1) to pre-

dict the evolution of the wave spectrum throughout the

modeled coastal region.

While data assimilation has been a component of at-

mospheric modeling since the 1960s, it has only recently

been introduced in ocean wave models. A number of

nearshore studies have used assimilated wave data from

in situ instruments or video to estimate a variety of

nonwave nearshore parameters, including bottom ba-

thymetry (Lippmann and Holman 1990; van Dongeren
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et al. 2008; Narayanan et al. 2004; Aarninkhof et al.

2005), alongshore currents (Chickadel et al. 2003), and

bottom friction (Keen et al. 2007). Early attempts to

improve wave predictions with data assimilation used

relatively simple optimal interpolation methods with

observed wave heights and periods to nudge model re-

sults toward more accurate values (Bauer et al. 1992).

More recent efforts have improved model performance

further by incorporating wave spectral parameters

(Hasselmann et al. 1997; Aouf et al. 2006; Portilla 2009).

However, these features have primarily been used in

larger-scale models such as WAVEWATCH III and

WAM. The public domain version of SWAN does not

yet include data assimilation in any form.

Walker (2006) developed a data assimilation system

that used measured data from inside the computa-

tional domain to correct offshore boundary inputs for

SWAN. In this system, the adjoint of reduced SWAN

equations was derived analytically and then discretized.

This ‘‘analytical adjoint’’ was used to propagate the

model–observation errors to the boundary, where only

stationary (i.e., steady state) conditions were considered,

and all nonlinear source and sink contributions were set

to zero, as in

$
* � (C*N)5 0. (2)

This approach assumes that energy-generating or dissi-

pating effects like wind forcing, wave breaking, and

bottom friction are negligible. The steady state, linear

form of SWAN represented byEq. (2) is commonly used

to investigate longer-term effects of an average or rel-

atively constant wave climate. Recent validation tests

indicate that Walker’s assimilation system leads to im-

proved predictions of integrated spectral wave proper-

ties like significant wave height, peak period, and mean

direction in deeper water, as well as limited improve-

ments in estimates of the full 2D spectrum (Veeramony

et al. 2010). However, the technique does not capture

changes to the spectra that occur due to the contribu-

tions of nonlinear source terms described above. Since

the algorithm only corrects boundary conditions off-

shore, an ad hoc treatment of lateral boundaries is re-

quired. These shortcomings generally lead to significant

errors in predicted wave heights and currents in shallow

water.

The analytical adjoint approach cannot be adapted to

incorporate nonlinear wave transformations in a consis-

tent manner. It has been demonstrated (B€ucker et al.

2011; Giresse and Walther 2004) that discretizing the

analytical adjoint model (as done in Walker 2006) leads

to an erroneous numerical gradient of the cost function.

As a result, an analytical adjoint system generally will

not pass the asymptotic gradient test of its cost function

(cf. J€arvinen 1998). The proper and consistent way to

obtain the numerical gradient of the cost function is to

derive the adjoint of the discretized forward model

(hereafter called the ‘‘numerical adjoint’’). The differ-

ence in the numerical gradients obtained from the two

adjoint types is small when working with a stationary

linear system, but it can be significantly larger for adjoints

to nonstationary and/or nonlinear models (Favennec

2005).

For environments where wind forcing, bottom friction,

currents, or triad–quadruplet interactions are significant,

effective adjoint-based assimilation of wave data thus

requires a numerical approach. A numerical adjoint to

SWAN can include adjoint subroutines for all nonlinear

sources and sinks of wave energy in the model, regard-

less of their initial discrete form. An assimilation system

featuring a complete numerical adjoint will enable SWAN

users to improve spectral estimates with assimilated wave

data from nearly any domain, including storm-generated

chop and swell, shallow surf zones, and other nonlinear

wave environments. Construction of such an adjoint is la-

bor intensive, however, requiring each adjoint subroutine

to be created and validated separately.

The present paper describes the development and

testing of a variational data assimilation system based

upon a numerical adjoint that is limited to the stationary,

linear SWAN-governing equations [Eq. (2)]. The as-

similation system described herein is suboptimal, im-

plementing strong-constraint variational assimilation in

which just the boundary condition is controlled. Although

fully consistent four-dimensional variational data assimi-

lation (4DVAR) systems have beenbuilt and validated for

large-scale circulation models, such as the Navy Coastal

Ocean Model (NCOM; Ngodock and Carrier 2013), the

Oc�ean Parall�elis�e (OPA)model (Weaver et al. 2003), and

the Regional Ocean Model System (ROMS; Moore et al.

2004), this is the first time one has been created for a wave

model. The purpose of this study is to introduce this new

approach to the nearshore community, demonstrate its

feasibility, and evaluate the initial suboptimal system

through a direct comparison with the equivalently re-

stricted analytical adjoint created by Walker (2006)

and tested by Veeramony et al. (2010). Consequently,

the same physical assumptions are adopted here as in

Walker’s analytical approach (i.e., operating only under

stationary conditions and excluding nonlinear sources

and sinks in the adjoint). The following two sections

summarize the general structure and theory of the as-

similation system, the development of the adjoint to the

simplified model, and the initial validation tests. In sec-

tion 4, the new system’s performance is compared directly

to that of the Walker (2006) system in a set of twin
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experiment simulations, and then further examined

using measured nearshore spectral data and bathy-

metry fromDuck, North Carolina. Additional discussion

is offered in section 5, followed by a brief summary of

overall conclusions.

2. Assimilation system

As mentioned above, in the assimilation system pre-

sented here, the numerical adjoint encompasses only the

stationary, homogeneous part of the SWAN model, in-

cluding linear subroutines for the transport and re-

fraction of wave action but no sources or sinks. The data

assimilation procedure is built around an objective cost

function J(N), which is used to measure the aggregate

model and measurement error at data locations within

the model domain and has the following form:

J(N)5 (BC2BCb)TQ21
BC(BC2BCb)

1 �
K

k51

(yk2HkN)TR21(yk 2HkN) . (3)

In Eq. (3), the first term on the right-hand side estimates

the error in the boundary conditions as an actual value

(BC) minus a modeled first guess (BCb). The second

term computes the weighted residual between themodel

and the observations, a sum over individual innovations

(yk 2HkN) at each location k (e.g., Kalnay 2003; Park

and Xu 2009; Lahoz et al. 2010; Swinbank et al. 2003).

