Chapter 8
Background error correlation modeling with
diffusion operators

Max Yaremchuk, Matthew Carrier, Scott Smith and Gregg Jacobs

Abstract Many background error correlation (BEC) models in datamagation are
formulated in terms of a positive-definite smoothing opar& that is employed
to simulate the action of correlation matrix on a vector gtetspace. In this chap-
ter, a general procedure for constructing a BEC model asanedtfunction of the
diffusion operatoD is presented and analytic expressions for the respective-co
lation functions in the homogeneous case are obtainedslktas/n that this class of
BEC models can describe multi-scale stochastic fields whbaeacteristic scales
can be expressed in terms of the polynomial coefficientseofribdel. In particular,
the connection between the inverse binomial model and thiekwewn Gaussian
modelBy = expD is established and the relationships between the respetdior-
relation scales are derived.

By its definition, the BEC operator has to have a unit diaganal requires ap-
propriate renormalization by rescaling. The exact comraf the rescaling fac-
tors (diagonal elements &) is a computationally expensive procedure, therefore
an efficient numerical approximation is needed. Under tsaraption of local ho-
mogeneity ofD, a heuristic method for computing the diagonal elementB @
proposed. It is shown that the method is sufficiently aceufat realistic applica-
tions, and requires faimes less computational resources than other methods of
diagonal estimation that do not take into account priorrimation on the structure
of B.
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8.1 Introduction

In recent years, heuristic background error correlatidd@Bmodelling has become
an area of active research in geophysical data assimil@ibparticular interest are
the BEC models constructed with positive functions of tHudion operator,

D = 0OvO (8.1)

wherev is the spatially varying positive-definite diffusion temsbhis type of BEC
model is attractive for several reasons: a) it guarantestiy® definiteness of the
resulting correlation functions (CFs), b) it is computatidly inexpensive in most
practical applications, and c) it allows straightforwahtrol of inhomogeneity
and anisotropy via the diffusion tensor. In the traditioapproach of correlation
modeling where spatial correlations are specified by pitesgranalytical functions,
care should be taken to maintain positive definiteness ofebective correlation
operator, especially in anisotropic and/or inhomogeneasss [1, 2].

Among the most popular operatddsused in practical BEC modeling are those
using the exponential and the inverse binomial functior3:of

Bg=exp@a®D); Bm= (I — a%D>_ (8.2)

wherel is the identity operatog is a scaling parameter amdlis a positive integer.
SinceD has a non-positive spectrum whose larger eigenvaluesspamne to the
smaller-scale eigenvectors, the opera®gsandBy, are positive-definite and sup-
press small-scale variability. Both types of BEC model2)8&re extensively used
in geophysical applications. Numerically, they are impdeted by integration of
the diffusion equation using either explicit (in the caseBgf[3, 4, 5]) or implicit
(in the case oBn, [6, 7]) integration schemes.

A disadvantage of the BEC models (8.2) is that there is adidhiteedom in the
shape of local CFs, which have either the shape of the GawissiaB) or provide
its mth-order strictly positive approximationB,) [8, 9]. In order to allow negative
correlations, one has to consider operators generateelarhitrary polynomials in
D. The quadratic polynomial case was studied recently bytéfsidos and Elogne
[10, 11] and Yaremchuk and Smith [9], who obtained analgfresentations of the
CFs and derived relationships between the polynomial aieffis and the spectral
parameters oB in the homogeneous case.

In a more realistic inhomogeneous setting, the diffusiorsde varies in space,
making analytic methods inapplicable. Nevertheless, ttey still give a reason-
able guidance for quick estimation of the diagonal element3 (normalization
factors), whose values are crucial for constructing the Bi@els. The importance
of accurately computing di&yis evident from the fact that the operat@sunder
consideration are formulated numerically as multiplicatalgorithms by the ma-
trices, whose elements are not explicitly known. On the rotlaed, since the BEC
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operatolC is represented numerically by the correlation matrix, istrhave a unit
diagonal and, therefore, knowledge of the diagonal elemefB is required for
renormalization:

C = (diagB) /2B (diagB ) /2 (8.3)

Equation (8.3) shows that the considered BEC models invioleeseparate algo-
rithms: one for computing the action Bfand another for estimating the normaliza-
tion factors(diagB) that are necessary for computing the actiofichagB) /2.

Purser with coauthors [12, 13, 14] were among the first to eynghalytic meth-
ods for estimating the normalization factors for the GaarssiperatoBg in geo-
physical applications. Somewhat earlier, an asymptotbrigue was developed
for estimating the diagonal of the Gaussian kernel in Riemenspaces to study
quantum effects in general relativity (e.g., [15],[16]h€Be ideas can be utilized to
derive a useful algorithm for estimating the normalizafiactors.

In this chapter, we first give an overview of the recent dgwelents in con-
structing theD-operator BEC models, and illustrate their major featuréh tne
examples in the homogeneous case const In particular, in section 2.2, the rela-
tionships between the scaling parameters for the Gaussdelrand itsmth-order
approximation (8.2) are obtained and the respective CFgiaga. In section 2.3 the
inverse binomial model is extended to an arbitrary polyrediwfiD: Expressions for
the CFs and normalization factors are derived, and relsltigps are established be-
tween the structure of the BEC spectrum and the polynomédficgents. In section
3, after a brief overview of the diagonal estimation methadseuristic formula for
computing dia@q is derived (section 3.2) and then tested numerically agather
methods in a set of realistic oceanographic applicatioastins 3.3-3.5). Results
of similar tests with thé8,, model are also presented. Summary and discussion of
the prospects for thB-operator BEC modeling complete the chapter.

8.2 Diffusion operator and covariance modeling

The convenience of the diffusion operator (8.1) for corgtng the BEC models
can be explained by the non-negative spectrum-bf An operator that is gener-
ated by a positive rational functidhof —D whose eigenvalues tend to zero at large
wavenumbers, is positive-definite and has a smoothing prgpe. tends to sup-
press high-frequency components of the solution. In thisice we consider two
types of such functions: Those that are generated byntheorder binomials (Sec-
tion 2.2) and the others by the inverse of a positive polyr@bigBection 2.3). To
allow analytical treatment, anisotropic homogeneous tatiee boundless domain
is considered.