In this term, Hk is an observational operator, which

projects the model solution onto the location of

observation yk. Terms Q21
BC and R21 are weights based

on the relative variance of each error source. The cost

function is minimized by finding the set of controls

(boundary conditions) for which the first variation (or

gradient) of J(N) is zero. An adjoint variable is in-

troduced to facilitate the computation of the gradient of

the cost function with respect to the controls. This leads

to a set of coupled Euler–Lagrange equations that are

solved iteratively (see appendix A for additional de-

tails). For the present analysis, only the boundary con-

ditions are controlled, which for the steady-state system is

equivalent to a strong-constraint approach to data as-

similation, wherein the full model is assumed to generate

no errors—that is, all errors are propagated into the do-

main from the boundary.

The assimilation system utilized here consists of the

adjoint to linear homogeneous SWAN coupled to an

internal copy of the full forward SWAN and supple-

mented by several additional modules that compute and

track the cost function and optimize system convergence

(Fig. 1). The system is wholly separate from the original

forward SWAN, interfacing only at the beginning and

end of the data assimilation process. To begin, the ex-

ternal forward SWAN is initialized with boundary data

from regional models and used to compute estimated

wave spectra at all measurement locations in the do-

main. An initial estimate for the cost function J(N) is

then obtained from the preliminary boundary condi-

tions, SWAN spectra, and observed spectra, and its

gradient is calculated at the offshore boundary using the

Euler–Lagrange equations. A conjugate gradient tech-

nique (Polak and Ribi�ere 1969; Walker 2006) is used to

adjust the estimate toward its optimal value. If the cost

FIG. 1. Assimilation system flowchart.
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function is not yet minimized by the adjusted estimate,

then the adjoint model is solved to obtain additional

corrections to the boundary conditions, and the internal

forward SWAN is run with the new boundary inputs to

generate revised spectral estimates. The revised spectra

are used to recompute the cost function, and the itera-

tions continue in this manner until J(N) is minimized

and the optimal corrected boundary conditions are ob-

tained. These are provided to the external forward

SWAN, which computes the corrected solution for the

entire domain.

Adjoint construction

Individual adjoint SWAN subroutines are built with

the Parametric FORTRAN compiler (PFC) utility

(Erwig et al. 2007), which uses automatic differentia-

tion, applying standard rules in combination with user-

specified active and dependent variables to linearize

or transpose each forward subroutine. Active and de-

pendent variables are identified in the forward sub-

routine and listed in a parameter file that is read by

PFC. For example, if vector c is active in the iterative

computation,

do i5 2 : nlocs2 1

a(i1 1)5 c(i2 1)1B+c(i)1E

enddo, (4)

where nlocs is the number of locations on a geographic

grid, a is a dependent variable, B is a matrix of co-

efficients, and E is an independent fixed constant, then

the (perturbation type) tangent linear version of Eq. (4)

has essentially the same form, except that the unperturbed

constant E is missing as shown:

do i5 2 : nlocs2 1

da(i1 1)5 dc(i2 1)1B+dc(i)

enddo. (5)

The adjoint of Eq. (4) [and (5)] provides the sensitivity

of the observation location with respect to the boundary

control. It propagates a first derivative at a given ob-

servation location back to the boundary control, taking

into account the model state and physics. It can be used

to determine how the error in an estimate of c at a given

grid location is related to a corresponding error in c at

the boundary, in the presence of the field specified by

Eq. (4). In the adjoint, time and spatial loops are re-

versed along with the relationships of the active vari-

ables, the matrix of coefficients is transposed, and the

resulting expression for each adjoint variable becomes

cumulative over the loop as shown:

do i5 (nlocs2 1) : 2

ad c(i2 1)5 ad c(i2 1)1 ad a(i1 1)

ad c(i)5 ad c(i)1BT+ad a(i1 1)

enddo. (6)

In the adjoint model as a whole, subroutines themselves

are also called in reverse order of those in the forward

model. Variables that are not active or dependent are

computed in the adjoint as they are in the forward

model, and they must have the same values as their

forward counterparts at the same times and locations.

Equation (2) and its adjoint are presented in discrete

form in appendix B.

Subroutines utilized by stationary homogeneous

SWAN are generally already linear, so the tangent lin-

ear (TL) version of these subroutines is essentially un-

changed from the original forward version [similar to

Eqs. (4) and (5)]. Active and dependent variables in

SWAN normally include the wave action and anything

that depends on it. Examples of independent variables

include the energy propagation velocity C
*
and the water

depth. As each numerical adjoint subroutine in this

system is derived directly from its forward counterpart,

the principal physics of the original subroutine are pre-

served and the adjoint model retains the associated

properties of the discretized linear forward model. To

improve overall accuracy, all real arrays in the assimi-

lation system’s adjoint and forward SWAN programs

are compiledwith double precision.Using thesemethods,

a full set of adjoint subroutines is constructed for sta-

tionary homogeneous SWAN.

3. Validation

In matrix notation, the action of a given linearized

SWAN subroutine upon an input array u, generating an

output array v, may be expressed asAu5 v, while that of

the corresponding adjoint subroutine can be written as

ATv5 u. For a real matrix A with transpose AT and ar-

bitrary real vectors u and v, the following inner product

is an identity:

hAu, vi[ hu,ATvi . (7)

For a given subroutine and its adjoint, this implies that if

we initialize the forward subroutine with an arbitrary

vector u (obtaining an output Au) and then initialize its

adjoint with a second arbitrary vector v (obtaining an

output ATv), then an inner product of the forward rou-

tine output with the adjoint input should have the same

value as an inner product of the adjoint output with the

forward input.
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This identity is also exhibited in the symmetry of the

representer matrix (Bennett 2002), which provides

a convenient method for testing the consistency of the

complete adjoint program and its forward counterpart.

For a given number m of observation locations (in the

spatial–spectral domain), the representer function for

each location is obtained by initializing the adjoint with

a unit impulse centered at that location. The adjoint

solution (at all grid points) is then used to force the

forward model (running in stationary mode with no

sources or sinks). The forward SWAN solutions at them

observation locations then fill one column of them-by-m

representer matrix (HAATHT, where H is composed of

m observational operators, Hk, for k 5 1 to m). If the

adjoint is consistent with the stationary linear forward

model, then the representer matrix should be symmetric

to machine precision (Ngodock and Carrier 2013).

Subroutines in the new adjoint are validated individ-

ually by means of the above-mentioned inner product

test [Eq. (7)]. In each test, input vectors u and v are as-

signed different sets of random values, and inner prod-

uct values are checked at multiple locations on an

idealized bathymetry. For each individual subroutine or

group of related subroutines tested, Eq. (7) is consis-

tently satisfied to within machine precision. Specifically,

for all such tests,

hAu, vi2 hu,ATvi
hAu, vi # 53 10215 .

Consistency of the full adjoint code is checked with an

impulse test, in which the representer matrix is com-

puted for a limited number of points, as outlined above,

and its symmetry is checked. The tests are conducted

using bathymetry fromSantaRosa Island, Florida (Fig. 2),

and selecting four grid locations (TA1, TA2, SAB, SIB)

matching those of actual instruments in a 2009 experiment

(Edwards et al. 2009; Veeramony et al. 2010). Locations

TA1 and SAB are closer to the shoreline, where bathy-

metry is alongshore uniform and some wave shoaling

and breaking may occur, while TA2 and SIB are outside

the surf zone, near the southwestern and southeastern

grid boundaries, respectively. In four separate subtests,

the adjoint is initialized with a unit impulse at a single

frequency and direction for each of the four locations

described above. For example, at location TA1 the

initialization is

n(xTA1, yTA1, f 50:066Hz, u5508)51, n50 elsewhere.

In each subtest, the adjoint is allowed to run for a single

iteration. Its output is used to initialize forward SWAN

(in stationary linear mode), whose output is in turn

recorded at all four of the selected locations. The results

are compiled into a (43 4) subsection of the representer

matrix, which is found to be symmetric at all locations

within model accuracy of order 10212, thus confirming

that the full adjoint is consistent with the stationary

linear forward model.

4. Simulations

Two sets of simulations are conducted to further ex-

amine the performance of the numerical adjoint. First,

the numerical adjoint approach as a whole is evaluated

by direct comparison with the Walker (2006) approach,

using a twin experiment where artificial observations

are generated by the full forward model with idealized

boundary conditions. Following this, the assimilation

system is evaluated withmeasured spectra frommultiple

instruments at Duck, North Carolina. For both tests,

errors in boundary control are assumed to be completely

spatially correlated and uniform. Final spectral esti-

mates are compared to observations at boundary and

interior grid locations.

a. Twin experiment

The idealized twin experiment validation tests are

based directly on those conducted by Veeramony et al.

(2010) as part of their original evaluation of the Walker

(2006) adjoint, utilizing data and bathymetry from the

aforementioned 2009 experiment at Santa Rosa Island,

Florida. The fully nonlinear forward SWAN, initialized

at seaward and lateral boundaries with a parametric Joint

North Sea Wave Project (JONSWAP) wave spectrum, is

FIG. 2. Model bathymetry for inner product, impulse and twin

experiment tests based on measurements at Santa Rosa Island, FL,

recorded in 2009. Direction on the y axis is north. Shoreline is

shaded. The four grid locations used for impulse and twin tests are

circled and labeled.
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used to compute pseudo-observed spectra at the same four

locations used in the 2010 analysis (Fig. 2). JONSWAP

parameters are based on prevailing waves during the

experiment, which were relatively mild—significant

wave height (Hs) , 1.5 m—and approached generally

from the southeast and normal to the offshore grid

boundary. Four of the six cases from Veeramony et al.

(2010) are rerun for both assimilation systems (cases 4

and 6, featuring local wind forcing nonlinearities, are

excluded). For each case, four separate assimilation tests

are conducted with each adjoint system. In the first of

these tests, the adjoint is initialized with the innovation

at grid location TA1; in the second test, at TA2; in the

third test, at SAB; and in the fourth test, at SIB. The

system assumes a zero-energy state as a first guess (i.e.,

spectra equal to zero at boundary and, consequently,

throughout the grid), so the initializing innovation for a

given test (i.e., the observed minus the estimated spec-

trum) is simply equal to the observed spectrum at that

location.

In each test, adjoint-computed values of spectral

density at the boundary nodes are averaged across all

locations on the seaward boundary and provided as

uniform offshore boundary conditions to the assimila-

tion system’s internal forward SWAN [with wave

breaking and other source/sink subroutines activated,

duplicating the setup of Veeramony et al. (2010) for

each case]. Along lateral boundaries, spectra are set to

a tapering fraction of the full offshore spectrum, ranging

from 100% at the seaward end to zero at the shoreward

end (SWAN Team 2011). A revised estimate for the

wave spectrum at the initializing location is obtained

and compared with the original data spectrum. If the

cost function is not yet minimized, then the adjoint is

reinitialized with a recomputed innovation. Each as-

similation system is allowed to run until its cost function

declines to 0.75% of its original value. By this point the

associated cost function gradients have been reduced to

less than 5% of their initial values and are generally

flattening out, as are the cost function values themselves

(Fig. 3).

In each test, the two assimilation systems’ relative

performance is qualitatively evaluated by comparing how

well they reproduce the observed spectra at the offshore

boundary and all four instrument locations, including

nonassimilated spectra as well as the selected innovation

spectrum. For a more quantitative comparison, overall

model accuracy is also evaluated using anRMS skill score

computed from spectral densities as shown:

skill512

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
i, j
[Smod(fi, uj)2Sobs(fi, uj)]

2
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
i,j
[Sobs(fi, uj)]

2
r . (8)

In Eq. (8), Smod is the model spectrum and Sobs is the

observed spectrum (from nonlinear forward SWAN).