The benefit of analytical consideration is its ability to eal/local correlation
structure and therefore provide a reasonable guidancaistroetion of more gen-
eral operator8. In addition, as it has been shown recently, good approximsito
diagB can be obtained by using analytical results obtained wighnibimogeneous
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versions ofB (e.g., [12, 17, 18]). Therefore, analytical formulas désog homo-
geneous BEC operators are of significant practical intefidst analytical results
may facilitate practical design of the cost functions iniational data assimilation
problems, because they give explicit relationships betwtbe shape of the local
CFs and the structure of the corresponding BEC operator.

8.2.1 Correlation functions and normalization

Consider an anisotropic, homogeneous diffusion oper&td) (nR",n=1,...,3,
with x € R" representing points in the physical space. By using thedioate trans-
formationx’ = v—1/2x, the problem can be reduced to considering isotropic opera-
tors of the form

B=F(-4), (8.4)

whereA is the Laplacian (e.g., [8, 10]) arkdis an arbitrary positive function. In the
case of an inhomogeneous diffusiors£ cons) the global transformation cannot be
found. Transformations of this type, however, can be usedlpfor constructindd
and the normalization factors (Section 3). All of the foramithat are written below
are assumed to be in the transformed coordindtesth primes omitted to simplify
the notation.

The operator (8.4) is diagonalized with the Fourier tramefcand the diagonal
elements ar@®(k) = F(k?) wherek is the Fourier coordinate (wavenumber). Be-
cause of homogeneity, the matrix elementBanh thex-representation depend only
on the distance = |x| from the diagonal. They can be computed by applying the
inverse Fourier transform ®(k):

B"(x) = (2m) " / B(K) exp(—ikx)dk. (8.5)
Rn
By integrating over the directions iR" (Appendix 1), (8.5) can be reduced to
B'(r) = (2m1) "2 / B(K)K™ L (kr)53_g(kr)dk (8.6)
0

wherek = |k|, J denotes the Bessel function of the first kind, ang¢ 1 —n/2.
The respective matrix elements of the correlation oper@@éis) are obtained by
normalization:

C"(r) = B"(r)/B"(0) (8.7)

In practical applications, the diffusion operator is notfemeneous, and the analytic
representations (8.6—8.7) cannot be obtained. Howeweradkion ofB on a state
vector can be computed numerically at a relatively low cdse major problem
with such modelling is the efficient estimation of the diaglb#lements
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B"(x,x) = /B“(x,y)é(x—y)dy (8.8)
Rn

which are necessary to rescd@deto have its diagonal elements equal to unity. In
practice, the rescaling factokg'(x) are defined as reciprocals Bf (x,x).

Computing the integral (8.8) numerically is expensive case the convolutions
with the d-functions have to be performed at all poixtof the numerical grid.
However, reasonable approximations [12, 18] §8%(x) can be obtained by using
asymptotic expansions of (8.8) under the assumption of weakmogeneity (see
Section 3).

8.2.2 The Gaussian model and its binomial approximations

The Gaussian-shaped correlation model is widely used iplgesical applications.
Numerically, it is implemented by approximating ¢&pD/2) with the binomial:

2 2\ M

By(D) = exp(%) ~ (|+ %) , (8.9)
wherem is a large positive integer. This numerical approach isrofeferred to
as "integration of the diffusion equation” and has been usgafactice for several
decades [3, 4, 5, 7]. There is, however, a certain disadgardasociated with the
numerical stability of the integration: The number of “igtation time stepsin has
to be large enough for the eigenvalues of the binomial opematthe rhs of (8.9)
to be less than 1 in the absolute value. This constraint may iih from below by a
large value, which can make the computation rather expensiv

Another option is to use a different approximation in (8.9):

Bm(D):<I aZD) . (8.10)

- 2m

The eigenvalues of the operator in the rhs of (8.10) do na¢exd, and the “inte-
gration procedure” is unconditionally stable. This apglo# often referred to as
“implicit integration of the diffusion equation” (see Appéix 2). and has been used
in many practical applications as well [6, 7, 19].

In the Fourier representation both models (8.9) and (8.fpp)aimate the same
Gaussian function df:

a%k2 1™ a2k?
n = - = _— .
BA(K) = [1 Zm} exp(— =) (8.11)
a2k2 —-m a2k2
n = —_— ~ - .
Bm(k) = [1+ Zm} exp( 5 ) (8.12)
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Since the value ofmin (8.11) is fairly large in practice, the resulting CF is thigr
distinguishable from a Gaussian-shaped curve with a halfhve.

Substituting (8.12) into (8.6), integrating oMerand normalizing the result by
B,(0) yields the CFs of the Matern family [20] enumerated by sn—n/2 and
scaled bya. = a/v/2m:

PKs(p)
25—1['( )

wherep =r/a,, ' is the gamma-function and stands for the modified Bessel
function of the second kind [22]. The respective normaiirafactors are

n_ VT (M)
" Fm-1/2%

ch(p) = (8.13)

(8.14)

wherew;, = 2, wp = 21,andws = 471. In the limiting case ofm — o, the CFs (8.13)
take the Gaussian form:

Ch —exp(—r?/2a%); n=1,.. (8.15)

Consecutive approximations of the Gaussian CF by (8.13taven in Figure 1. It
is remarkable that whem= 1, the CFs (8.13) have singularitiegeat 0 in both two
and three dimensions (see also Table 1). This meangtliad continuous casthe
first-order approximations become invalid when- 1. Numerically, however, the
CFs do exist fon > 1, but their decorrelation scale is limited by the grid shzghe
corresponding CF is shown by the dotted line in the left pahElg. 1). This occurs
because the numerical analogue of éh&unction is never singular, but has a finite
amplitude inversely proportional to the volume of a grid ablerefore, resulting in a
finite value of the convolution (8.8) even if itis infinite ihé continuous case. After
normalization by that finite value, the CF is 1Irat 0, but its effective decorrelation
scale remains proportional to the local grid size.