Spectral energy densities are first squared and then

summed over all frequencies ( fi) and directions (uj).

In general, spectral estimates from the present assimi-

lation system are very similar to those from the Walker

(2006) system. Both systems have errors of similar

FIG. 3. Evolution of (left) cost function and (right) norm of gradient of cost function plotted vs assimilation iteration for all twin

experiment tests. Asterisks and circles represent numeric and analytic adjoint system results, respectively. All values are normalized by

the value at the first iteration. Heavy dashed line (left) marks the 0.75% criterion for the cost function below which each assimilation is

stopped. Note log format on the y axis.
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magnitude when compared to observed spectra (e.g.,

Fig. 4). When skill values are computed and averaged

over all twin experiment tests (64 computations per

adjoint), the numerical assimilation system achieves

a mean skill of 0.914 (range 5 0.82–0.98), roughly

equivalent to the analytical adjoint system’s mean of

0.911 (range 5 0.78–0.97).

b. Observed data—Duck, North Carolina

The final evaluation of the simplified numerical ad-

joint tests how well the assimilation system can re-

capture actual measured spectra, starting from an

essentially arbitrary first guess. Spectral wave datasets

are obtained from the Army Corps of Engineers’ Field

Research Facility (FRF) in Duck, North Carolina, for

several periods that also include nearshore bathymetry

measurements. To minimize nonlinear effects, study

dates are selected from relatively mild wave climates in

which significant wave heights are less than 1.5 m (Fig. 5).

Bathymetry data recorded for the Duck ‘‘minigrid’’ on

16 April, 1 June, and 29 July 2010 are linearly extrapo-

lated alongshore to 5 times the minigrid width and off-

shore to 17-m depth. Spectral data are available from up

to six nearshore instruments (Fig. 6), including four

Nortek acoustic wave and current (AWAC) profilers at

depths of 5, 6, 8, and 11 m, and the FRF’s 8-m array of

15 near-bottom-mounted pressure sensors. Boundary

spectra for the model grid are provided by a Datawell

Waverider 630 buoy, moored approximately 3 km off-

shore in roughly 17-m water depth. For the 16 April and

1 June simulations, four instruments are used (the 5 and

8 mAWACprofilers were not available). For 29 July, all

six instruments are used.

Owing to the manner in which they are derived,

spectra from the four AWACs have lower resolution

than those from the 8-m array and the Waverider, and

FIG. 4. (top panels) Twin experiment results, comparing stage 1 numerical adjoint to Walker (2006) analytical adjoint. Both are ini-

tialized with data from nonlinear forward SWAN at the TA1 location. Four-panel plots for each of the four interior locations (TA1, TA2,

SAB, and SIB) include spectral results from numeric/analytic-adjoint-based assimilation systems (top two panels of each set) and the

difference between those results and the original SWAN spectra (bottom two panels). The three panels below the grid map show mean

predicted boundary spectrum: numeric, analytic, and numeric 2 analytic. (bottom) Comparison of normalized distribution of adjoint

boundary energy along offshore boundary for the two adjoint types.
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they also tend to have a significantly broader directional

spread, with a small-to-moderate amount of wave en-

ergy directed offshore at some sensors. It is not known

how much of this additional spreading is a result of in-

strument error and how much is due to unrepresented

nonlinear effects such as wave breaking and reflection.

The current assimilation system does not presently as-

similate offshore-directed wave energy. To more effec-

tively evaluate actual system capabilities, assimilated

spectra are therefore limited to onshore directions in

these tests (i.e., all offshore-directed spectral energy—

generally much less than one percent of total energy—is

set to zero in observed spectra). Even with this limita-

tion, the varied directional spread among initializing

instruments has a noticeable effect on model output that

will be discussed further below.

The present tests are designed to evaluate the system’s

ability to assimilate real spectral data and investigate its

sensitivity to the observed data locations. For each date,

the adjoint is initialized with innovations at one or more

locations in nine different cases. In case 1, only spectra

from the FRF 8-m array are used. In case 2, the adjoint

is initialized at all available AWAC profiler locations,

with each innovation equally weighted. Case 3 utilizes

equally weighted spectra from all (three or five) interior

grid locations. In case 4, all interior spectra are again

used, but the 8-m array is given additional weight. Case 5

uses all interior spectra and instead gives additional

weight to each of the AWAC profilers (distributed

evenly among them). Cases 6, 7, 8, and 9 are initialized

only at the 5, 6, 8, and 11 m AWAC profilers, respec-

tively (where available).

As with the twin experiment, a zero-energy spectrum

is again used for the first guess, so that at each location

the innovation is just equal to the observed spectrum for

the first iteration. Wave breaking is activated for the

FIG. 5. (left to right) Time series of (top to bottom) significant wave height, peak period, and peak direction as measured at the 3-km

Waverider buoy for periods roughly concurrent with the three bathymetry measurements included in these tests. Conditions at times of

selected initializing spectra are marked with asterisks in each panel.
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system’s internal forward SWAN model to maintain

system stability, but other nonlinear sources and sinks

are not activated. Each simulation is allowed to run until

formal convergence has been achieved (i.e., the cost

function value has become essentially constant). Final

estimated spectra are recorded at the seaward boundary

and at all observation locations, and wave statistics

including significant wave height, mean direction, mean

period, and directional spread are computed from each

modeled and observed spectrum.

Model skill [evaluated using Eq. (8)] ranges from

a low near zero to a high of 0.92, with amean skill of 0.52.

Model results for the test series are summarized in Table 1.

The highest skill values (averaging 0.73) are obtained for

FIG. 6. Map of nearshore instrument locations at FRF (offshore Waverider buoys not shown). Instruments used in this study are circled.

(Image courtesy of FRF, http://www.frf.usace.army.mil/frfzoom.shtml.)

TABLE 1. Adjoint skill scores for tests at Duck, NC. Tests were conducted for three separate dates in 2010 (16 Apr, 1 Jun, and 29 Jul 7).

Where data were available frommultiple dates, a range of skill scores is provided in the table. First column shows case number and second

column shows initializing location(s) for the adjoint system. AWACs implies all available AWAC sensors were used; All implies all

available sensors were used. Overwt is used for cases where one or more sensors were overweighted relative to other sensors used.

Case Initializing location

Output location

FRF AWAC (5 m) AWAC (6 m) AWAC (8 m) AWAC (11 m)

1 FRF 0.67–0.92 0.42 0.19–0.50 0.26 0.00–0.51

2 AWACs 0.32–0.61 0.53 0.61–0.67 0.52 0.63–0.67

3 All 0.50–0.73 0.55 0.60–0.67 0.48 0.48–0.64

4 All Overwt FRF 0.76–0.91 0.44 0.32–0.53 0.15 0.26

5 All Overwt AWACs 0.37–0.65 0.55 0.63–0.67 0.51 0.08–0.62

6 AWAC (5 m) 0.47 0.71 0.52 0.29 0.27

7 AWAC (6 m) 0.35–0.58 0.51 0.68–0.72 0.44 0.45–0.56

8 AWAC (8 m) 0.39 0.45 0.56 0.58 0.60

9 AWAC (11 m) 0.26–0.53 0.39 0.44–0.55 0.47 0.70–0.79
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tests in which a single location (e.g., the 8-m array) is

used for both input and output. In general, spectral es-

timates are poor for cases where the initializing in-

strument type differs from the instrument type at the

output location. The worst results (average skill5 0.38)

are obtained for spectral estimates at AWAC profiler

locations in cases 1 and 4, when the model is initialized

either solely at the 8-m array or at all locations with the

8-m array overweighted. The relative change in the cost

function and its gradient is shown for all cases in Fig. 7.

Cost functions and gradients decrease most rapidly for

tests initialized at the farthest offshore sensors (cases 1

and 9), particularly when waves are small (16 April).

The slowest convergence is obtained when using data

from just the shallowest AWAC profiler (case 6) on the

largest wave day (29 July), while the smallest reduction

of the cost function is obtained for equally weighted

tests initialized at all available sensors (case 3).

Modeled and observed spectral statistics are compared

at all grid locations for all cases in Fig. 8. Regardless of

initializing data and weights, the model consistently

underpredicts significant wave height. The assimilation

system appears to perform slightly better for cases with

multiple initializing sensors. This is not surprising; using

a larger number of initializing data locations of compa-

rable quality will generally improve modeled wave

heights. Although they have lower spectral resolution,

the AWAC profilers capture spectral moments roughly

as well as the 8-m array (K. Hathaway 2011, personal

communication). Wave height results appear to be some-

what better for smaller waves, suggesting that neglected

effects such as wind forcing, wave breaking, and triad in-

teractions (per their formulations in the SWAN model)

likely play a role in generating these errors.

Mean wave directions are recovered fairly well, al-

though model estimates are slightly closer to shore

normal (908) than observations. Mean periods are cap-

tured quite well in nearly all cases, with a very high

correlation and consistent 1:1 ratio of estimates to ob-

servations. Some error may result from neglected wind

forcing and triad/quadruplet interactions, which shift

observed wave energy to different frequencies (with

different refractive properties). Directional spreading

results are poor, largely owing to differences in the

spectra produced by each type of instrument. Predicted

directional spreads at AWAC profiler locations in cases

1 and 4 are consistently lower than observed values at

the AWAC profilers. This is expected because of the

stronger effects of the directionally narrower 8-m array

spectra on model output in these cases. Inversely, in

cases 2 and 5–9, modeled directional spreads are over-

estimated at the 8-m array location because the adjoint

is more strongly influenced by the directionally broad

AWAC profilers.

5. Discussion

Twin experiment spectral estimates from the data as-

similation system that uses the numerical adjoint are

consistently as good as those from the Walker (2006)

system built around an analytical adjoint, and the two

models show equal levels of skill. Results from the nu-

merical adjoint tests with observed data at Duck, North

Carolina, are good for small wave cases and become fair

or worse as spectral energies increase. These comparisons

illustrate some of the shortcomings of using the reduced

forward model to derive the adjoint, particularly in esti-

mates of significant wave height and directional spread.

FIG. 7. Evolution of (left) cost function and (right) norm of gradient of cost function, plotted vs assimilation iteration for all adjoint

simulations, with colors and symbols representing the nine different cases shown in Table 1. All values are normalized by the value at the

first iteration. Note log format on y axis.

962 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 30



Nonlinear sources of wave energy from wind forcing

and wave–wave interactions are not represented in the

adjoint code, although using the numerical approach

to derive the adjoint will ultimately make this repre-

sentation possible. Wave breaking was activated in the

system’s internal forward SWAN model, but its coun-

terpart was not available in the adjoint. This mismatch

between the forward and adjoint SWAN components of

this suboptimal assimilation systemmay contribute to the

underestimation of larger wave heights by the model.

Directional spreading also appears to increase at the

shallowerAWACprofiler sensors, at least partially owing

to triad and quadruplet interactions in or near the surf

zone, both of which are also neglected in the numerical

adjoint.

To a considerable extent, however, system perfor-

mance is hampered by the use of spectra from different

types of instruments. Spectral processing differences be-

tween theAWACprofilers and the 8-m array significantly

limit the adjoint’s performance in matching observed

spectra (e.g., Fig. 9, left and center panels). Adjoint esti-

mates in these tests might be improved if the directional

spreads of all input spectra could be normalized (e.g.,

using the relative directional spreads measured concur-

rently at the 8-m array and the 8-m AWAC profiler).