The left panel in Figure 1 shows that low-order binomial apgmations (8.13)
underestimate the decorrelation scalef the target Gaussian function. This un-
pleasant property can be corrected by optimizing the valweein (8.10) to obtain
the best fit with the Gaussian CF. Since the Gaussian andpt®@mating func-
tions are both positive and have similar shapes, a reasopalimization criterion
is to set their integral decorrelation scales equal to edtoéro

[ee] [ee]

n 8ot Vma
Ch(p)dr= exp( )dr——. (8.16)
/ O/ V2

Expression (8.16) shows thagp: = &pa, where the rescaling coefficiesf; is de-
fined as:

&n=+/mm

- -1
n _ Iy
O/Cm(Y)dy] = m\/m (8.17)
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Fig. 8.1 Left: Binomial approximations (8.13) of the Gaussian CFwm tdimensions 1f = 2).

The CF form =1 is shown by the dotted line for the numerical realizatiothvthe grid step
d = a/4. Middle: Same approximations, but with optimally adjasterrelation radii for various
combinations ofm and n. Right: Differences between the Gaussian CF and its appitions
shown in the middle panel. The horizontal axes are scalea by

The values of} for m,n < 4 and their respective approximation errors

0

[ee]

&= [ICh~Coldr/[ [ Caldr]

0

are assembled in Table 1.

0

Table 8.1 Correlation functions associated with the power approtiona (8.10) of the Gaussian
CF in n dimensions. The CFs fan = 1 and 3 are rewritten in terms of elementary functions
for convenience. The correlation radius adjustment coeffts &7, are shown below the formulas
together with the corresponding relative errefs in approximation of the Gaussian CF (bold

numbers).

n=1 n=2 n=3
m=1 exp(—p) Ko(p) exp(—p)/p
N 0.33 — —
m=2 (1+p)exp(—p) PKa(p) exp(—p)
m/2 013 |/8/m 019| v2m  0.33
m=3|[(1+p+p?/3)exp(—p)| pKa(p)/2 [(1+p)exp(—p)
Vv27m/8 008 |,/16/3m 0.10| \/3m/4 0.13

The coefficient€ ) along with relationship (8.12) provide an expression fair es
mating the scaling parameter in the binomial model (8.10¢whpproximates the
Gaussian-shaped CF with a given radaus

Apinom= &ma/v2m

(8.18)
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8.2.3 The inverse polynomial model

A certain disadvantage of the binomial models (8.9) andQ)8id their inability to
represent oscillating CFs whose spectra may have multiphenma. This issue can
be overcome by considering the BEC models of the form.

-1
b
B=|I+ ¥ aD (8.19)

Herea; are the real numbers, constrained by the positive defirstereguirement

of B. In the Fourier representation, the operator (8.19) actswd8plication by the
inverse of the polynomial ik?, and the positive-definiteness property translates into
the requirement that the spectral polynomial

B 1K) =1+ i aj(—k?)] (8.20)
=1

to be positive for alk? > 0. This constraint is equivalent to the statement that the
rhs of (8.20) must not have real positive roots. TherefBré(k?) can also be rep-
resented in the form

B 1) = |M|l(k2 L 2)(R+ ), (8.21)

whereM = J/2,
Z=11zl (8.22)
m

the overline denotes the complex conjugate,mng an+iby, are arbitrary complex
numbers with IngzZ,) # 0. In its general form, the polynomial (8.21) is additiogall
multiplied by the product of the arbitrary number of real atge roots by, = 0).
The ensuing analysis of (8.21) will be simplified by omittithg product (summa-
tion) limits overm and assuming there are no real negative or multiple roots. Th
latter requirement is not restrictive in practice, becdasation of the roots is never
known exactly, and the BEC spectrum can always be well apmated by (8.21)
[21].

Itis instructive to note that the polynomial (8.21) can dbsorewritten as

B~Y(K?) = % |M| (af+ (k—bm)?) (@ + (k+bm)?), (8.23)
m=1

Compared to the spectral representation (8.20), represam({8.23) has the advan-
tage that its free parameters are not constrained by thévyaedefiniteness require-
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ment, and they have a sensible meaning of the schté$ &nd "energies”§ 1) of
the modes forming the spectrum.
Using equation (8.6), the matrix elementstan now be written as

(8.24)

_zr S/°° ks+1J5(kr)dk
3) Nke+2)(K+2)’
0 m

wheres=n/2— 1. The integral in (8.24) can be taken by decomposing

4

B(k) = 8.25
Y= ez (629)
into elementary fractions:
5[ 9m . Gm
B(k)_% k2+2.2n+k2+22m , (8.26)
where
Z
Om (8.27)

G-ANG-DE-Z)

After substitution of (8.26) into (8.24), the integral isdteed to the sum of
Hankel-Nicholson type integrals [22] and can be taken eiplj yielding

2rz—n

B"(r)= 27

Z<qmmes(pm)> (8.28)

wherepm = zyr, and angular brackets denote taking the real part (cf. et3)B
The corresponding correlation functio@%(r) are obtained through normalizing
(8.28) byB"(0). The first three values at= 0 are

BY(0) = Y (amzm) |zm| (8.29)
B(0) = —,—1Tz<qmlogzm> (8.30)
B3(0) = 21HZ<QmZm> (8.31)

The normalization factors can be found by integrafi¢r) overR":
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Relationships (8.28)-(8.32) provide analytical expressifor the CFs and the
normalization factors.

1 1
b=2 1 b=4
08 — 1 08|\t b
oef \ - L b=2 oef\\- Lo b=2
s -, n=1 n=2
g 0.4 0.4
£ o2 0.2 e
g ° e TN e
0 = 0 \/\/_\)' =
-0.2 \f -0.2
-0.4 -0.4 -0.4
0 2 4 6 0 2 4 0 1 2 3

Fig. 8.2 Two-parameter CFs corresponding to the inverse BEC (8.2th) a= 1,M = 1. The
horizontal axis is scaled bg. Dotted lines show CFs corresponding to the special cagetwit
negative root$? = —a, k% = —bnot described by the spectral polynomial (8.21).

In the important case of the quadratic polynomidl £ 1) the BEC model is
defined by two parameteesb (Figure 2). Expressions for the respective CFs in
1- and 3-dimensional cases can be rewritten in terms of gmettary functions
[9, 21]

Va2 +b?