However, this modification would have to be based on an

explicit mathematical representation of the complex re-

lationship between the different techniques used to derive

spectra at each instrument, which may or may not be

derivable. Spectra from the FRF 8-m array of 15 pressure

sensors are obtained with an iterative maximum likeli-

hood estimator (IMLE) applied to 8192-s time series

(USACE Field Research Facility 2011). In contrast,

AWACprofiler spectra are generated using the combined

FIG. 8. Summary plots of modeled vs observed spectral statistics for all cases, showing results at interior and boundary data locations:

(top) (left) Hs and (right) mean direction; and (bottom (left) mean period and (right) direction spread. Nine symbols represent each of the

initializing scenarios described in the text. The solid line in each panel represents perfect agreement betweenmodel and data. The dashed

line shows the best linear fit to the data; its r2 value is provided in each panel. For the mean direction panel, shore normal is 908.
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three-beam UV velocity data together with pressure

measurements in another IMLE analysis, with slightly

different methods used for low- and high-frequency

ranges. The offshore Waverider buoy employs Fourier

transform techniques with time series of vertical and

horizontal buoy displacements, and an MLE analysis

is applied to the resulting Fourier coefficients to ob-

tain directional spectra (K. Hathaway 2011, personal

communication).

To remove directional spreading from consideration

in evaluating model performance, a second set of skill

calculations is made using modeled and observed fre-

quency spectra instead of frequency-directional spectra.

The revised skill score expression is

skillf 512

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
i
[Sm(fi)2So(fi)]

2
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
i
[So(fi)]

2
r , (9)

where Smod and Sobs from Eq. (8) have been summed

over directions to obtain Sm and So above, respectively.

The resulting skill scores (Table 2) are significantly

better than those obtained with 2D spectra. For calcu-

lations based on Eq. (9), model skill at Duck, North

Carolina, now ranges from 0.51 to 0.95 with a mean

overall skill of 0.71. This result suggests that, although

directional spreading differences are dominant, there

are also some frequency domain variations between

spectra from the 8-m array and theAWACprofilers. For

the sample case in Fig. 9, a comparison of 1D frequency

spectra (right two panels) illustrates the considerable

improvement in model performance when directional

spread is not considered. In this case, whilemodel skill at

the 8-m array improves marginally (from 0.88 to 0.89),

there is a much more substantial increase at the 8-m

AWAC profiler (from 0.26 to 0.79). Remaining spectral

differences at the 8-m AWAC profiler are likely partly

due to instrumental variations and in part to nonlinear

effects that are neglected in the adjoint.

To further examine the importance of instrument

type, the tests in section 4b are rerun, replacing observed

data at each location with artificial spectra generated

using fully nonlinear forward SWAN. The forward

model is initialized with data from the offshore Waver-

ider buoy, and wave breaking, triad interactions, wind

FIG. 9. (left)Observed and (middle)modeled frequency–directional spectra at the (top) FRF

array and (bottom) 8-m AWAC profiler for 29 Jul 2010. (right) Corresponding modeled and

observed frequency spectra for each instrument (log scale on y axis). Skill values for 2D and 1D

estimates are provided in parentheses. Model results are for case 1, in which the adjoint was

initialized only with a spectrum from the FRF 8-m array.
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forcing (10 m s21, shore-normal), and quadruplet in-

teractions are all activated. Revised assimilation system

estimates of wave statistics are plotted versus those from

the new set of SWAN-based ‘‘uniform instrument’’ ob-

servations in Fig. 10. The results are significantly better

than those presented in Fig. 8, especially with respect to

directional spreading estimates (bottom-right panel).

Using the idealized input spectra, model skill now

ranges from 0.54 to 0.93 with a mean overall skill of 0.82

(Table 3), a considerable improvement upon the levels

seen with the FRF dataset and also somewhat better, on

average, than the results obtained with 1D frequency

spectra. When 1D skill values are computed for these

results using Eq. (9), model skill ranges from 0.68 to

0.93, with a mean skill of 0.87.

6. Conclusions

A discrete numerical adjoint to the wave model

SWAN has been constructed by creating individual

numerical adjoints to all subroutines in the stationary,

homogeneous part of the forward model. The adjoint

TABLE 2. As in Table 1, but for adjoint skill scores for tests at Duck, NC, computed in frequency space only using Eq. (9).

Case Initializing location

Output location

FRF AWAC (5 m) AWAC (6 m) AWAC (8 m) AWAC (11 m)

1 FRF 0.83–0.92 0.56 0.59–0.67 0.79 0.51–0.77

2 AWACs 0.68–0.76 0.63 0.67–0.84 0.74 0.67–0.74

3 All 0.73–0.85 0.66 0.69–0.80 0.78 0.62–0.78

4 All Overwt FRF 0.82–0.95 0.70 0.62–0.76 0.85 0.54–0.83

5 All Overwt AWACs 0.71–0.78 0.66 0.70–0.83 0.77 0.66–0.77

6 AWAC (5 m) 0.67 0.74 0.69 0.74 0.72

7 AWAC (6 m) 0.57–0.83 0.64 0.74–0.76 0.73 0.55–0.71

8 AWAC (8 m) 0.63 0.55 0.60 0.71 0.66

9 AWAC (11 m) 0.51–0.78 0.63 0.66–0.76 0.72 0.78–0.83

FIG. 10. As in Fig. 8, but for summary plots of modeled vs nonlinear SWAN-generated ‘‘observed’’ spectral statistics

for all cases, showing results at interior and boundary data locations.
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and its subroutines are validated with standard dot-

product and impulse tests, after which the adjoint is in-

corporated into an assimilation system together with

a copy of the original forward SWAN code and modules

for minimizing the cost function. The assimilation sys-

tem is then tested in twin experiments with artificial

observed spectra (generated by nonlinear SWAN) at

Santa Rosa Island, Florida, and assimilations with actual

measured spectra at Duck, North Carolina. In the twin

experiments, the numerical adjoint performs compa-

rably to the analytical adjoint. The mean skill level

[Eq. (8)] for tests with artificial data is about 0.91, while

the average skill in tests with measured data is 0.52.

Differences in spectral resolution and quality at the

different types of nearshore instruments in Duck play

an important role in reducing skill levels for the latter

tests. When skill scores at Duck are recomputed for 1D

frequency spectra only, the average skill value in-

creases to 0.71. Replacing measured spectra in the

Duck tests with artificial ‘‘observations’’ from non-

linear SWAN improves the system’s average 2D skill

score to 0.82 and its average 1D skill score to 0.87. The

suboptimal numerical adjoint system’s performance is

sufficient to justify the development of a complete ad-

joint to fully nonlinear, nonstationary SWAN, and such

an effort is now underway.
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APPENDIX A

Variational Data Assimilation

The following material is included for readers who are

unfamiliar with representer-based data assimilation and

follows the approach of Bennett (2002). Including errors

in the forcing, the initial conditions, and the dynamics,

the nonstationary, inhomogeneous SWAN model equa-

tion [Eq. (1)] may be written in one representative spatial

dimension as

›N

›t
1c

›N

›x
5F1 f

u(x, 0)5 I(x)1 i(x)

u(0, t)5B(t)1b(t) , (A1)

where N5N(x, t) and f; i and b represent the errors in

the model dynamics, initial and boundary conditions

respectively, with covariancesCf (x, t, x
0, t0),Ci(x, x

0), and
Cb(t, t

0). Here, the idealized single spatial dimension x

represents a combination of two spatial dimensions

(X, Y) and two additional spectral dimensions ( f, u)

from the ‘‘real world.’’ It is assumed that, during the

time interval [0, T], observations of part of the state are

collected, having the form

ym5N(xm, tm)1«m, 1#m#M , (A2)

in which «m represents measurement error. These ob-

servations are collected at discrete points distributed in

space and time. An observation operator [e.g., Hk in

Eq. (3)] will not be utilized in this derivation in accor-

dancewith the preceding study, for whichmeasurements

are collocated with domain grid points and the observed

quantity is the wave action N rather than another de-

rived function of N. Because of various sources of error,

the model trajectory generally deviates from the ob-

servations. The role of data assimilation is to minimize

TABLE 3. As in Table 1, but for adjoint skill scores for tests at Duck, NC, using ‘‘same instrument’’ pseudodata observations generated by

nonlinear forward SWAN in place of measured data at each location.

Case Initializing location

Output location

FRF AWAC (5 m) AWAC (6 m) AWAC (8 m) AWAC (1 m)

1 FRF 0.82–0.91 0.93 0.88–0.91 0.89 0.76–0.86

2 AWACs 0.84–0.89 0.92 0.85–0.90 0.88 0.80–0.87

3 All 0.84–0.90 0.92 0.85–0.90 0.89 0.79–0.85

4 All Overwt FRF 0.84–0.89 0.93 0.84–0.91 0.89 0.77–0.86

5 All Overwt AWACs 0.84–0.89 0.92 0.85–0.90 0.88 0.80–0.87

6 AWAC (5 m) 0.84 0.90 0.87 0.84 0.80

7 AWAC (6 m) 0.78–0.88 0.92 0.82–0.90 0.87 0.71–0.83

8 AWAC (8 m) 0.89 0.93 0.91 0.89 0.86

9 AWAC (11) 0.83–0.91 0.93 0.79–0.92 0.91 0.83–0.91
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the aggregate discrepancy over the given time interval.

It is assumed that if the said discrepancy is minimized,

then the optimal trajectory will yield a final stateN(x, T)

for which a reliable forecast will bemade. The aggregate

model–data discrepancy is represented in a generalized

cost function of the form

J5

ðT
0

ðL
0

ðT
0

ðL
0
f (x, t)Wf (x, t, x

0, t0)f (x0, t0) dx0 dt0 dx dt1
ðL
0

ðL
0
i(x)Wi(x, x

0)i(x0) dx0 dx

1

ðT
0

ðT
0
b(t)Wb(t, t

0)b(t0) dt0 dt1 �
M

m51
�
M

n51

[ym 2N(xm, tm)]R
21
mn[yn2N(xn, tn)] , (A3)

where Wf, Wi, and Wb are the respective inverses of Cf,

Ci, and Cb defined in the convolution sense:ðT
0

ðL
0
Wf (x, t,x

0, t0)Cf (x
0, t0,x00, t00)dx0 dt05d(x2x00)d(t2 t00)ðL

0
Wi(x,x

0)Ci(x
0,x00)dx05d(x2x00)ðT

0
Wb(t, t

0)Cb(t
0, t00)dt05d(t2 t00)

(A4)

with the unit impulse d(z)5 1 for z5 0 but otherwise zero,

and Rmn are the components of R, the observation error

covariance; that is,R5 ««T, with the overbar denoting the

average in the ensemble sense. It is important to note that

the cost function (A3) is quadratic in the errors; thus, J has

one minimum. For the sake of clarity and without loss of

generality, it is assumed that the errors are uncorrelated

with constant variance. The cost function becomes

J5Wf

ðT
0

ðL
0
f (x,t)2 dxdt1Wi

ðL
0
i(x)2 dx1Wb

ðT
0
b(t)2 dt

1v �
M

m51

[ym2N(xm,tm)]
2 , (A5)

where v is the inverse of the data error variance [for the

steady-state, homogeneous form of (A1), Eq. (A5) reduces

to the form of section 2, Eq. (3)]. After some standard

manipulation, in which we introduce the adjoint variable

l5Wf

�
›N

›t
1c

›N

›x
2F

�
, (A6)

we obtain

2
›l

›t
2c

›l

›x
1v �

M

m51

[N(xm, tm)2ym]

3d(x2xm)d(t2 tm)50,

l(L,t)50,

l(x,T)50,

2cl(0,t)1Wb[N(0, t)2B(t)]50, and

2l(x, 0)1Wi[N(x, 0)2 I(x)]50. (A7)

The equations in (A6) and (A7) constitute the Euler–

Lagrange conditions for local extrema of the cost

function.