1 _
C(a,b,r)= b

exp(—ar)cogbr — arctar%1 ) (8.33)

sin(br)
br

C3(a,b,r)=exp(—ar) (8.34)

and the normalization factors are given by

4a 8mab 8ma
1 = — N2 = . N3 = 55 .
a?+b?’ 2(a2+b?)2arctarib/a)’ (a2 +b?)? (8.35)

In practical applications, a BEC model is often construdigditting the spec-
tral (8.25) or correlation (8.28) functions to those dedifeom experimental data.
These functions are characterized lny@arameters which give enough freedom for
approximating complex spectra. The approximation prooedan be formulated as
a least squares problem imadimensions, which may be rather difficult to solve
due to the non-linearity d with respect to the fitting parametezg andbm,. There-
fore, it is useful to have guidance on how the BEC model patarsare related to
the scales and amplitudes of the physical modes that caterib the experimental
spectrum (Fig. 3).

The contribution of thenth mode to the spectrum can be assessed by integrating
the right hand side of (8.26):
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. i Om Om . TT(QmZm)
Em_b/[k2+2%+k2+22n k=" (8.36)
In the limit when distancefb, — by| between the spectral peaks Bfare much
larger than their half-widthan, (i.e.amn/bm < 0 in particular), equation (8.36) can
be simplified using the asymptotic approximations

bﬁﬂ . — 2 /h2\2
i e [0

Zm~ibm, Ogm=~

to yield

2
Em~ i) )
4amlm
Asymptotic values of the spectral density at the peaks ageively

(8.37)

b _ Em

B(bw) ~ gl = o

: (8.38)

i.e. the peak amplitudes are inversely proportionabdcand to the square of the
mode scale,l. Expressions (8.36)—(8.38) can be useful in generatinfirsiguess
values forzy, to initialize an iterative procedure of approximating esipental data.

0.8

0.6

0.4

0.2

° \/“\/\v ~
1

2 3 4

Fig. 8.3 An example of the normalized spectrum (left) and the re$peaorrelation function
(right) for the fourth-order polynomial (8.26) in two dim&ons. M =2; 2z =.5+43i; z =
.24 6i).

After the model parameters are established, the acti@® dfcan be computed
recursively (cf. equations (8.21)-(8.22):

B~ =[] [1- |zl °D(2(z)1 - D)] (8.39)

m
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The inverse BEC model (8.39) can then then be employed to atargither the
action ofB with an iterative inversion algorithm or to directly compuhe gradient
of a 3dVar cost function involving the quadratic fosmB ~1x, wherex is the state
vector.

The above analysis gives an insight on the shape of the Ideab@d provides a
direct connection between the scales describdgl agd the polynomial coefficients
of the considered BEC models (8.9), (8.10), (8.25) or (8.BB second important
ingredient in constructing the BEC opera@(eq. (8.3)) is estimating the diagonal
elements o8, which is a more technical but equally important problem.

8.3 Diagonal estimation

8.3.1 Stochastic methods

In the last few decades a large family of stochastic algorithvere developed for
estimating elements and traces of extra-large matricesgéngefrom numerical
soluitons of the PDEs in applied physics (e.g., [23, 24, 2Baver and Courtier
[27] were among the first to use this approach in geophyspai@ations for esti-
mating the diagonal of the operator (8.9).

The underlying idea is to define an ensembleKofandom vectorsy on the
model grid and perform componentwise averaging of the pstsdu= Bs according
to the formula: B

d(x)=s®S0sos, (8.40)

where the overline denotes averaging over the ensembleband stand for the
componentwise multiplication and division of the vectaspectively. Simple con-
siderations show that when all the components bave identicab-correlated dis-
tributions with zero mean, the contributionsdofrom the off-diagonal elements
tend to cancel out, and converges tal = diagB asK — «. More accurately, the
squared relative approximation error

£2(x) = (d — d)?/d? (8.41)

is inversely proportional to the ensemble sizeln other words, one may expect to
achieve 10% accuracy at the expense of approximately 100phizdtions byB if
the first ensemble member gives a 100% error. This estimayeseeam acceptable
since in geophysical applications the BE variances arellydiaown with limited
precision and approximating the diagonal with 5-10% ereanss satisfactory.

The above described Monte-Carlo (MC) technique was deeeldprther by
Bekas et al [26], who noticed that the method may converdéandhefinite number
of iterations that equals to the matrix dimenshrif the ensemble vectors are mu-
tually orthogonal. An easy way to construct such an ensesledraw the vectors
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sk from the columns of th&l x N Hadamard matrix (HM), which span the model's
state space (see Appendix 3).

In the numerical experiments below we use MC and HM techrigsetestbeds
for the diagonal estimation methods which can be derivea froalytical consider-
ations and are exploit prior knowledge of the structur8 of

8.3.2 Locally homogeneous approximations

Consider homogeneous ( cons) operators (8.2) witta> = 1/2 and assume that
the coordinate axes are aligned along the eigenvectorg diiffusion tensor, whose
(positive) eigenvalues ak?,i = 1,..,n. Then the matrix elements &,ym can be
written down explicitly as

2
Bg(x,y) =expD/2) =d exp[Tp] (8.42)
Bm(x,y) = (I-D/2m)~™ =d 25;?77_(2) (8.43)

where

p= \/(x—y)TV‘l(x—y)

is the distance between the correlated points (measureuiritstof the smoothing
scales)i), d = (2m)~"2Q ! are the (constant) diagonal elementsBgfm, Q =
M = V/de is the diffusion volume element, am= v/2mp.

Whenv varies in space, (8.42-8.43) are no longer valid, and thgadial ele-
mentsd depend orx and the type of th& operator. However, if we assume that
is locally homogeneous (LH), i.e. varies in space on a ty@icaleL which is much
larger thanA;, the diagonal element$(x) can be expanded in the powers of the
small parameteg = A /L, whereA is the mean eigenvalue gfv. The zeroth-order
LH approximation term (LHO) is apparently

do(x) = (2m)~"2Q(x)* (8.44)

because for infinitely slow variations of (L — ), the normalization factors must
converge to the above expression for the constant diagterakatsd. It is note-
worthy that the formula (8.44) is found to be useful even m¢hse of strong inho-
mogeneitye > 1. In particular, numerical experiments of Mirouze and Vedt 7]
have shown that such an approximation provided 10% errasimplified 1d case.
The accuracy of (8.44) can formally be increased by consig¢ine next term in
the expansion of the diagonal element®gf,. The technique of such asymptotics
has been well developed for the diagonal of the Gaussiareké8m2) in Rieman-
nian spaces (e.g., [15, 16]). More recently, the approachasasidered by Purser
[13, 14] in the atmospheric data assimilation context. Tinglieation of this tech-
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nique to the diffusion operator (8.1) in flat space yields fllowing asymptotic
expression for the diagonal elementsByf in the local coordinate system where
v(x) is equal to the identity matrix, arldl takes the form of the Laplacian operator:

Bg(X,x) = 1- }trh S (%trh +0- divh)} +0(¢) (8.45)

(2m)n/2 { 2 12

Hereh is a small (h| ~ €) correction tov within the vicinity of x. Note that the
terms in the parentheses have the o@g?), because each spatial differentiation
adds an extra power af

The asymptotic estimate (8.45) involves second derivativgch tend to amplify
errors in practical applications whemmay not be small. Therefore, using (8.45) in
its original form could be inaccurate even at a moderatelglsralue ofe. To
increase the computational efficiency, it is also desirabfermulate the first-order
approximation as a linear operator, which actsi8(x). Keeping in mind thath| ~
&, and utilizing the relationships:

dO(x) = (2m)""2Q(x) "t ~ (2m) "2 (1— %trh) (8.46)
exp(A/2) ~ |+ %A, (8.47)

the second term in the parentheses of (8.45) can be repeesenfollows:
- divh = %Atrh +0O-divh’ (8.48)

whereh’ is the traceless part df. On the other hand, if the divergence fufis
neglected, the equation (8.45) can be rewritten in the form

1 A 1
where 11
= =4+ —. 8.50
Yn 6 3n ( )

Taking (8.46-8.47) into account and replacidgoy D, the desired ansatz for the
first-order approximation (LH1) of the diagonal elementshained:

D
dg = exp(yna) dg (8.51)
The relationship (8.51) was derived by Purser et al. [12]tiier one-dimensional

case (1 = 0.5) and tested by Mirouze and Weaver [17], who reported a faogumit
(2-4 times) improvement of the accuracy in 1d simulations.
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An estimate similar to (8.51) can also be obtainedBgy, possibly with a dif-
ferent coefficients,. It is assumed, however, thgt may not differ too much from
Ya given similarity in the shapes (Fig. 1) of the correlationdtions (8.42)-(8.43).
Furthermore, because of the approximate nature of (813d pdst representation of
d(x) in realistic applications may be achieved with a valugrdhat ts significantly
different from the one given by (8.50). For this reason, aeganeral form of (8.51)
was adopted in the numerical experiments, assuming

di(0) ~ explyD/2ldJ(x);  di(x) ~[1-yD/4 2d3(x)  (8.52)

for the Gaussian model and its second-ordes<2) spline approximation (10).
The following experiments investigate the dependenceafakpective approx-
imation errorsgg ) on the free parameter
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Fig. 8.4 Left: A composite map of five columns of tl, operator. White circles denote locations
of the diagonal elements of the corresponding correlatiatrioes. Right panel shows the map of
the non-normalized diagonal elementsBf Depth contours are in meters.

8.3.3 Numerical results

To assess the efficiency of the methods outlined in Sectidn8.2, two series of nu-
merical experiments with realistically inhomogeneous BE@lels are performed.
In the first series the methods were tested in the 2d caseheitsiate vector having
a dimension of several thousand. In the second series, tBeahH LH1 techniques
are examined in a realistic 3d setting with a state spacerdiioe ofN ~ 10°.
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8.3.3.1 Experimental settingin 2d

The state space is described by scalar functions definedeasrtthogonal curvilin-
ear grid of the Navy Coastal Ocean Model (NCOM) [28] set uphim Monterrey
Bay (Fig. 4). The numbeéX of grid points (dimension of the state space) was 3,438.
A vector fieldu(x) was used to generate the diffusion tensor as follows. Thdama
principal axisA, of 1/V is set to be orthogonal to with the corresponding "back-
ground” length scalé\, = 39, whered(x) is the spatially varying grid step. The
length of the larger axid; is set to be equal to mék /|u|/u)A,, whereu is a
prescribed threshold value f|. If u is a velocity field, then a structure like this
simulates enhanced diffusive transport of model errore@régions of strong cur-
rents on the background of isotropic error diffusion witk ttecorrelation scalg,.

In the 2d experiments, the vector fialds generated by treating bottom topog-
raphyh(x) (Fig. 4) as a stream function. The threshold valueas taken to be
one-fifth of the rms variation dfJh| over the domain.

All the experiments described in the next two sections aréopaed using the
BEC models (8.42-8.43) with the parametars m= 2. A composite map of five
columns ofBg is shown in Figure 4a. The diffusion operator (1) is constédito
have zero normal derivative at the open and rigid boundafiése domain in both
2d and 3d experiments.

Numerically, the action 0By on a state vectoy, was evaluated by explicitly
integrating the corresponding diffusion equatjgr= D/2y for the virtual "time pe-
riod” defined byv, starting from the "initial conditiony . The minimum number of
"time steps” required for the scheme’s stability in such@isg was 5,256. The ac-
tion of B, was computed by solving the system of equatidrsD/4)%y =y, with
a conjugate gradient method. The number of iterations,iredfor obtaining a so-
lution, varied within 2,000-2,500. To make the shapes oBg@andB, compatible
(Fig. 1), the diffusion tensor iB, was multiplied by 8T (see Table 1).

The exact valued (x) of the diagonal elements are shown in Figure 4b. Their
magnitude appears to be lower in the regions of "strong atsfglargeu), as the
correspondingd-functions are dispersed over larger areas by diffusit{n) are
higher near the boundaries because part of the domain lleaftar dispersion is
screened by the condition that prescribes zero flux acrtdssr@ipen or rigid bound-
aries.