While there are several techniques for obtaining a so-

lution to (A6) and (A7), the present study makes use of

the conjugate gradient method detailed in Walker (2006)

and Polak and Ribi�ere (1969), in combination with the

method of representers. The optimal solution or ‘‘best

estimate’’ N is obtained by iteratively solving the above

equations, reorganized into the coupled system

(B)

8>>>>>><
>>>>>>:

2
›l

›t
2c

›l

›x
52v �

M

m51
[N(xm, tm)2ym]d(x2xm)d(t2tm)

l(L, t)50

l(x,T)50

(A8)

(F)

8>>>><
>>>>:

›N

›t
1c

›N

›x
5F1W21

f l

N(x, 0)5 I1W21
i l(x, 0)

N(0, t)5B(t)1cW21
b l(0, t)

. (A9)

Note that we now also have the best estimate of the

errors f, I, and b as the second terms in all three equa-

tions of (A9), respectively. The representer method

uncouples the above system by introducing representer

functions rm(x, t), 1#m#M. Each representer function

has an adjoint am(x, t) that satisfies

(Bm)

8>>>><
>>>>:

2
›am

›t
2c

›am

›x
5d(x2xm)d(t2 tm)

am(L, t)50

am(x,T)50

(A10)

(Fm)

8>>>>><
>>>>>:

›rm
›t

1c
›rm
›x

5W21
f am

rm(x, 0)5W21
i am(x, 0)

rm(0, t)5cW21
b am(0, t)

. (A11)
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Next, we seek the solution N of the form

N(x, t)5NF(x, t)1 �
M

m51

bmrm(x, t) , (A12)

where the coefficients bm are unknown constants and

NF(x, t) is the prior estimate obtained as the solution of

(A1) without the errors:

›N

›t
1c

›N

›x
5F

N(x, 0)5 I(x)

N(0, t)5B(t) . (A13)

We combine (A11), (A12), and (A13) to get

D(N)5D(NF)1 �
M

m51

bmD[rm(x, t)]

5F1W21
f �

M

m51

bmam(x, t) , (A14)

in whichD5 (›/›t)1 c(›/›x). Now by definition of l and

by virtue of (A14),

l5Wf [D(N)2F]5 �
M

m51

bmam(x, t) . (A15)

Applying the differential operatorD on (A15) and using

the first equation of (A8),

2D(l)52 �
M

m51

bmD(am)5 �
M

m51

bmd(x2xm)d(t2 tm)

52v �
M

m51

[N(xm, tm)2ym]d(x2xm)d(t2 tm) .

(A16)

Equating the coefficients of bm in (A16) yields the op-

timal choice of the representer coefficients:

bm52v[N(xm, tm)2ym], 1#m#M . (A17)

The optimal representer coefficients still depend on the

optimal solution N, so further manipulation is required.

Substituting N in (A12) into (A17) gives

bm52v

"
NF(xm, tm)1 �

M

l51

blrl(xm, tm)2ym

#

52v

 
NFm1 �

M

l51

blrl,m2ym

!
. (A18)

Thus,

�
M

l51

(rl,m1v21dl,m)bl5hm5ym2NFm , (A19)

where dl,m is the Kronecker delta. In matrix notation,

theM equations in (A19) for the representer coefficients

bm are

(R1v21I)b5h5y2NF . (A20)

The optimal solution is therefore obtained as

N(x, t)5NF(x, t)1 (y2NF)
T(R1v21I)21r(x, t) . (A21)

APPENDIX B

Discretized Equations

In expanded form, the stationary homogeneous wave

action equation [Eq. (2)] may be written as

›CxN

›x
1
›CyN

›y
1
›CsN

›s
1
›CuN

›u
50, (B1)

where all terms have been defined in section 2. Dis-

cretized using a first-order backward difference scheme

for spatial dimensions and a central difference for

spectral dimensions, this equation becomes

1

Dx
(Cx

i
Ni,j,k,l 2Cx

i21
Ni21,j,k,l)1

1

Dy
(Cy

j
Ni,j,k,l 2Cy

j21
Ni,j21,k,l)

1
1

2Ds
[(12 n)Cs

k11
Ni,j,k11,l 1 2nCs

k
Ni,j,k,l 2 (11 n)Cs

k21
Ni,j,k21,l]

1
1

2Du
[(12h)Cu

l11
Ni,j,k,l111 2hCu

l
Ni,j,k,l 2 (11h)Cu

l21
Ni,j,k,l21]5 0, (B2)

where indices i, j, k, and l track the spatiospectral grid

location in terms of coordinates x, y, s, and u, respec-

tively. Here, the frequency and directional derivatives

are expressed as weighted central differences with

weights n and h between zero and one. Taking the

adjoint of (B2) gives
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1

Dx
Cx

i

(li,j,k,l 2li11,j,k,l)1
1

Dy
Cy

j

(li,j,k,l 2 li,j11,k,l)1
1

2Ds
Cs

k

[(12 n)li,j,k21,l 1 2nli,j,k,l 2 (11 n)li,j,k11,l]

1
1

2Du
Cu

l
[(12h)li,j,k,l211 2hli,j,k,l 2 (11h)li,j,k,l11]5 (ym2Nm)d

i
i
m
d
j
j
m
dkk

m
dll

m
, (B3)

where li,j,k,l is defined as the residual variable or in-

novation (the difference between model estimate and

observation) at the spatiospectral location given by in-

dices i, j, k, and l, and the observation locations are de-

noted by m, where 1 # m # M. Each d is a Kroenecker

delta for a given spatiospectral index, which is equal to

one only at the index of an observation location and is

zero otherwise. Note that in (B3), the energy propa-

gation speeds Cx,y,s,u are assumed to be locally con-

stant with respect to coordinates x, y, s, and u, which

leads to a different form for the coefficients in (B3)

compared to those in (B2). The adjoint to linear ho-

mogeneous SWAN essentially solves (B3), forced at

selected interior grid observation locations [x(im),

y( jm)] with innovations (ym 2 Nm), each of which in-

cludes observed-minus-estimated spectral density for

frequencies s(km) and directions u(lm).
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