8.3.3.2 Statistical methods

The MC method is implemented in two ways: In the first seriesxgferiments, the
components oy are taken to be either 1 or -1 with equal probability. In theosel
series they are drawn from the white noise on the intervall[l.IThe residual error
€ is computed using equation (8.41). In both series, the ctesduction ofe with
iterationk are similar and closely follow the’k law (upper gray line in Fig. 5a).
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To improve the accuracy, the MC estimates are low-passdiltesith the corre-
spondingB-operators at every iteration (Fig. 5b). To optimize theefijlthe diffu-
sion operators ifBy > are multiplied by the tunable parametgmwhich effectively
reduced the mean decorrelation (smoothing) sgalé? times. The lower lines in
Figure 5a demonstrate the result of such optimal smootiingprocedure resulted
in an almost four-fold reduction of the domain-averagedrefe) to 0.1 after per-
forming 60 iterations (averaging over 60 ensemble members)
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Fig. 8.5 a) reduction of the domain-averaged diagonal estimatioor €¢) with iterations for th
HM (black) and MC (gray) methods for tlig, model. The lower curves are obtained after optimal
smoothing of the estimates. The thin horizontal lines sheetrror levels that are provided by the
asymptotic zeroth-(€)=0.17) and first-order(€)=0.10) methods which do not require iterative
schemes. b) Horizontal distribution 8fB>) after 60 iterations of the HM method with smoothing.

Experiments with the HM method (black curves in Fig 5a) shioat horizontal
smoothing significantly improves the accuracy of the esisicespecially after the
first few dozens of iterations. Comparison with the MC metf{grdy curves in Fig.
5a) demonstrates a noticeable advantage of the HM tech(ltaek curves), which
remains visible at higher iteratioks> 100 even after smoothing (lower curves).
This advantage increases with increasing iterations foreasons: The HM method
converges faster thaar/2 by its nature, whereas the efficiency of smoothing (tar-
geted at removing the small-scale error constituents)adkggras the signal-to-noise
ratio of the diagonal estimates increases with the itematiombelk.

From the practical point of view, it is not reasonable to doerthan several hun-
dred iterations, aé) drops to the value of a few per cent (Fig. 5a), which is much
smaller than the accuracy in the determination of the bamkupt error variances. It
can therefore be concluded that it is advantageous to udéNht&chnique, when
making more than a hundred iterations is computationaftyrdéble.
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8.3.3.3 Asymptotic expansion method

Since the principal axes of the diffusion tensor at everynpare defined by con-
struction, computation of the zeroth-order approxima(@®m4) to the normaliza-
tion factors is not expensive. Near the boundaries, howtwefactors described by
(8.44) have to be adjusted by taking into account the gedrreginstraints imposed
on the diffusion. This adjustment was computed for pointated closer thanX3
from the boundary and it was assumed that the boundary hdigjibégimpact on
the shape of the diffused-function [18].

Figure 6 demonstrates the horizontal distribution of thereg(x) obtained by
approximating the diagonal elementsBy with (8.44) (zeroth-order LH method,
or LHO) and with (8.51), (the first-order LH method LH1). Déspan apparent
violation of the LH assumption in many regions (e Ax,changes from 28 to the
background value of 3 at distanced ~ 5— 60 < A1 across the shelf break), the
mean approximation error of the diagonal elements appedrs telatively small
(19%) for the LHO method, with most of the maxima confined te thgions of
strong inhomogeneity (Fig. 6a). The next approximatioy(Bb) reducege) to
9%. Numerical experiments with thH&, model have shown similar results (16%
and 10% errors).
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-123.2 -1228 -1224 -122.0 -121.6 -1232 -1228 -122.4 -122.0 -121.6

Fig. 8.6 Diagonal approximation errors under the zeroth-orderagad, first-order (b) LH methods
for the By model. The thin black line inside the boundaries shows timeadio of error averaging.

Another series of experiments are performed with the vargicaling parame-
ter y to find an optimal fit tod. Computations were made forQy < 1. The best
result forBy was obtained fos, = 0.30 which is fairly consistent with the value
(y2 = 0.33) given by (8.50). In the case of tiB» operator, the optimal value is
¥ = 0.24, still in a reasonable agreement with (8.50), given thenst inhomo-
geneity ofv and deviation of th&, operator from the Gaussian form. A somewhat
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smaller value ofx(B>) can be explained by the sharper shape of the respective cor-
relation function at the origin (Fig. 1), which rendet$to be less dependent on the
inhomogeneities in the distribution of and, therefore, requires less smoothing in
the next approximation.

8.3.4 Numerical efficiency

Table 2 provides an overview of the performance for the testethods. For com-
parison purposes we show CPU requirements by the smoothednd &M meth-
ods after they achieve the accuracies of the LHO and LH1 ndstHbis seen that
both MC and HM methods are 300-1000 times more computatioerapensive
than the LH technique. In fact, for the 2d case considered;tdimputational cost of
the stochastic diagonal estimation method is similar tacts of the 3dvar analysis
itself, which required several hundred iterations. Theadmble CPU saving are
due to the fact that the LH methods explicitly take into acttdnformation on the
local structure oB which can be derived by analytical methods. Comparisonef th

Table8.2 Relative CPU times required by the MC and HM methods to aehile accuraciet)
of the LHO and LH1 methods (shown in brackets).

MC/LHO|MC/LHL|[HM/LHO|HM/LHL
By| 755 | 1205 || 680 | 520
(19) | (09) | (19) | (09)
By| 780 | 490 850 | 330
(17) | (10) | (17) | (10)

spatial distributions of the approximation err@)(x) (Fig. 5b, 6b) favor the LH
methods as well: They show significantly less small-scat@atians and may have
a potential for further improvement. Comparing Fig. 5b amdaiso shows that,
in contrast to the statistical methods, LHO errors tend toease in the regions of
strong inhomogeneity, but decrease substantially aftesining by the LH1 algo-
rithm. At the same time, the LH1 errors tend to have relagitggher values near the
boundaries. The effect s less visible in the HM pattern (big. This feature can be
partly attributed to certain inaccuracy in estimation & trear-boundary elements.
However, there is certainly room for further improvementhahe issue.
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8.3.5 LH experiments in 3d setting

To check the performance of the LHO and LH1 methods furthiarger 3d NCOM
domain is set up in the Okinawa region (Fig. 7) with horizbregolution of 10 km
and 45 vertical levels. The state vector dimensiofiotal number of the grid points)
in this setting was 862,992.

Because of the largl, it is computationally unfeasible to directly compute all
the diagonal elements of the BEC matrix. Therefore, acgurhecks are performed
on a subset of 10,000 points, randomly distributed over tmain and the value of
(€) is estimated by averaging over these points.
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Fig. 8.7 Diagonal elements d4 in the Okinawa region a = 20m. The actual values are multi-
plied by 1d.

The diffusion tensor is constructed in the same way thatserileed in Section
3.1, but the generating field(x) is taken to be the horizontal velocity field from an
NCOM run. The value oAz (in the vertical direction) is independent of horizontal
coordinates, but varies in the vertical as,3vhered; is the vertical grid step. Figure
7 illustrates spatial variability of thB4 diagonal elements a=20 m. The smallest
values are observed in the regions of the Kuroshio and ththNkmjuatorial Current,
where the largest velocities are observed, and®he v/detv reaches its largest
values (eq. 8.44). To better test the algorithm, a relatigetall threshold value of
v=.02 m/s is prescribed, so that diffusion is anisotropic oreithan 90% of the grid
points.
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Figure 8 demonstrates the accuracy of LHO and LH1 methodsdh setting:
the LHO method provides an accuracy of 9% which is furtherrowpd to 6% by
the LH1 scheme. The major improvement occurs in the regidreravpoints with
highly anisotropicv neighbor isotropic points and reduce the diagonal elements
the latter. The effect s reflected by the negative bias oftiagter plot at high values
of d°, which reaches its maximum of .0237 in the points with ispicw (Fig. 8a).

0.5 0.5
0.5 1 15 2 25 0.5 1 15 2 25 0 2 4 6 8 Y

Fig. 8.8 Scatter plots of the true diagonal elementsBgf(vertical axis) versus their approxima-
tions by LHO (a) and LH1 (b) algorithms. The actual valuesratetiplied by 1. Near-boundary
points are excluded. Right: Diagonal approximation eresra function of/ for theB4 (black) and
B, (gray) models. Dashed line shows the valugiogiven by (8.50).

Figure 8c shows the dependence of approximation ermor the value of for
both correlation models. The best approximation is obthaigs = 0.26, a value
somewhat lower than suggested by the heuristic formya5(18=0.28, dashed
line). Similarly to the 2d case, the optimal value g{B,) = 0.21 is less than
ya(Bg), which is in agreement with the more rapid off-diagonal gecathe B>
matrix elements.

In general, it appears that the relationship (8.50) pravalesasonable guidance
to the estimation of the smoothing parameter in the LH1 noktRor theB 4 model,
the operator acting odg can be implemented by either reducing the number of

“time steps” in integration of the diffusion equatign® times, or byy /2-fold
reduction of the decorrelation radius. For tBg model only the second option is
applicable: it also reduces the number of iterations regifior computing the action
of theB, due to the decrease of the condition number.

8.4 Summary and discussion

BEC modeling with the diffusion operator is an efficient arekifble tool for eval-
uating matrix-vector products of large dimension which egeein minimization
algorithms of variational data assimilation. In this claptve discussed two ma-
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jor issues associated with this type of models: constroatiba positive-definte
smoothing operatdB as a rational function dd and the estimation of di&)

In section 2 analytic relationships between the polynocoefficients ofB and
the parameters controlling the shape of correlation fonstivere derived. Although
only homogeneous operators in boundless domains weredewadi these relation-
ships provide reasonable guidance to constructing molestieeBEC operators,
especially in cases when the typical scale of variabilityhef diffusion tensor is
much larger than the local decorrelation scadeand/or most of the observations
are separated from the boundaries by distances, exceggliig a similar way,
weak inhomogeneity can be introduced by variable coeffisigf(x), and the local
CF shapes can be assessed using (8.13), (8.28-8.31).

Similar issues have been recently studied by many authags, (8, 10, 11,
17]). In particular, analytic formulas analogous to (8-83)35), were derived in
somewhat different setting by Hristopulos and Elogne [11], whom considered
quadratic polynomials of similar structure. Xu [8] analgZEaylor expansions of
expB and obtained recursive relations for the polynomial coieffits associated
with an arbitrary CF. Mirouze and Weaver [17] demonstratpdssibility to gener-
ate oscillating CFs using higher-order polynomials in oimeeshsion.

Relationships (8.28-8.32) generalize these results éoptiynomial model of an
arbitrary ordeM. We assume, however, that the inverse quadratic mddlet 1) is
of major practical interest for two reasons. First, the Bp@rators that are encoun-
tered in GFD applications are rarely homogeneous and odtéemal statistics are
usually insufficient to capture the details of the spatiaialzlity of the CFs. There-
fore, experimental estimates of the BECs are either limitelbw-rank ensemble
estimates or have to rely on the very rough assumption of lgemeity. Needless
to say, that in the latter case the structure of a sample CHabe elaborated with
sufficiently low detailization and be well accounted for bywa-parameter BEC
model (Fig. 2) . The second reason is that the use of higlter@olynomials con-
siderably degrades the conditioning of the linear systdratdre being solved in
the assimilation process and, therefore, may require stpaied preconditioners.

The second equally important aspect of the d-operator BE@etg is the com-
putational efficiency of estimating the diagonal elemehB.d'wo types of the BEC
operators were considered: with the Gaussian-shaped|kgraad with the kernel
generated by the second-order binomial approximatidytd he tested techniques
include the "stochastic” MC and HM methods, which retrieisg@ iteratively from
its action on a sequence of model state vectors, and thertdligistic’ scheme
based on the analytic diagonal expansion under the assamudtiocal homogene-
ity of the diffusion tensor. The deterministic scheme wase@ in two regimes: the
zeroth (LHO) and the first-order (LH1) approximations.

Numerical experiments conducted with realistic diffustensor models show
that: a) the HM technique proves to be superior in efficiermypared to the MC
technigue when accuracies of less than 10% ekor (00) are required; b) both
stochastic methods require 300-1000 times more CPU timehieee the accuracy,
compatible with the most efficient LH1 method; c) with the Gsian model, the
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LH1 method demonstrates the best performance with the whlire smoothing pa-
rametery compatible with the one given by the relationship (8.50)\aet from the
asymptotic approximation of the Gaussian kernel diagdnaderiving the ansatz
(8.51) for the LH1 model, we followed the approach of Purgealg12], whom
proposed to smooth the zeroth-order diagonal by the squatesf the BEC opera-
tor in the one-dimensional case. Using the asymptotic teciefor the heat kernel
expansion, we obtained a formula for higher dimensions,tasted its validity by
numerical experimentation.

It should be noted that the formal asymptotic expansiorb(dstiocal by nature
and tends to diverge in practical applications, where apadriations of the diffu-
sion tensor may occur at distandesomparable with the typical decorrelation scale
A. To effectively immunize the expansion from the ill-effecif the abrupt changes
in v, we utilized a non-local empirical modification, still fulconsistent with the
original expansion in the limid /L — 0, but sufficiently robust with respect to the
numerical errors related to the high-order derivatives.o& similar technique was
developed by Purser [12, 13], who used empirical saturdtiontions to stabilize
higher-order approximations of .

In general, results of our experiments show high computatiefficiency of the
LH1 scheme, whose total CPU requirements is just a fractidtheoCPU time re-
quired by the convolution with the BEC operator — a negligiainount compared
to the cost of a 3dVar analysis. Therefore, LH1 approxinmtito the BEC diag-
onal may serve as an efficient tool for renormalization ofdbeelation operators
in variational data assimilation, as they are capable ofigihog accuracy to 3-10%
error in realistically inhomogeneous BEC models.

A separate question, that requires further investigai®tie accurate treatment
of the boundary conditions. In the present study we assuhmdbundaries affect
only the magnitude of the corresponding columnBpbut not their structure. This
approximation is only partly consistent with the zero nolrfhx conditions for d,
but can be avoided if one uses "transparent” boundary condi{e.g. [17]) which
do not require computation of the adjustment factors. Omther hand, it might be
beneficial to keep physical (no-flux) boundary conditionthmformulation of d, as
they are likely to bring more realism to the dynamics of thefifl.

Another important issue is parameterizatiorvgx) using the background fields
and their statistics. In the simple diffusion tensor modsgdiin the experiments,
anisotropic BE propagation is governed by the backgrourakity field and su-
perimposed on the small-scale isotropic BE diffusion, \higkes place at scales
that are not well resolved by the grid (less tha¥).3Mlore sophisticated parameter-
izations ofv(x) are surely possible and require further studies. In pdatictecent
studies have shown that sineéx) has onlyn(n+ 1) /2 independent components, it
can be estimated from ensembles of moderat&@0n) size with reasonable accu-
racy [29, 30, 31, 32]. Finally, the considered BEC modeldaaiso be effectively
used for adaptive/flow-dependent covariance localizgd®3n 34], which is an is-
sue of crucial importance in improving the forecast skiltlod state-of-the-art data
assimilation systems.
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Appendix 1

Let 8 be the angle betweenandk in R" andn > 2. Then the integral (8.5) can be
rewritten in spherical coordinates as

0

B(r) = (2n)—"/ B(K) / expl—ikr cos8)k™ Ldk dQn_1, (8.53)
0 On1

wheredQ,_; is the element of the surface area of the unit sphere. Singé co
changes symmetrically within the limits of integrationetimaginary part of the
exponent vanishes. Furthermore, using the identi®y, ; = dQn_»-sin"26de,
the integral (8.53) can be rewritten as

B"(r) = (271) " / B(k)k™1dk / dQn 2 / cogkrcosd)sit™26d6  (8.54)
0 Ono 0

Integration over6 and substitution of the formula for the surface @f— 2)-
dimensional unit sphere into (8.54) yields (8.6).

The general relationship (8.6) also holdsiiee 1,2 although these cases require
a special (less complicated) treatment.

Appendix 2

In practice, the matrix elements of the operator (8.10) axencalculated explicitly
due to the immense cost of such a computation. Instead, thit 5"(x) of the
action byB on a (discrete) model state vecbbor(x) is calculated by solving the
linear system of equations

(- 6/2m)m>2m — 0, (8.55)

whereD denotes the discretized diffusion operatok¥fx) represents the "initial
state” and the “time stepdt is prescribed such that the “integration timehigt =
1, then action of the operator (8.55) can be identified as@trefa discrete-time
integration of the diffusion equatiafix = D/2x with the implicit scheme
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i 1.~ .
x —x'_lzééth', i=1,.,m (8.56)

starting from the initial statg®. Herei denotes the time step number.

Similarly, the action of ex{D/2) is never computed by convolving a state vector
%% with the discretized kernel (8.42), but rather by the diseténe integration of
the diffusion equation with the explicit numerical scheme

Ai 1_ -~ . .
g—xl= E6‘[ DXt i=1,..m (8.57)

such that

KM= (|+6/2m)mx° (8.58)

in correspondence with the asymptotic relation (8.9) fer@aussian kerndg.

Appendix 3

By definition, a Hadamard matrix (HM) is a square matrix whesgies are either
1 or -1 and whose columns are mutually orthogonal. The sishplay to construct
HMs is the recursive Sylvester algorithm which is based erothvious property: if
Hpy is anN x N Hadamard matrix, then

is also an HM. Starting frol, =[1 1; 1-1], the HMs withordeN=2" n=1,2...
can be easily constructed. HMs with= 12, 20 were constructed "manually” more
than a century ago. A more general HM construction algorjtithich employs the
Galois fields theory, was found in 1933. In the present studyused the MatLab
software that only handles the cases whefl2, orM /20 is a power of 2. Despite
this restriction, the available valuesifwere sufficient for purposes of this chapter.
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