
Chapter 8
Background error correlation modeling with
diffusion operators
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Abstract Many background error correlation (BEC) models in data assimilation are
formulated in terms of a positive-definite smoothing operator B that is employed
to simulate the action of correlation matrix on a vector in state space. In this chap-
ter, a general procedure for constructing a BEC model as a rational function of the
diffusion operatorD is presented and analytic expressions for the respective corre-
lation functions in the homogeneous case are obtained. It isshown that this class of
BEC models can describe multi-scale stochastic fields whosecharacteristic scales
can be expressed in terms of the polynomial coefficients of the model. In particular,
the connection between the inverse binomial model and the well-known Gaussian
modelBg = expD is established and the relationships between the respective decor-
relation scales are derived.

By its definition, the BEC operator has to have a unit diagonaland requires ap-
propriate renormalization by rescaling. The exact computation of the rescaling fac-
tors (diagonal elements ofB) is a computationally expensive procedure, therefore
an efficient numerical approximation is needed. Under the assumption of local ho-
mogeneity ofD, a heuristic method for computing the diagonal elements ofB is
proposed. It is shown that the method is sufficiently accurate for realistic applica-
tions, and requires 102 times less computational resources than other methods of
diagonal estimation that do not take into account prior information on the structure
of B.
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8.1 Introduction

In recent years, heuristic background error correlation (BEC) modelling has become
an area of active research in geophysical data assimilation. Of particular interest are
the BEC models constructed with positive functions of the diffusion operator,

D = ∇ν∇ (8.1)

whereν is the spatially varying positive-definite diffusion tensor. This type of BEC
model is attractive for several reasons: a) it guarantees positive definiteness of the
resulting correlation functions (CFs), b) it is computationally inexpensive in most
practical applications, and c) it allows straightforward control of inhomogeneity
and anisotropy via the diffusion tensor. In the traditionalapproach of correlation
modeling where spatial correlations are specified by prescribed analytical functions,
care should be taken to maintain positive definiteness of therespective correlation
operator, especially in anisotropic and/or inhomogeneouscases [1, 2].

Among the most popular operatorsB used in practical BEC modeling are those
using the exponential and the inverse binomial functions ofD:

Bg = exp(a2D); Bm =

(

I− a2D
m

)−m

(8.2)

whereI is the identity operator,a is a scaling parameter andm is a positive integer.
SinceD has a non-positive spectrum whose larger eigenvalues correspond to the
smaller-scale eigenvectors, the operatorsBg andBm are positive-definite and sup-
press small-scale variability. Both types of BEC models (8.2) are extensively used
in geophysical applications. Numerically, they are implemented by integration of
the diffusion equation using either explicit (in the case ofBg [3, 4, 5]) or implicit
(in the case ofBm [6, 7]) integration schemes.

A disadvantage of the BEC models (8.2) is that there is a limited freedom in the
shape of local CFs, which have either the shape of the Gaussian bell (Bg) or provide
its mth-order strictly positive approximations (Bm) [8, 9]. In order to allow negative
correlations, one has to consider operators generated by the arbitrary polynomials in
D. The quadratic polynomial case was studied recently by Hristopulos and Elogne
[10, 11] and Yaremchuk and Smith [9], who obtained analytic representations of the
CFs and derived relationships between the polynomial coefficients and the spectral
parameters ofB in the homogeneous case.

In a more realistic inhomogeneous setting, the diffusion tensor varies in space,
making analytic methods inapplicable. Nevertheless, theycan still give a reason-
able guidance for quick estimation of the diagonal elementsof B (normalization
factors), whose values are crucial for constructing the BECmodels. The importance
of accurately computing diagB is evident from the fact that the operatorsB under
consideration are formulated numerically as multiplication algorithms by the ma-
trices, whose elements are not explicitly known. On the other hand, since the BEC



8 Correlation modeling with diffusion operator 179

operatorC is represented numerically by the correlation matrix, it must have a unit
diagonal and, therefore, knowledge of the diagonal elements of B is required for
renormalization:

C = (diagB)−1/2B(diagB)−1/2 (8.3)

Equation (8.3) shows that the considered BEC models involvetwo separate algo-
rithms: one for computing the action ofB and another for estimating the normaliza-
tion factors(diagB) that are necessary for computing the action of(diagB)−1/2.

Purser with coauthors [12, 13, 14] were among the first to employ analytic meth-
ods for estimating the normalization factors for the Gaussian operatorBg in geo-
physical applications. Somewhat earlier, an asymptotic technique was developed
for estimating the diagonal of the Gaussian kernel in Riemannian spaces to study
quantum effects in general relativity (e.g., [15],[16]). These ideas can be utilized to
derive a useful algorithm for estimating the normalizationfactors.

In this chapter, we first give an overview of the recent developments in con-
structing theD-operator BEC models, and illustrate their major features with the
examples in the homogeneous caseν = const. In particular, in section 2.2, the rela-
tionships between the scaling parameters for the Gaussian model and itsmth-order
approximation (8.2) are obtained and the respective CFs aregiven. In section 2.3 the
inverse binomial model is extended to an arbitrary polynomial of D: Expressions for
the CFs and normalization factors are derived, and relationships are established be-
tween the structure of the BEC spectrum and the polynomial coefficients. In section
3, after a brief overview of the diagonal estimation methods, a heuristic formula for
computing diagBg is derived (section 3.2) and then tested numerically against other
methods in a set of realistic oceanographic applications (sections 3.3-3.5). Results
of similar tests with theBm model are also presented. Summary and discussion of
the prospects for theD-operator BEC modeling complete the chapter.

8.2 Diffusion operator and covariance modeling

The convenience of the diffusion operator (8.1) for constructing the BEC models
can be explained by the non-negative spectrum of−D: An operator that is gener-
ated by a positive rational functionF of −D whose eigenvalues tend to zero at large
wavenumbers, is positive-definite and has a smoothing property, i.e. tends to sup-
press high-frequency components of the solution. In this section we consider two
types of such functions: Those that are generated by themth-order binomials (Sec-
tion 2.2) and the others by the inverse of a positive polynomial (Section 2.3). To
allow analytical treatment, anisotropic homogeneous casein the boundless domain
is considered.

The benefit of analytical consideration is its ability to reveal local correlation
structure and therefore provide a reasonable guidance to construction of more gen-
eral operatorsB. In addition, as it has been shown recently, good approximations to
diagB can be obtained by using analytical results obtained with the homogeneous
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versions ofB (e.g., [12, 17, 18]). Therefore, analytical formulas describing homo-
geneous BEC operators are of significant practical interest. The analytical results
may facilitate practical design of the cost functions in variational data assimilation
problems, because they give explicit relationships between the shape of the local
CFs and the structure of the corresponding BEC operator.

8.2.1 Correlation functions and normalization

Consider an anisotropic, homogeneous diffusion operator (8.1) inR
n,n = 1, . . . ,3,

with x∈R
n representing points in the physical space. By using the coordinate trans-

formationx′ = ν−1/2x, the problem can be reduced to considering isotropic opera-
tors of the form

B = F(−∆), (8.4)

where∆ is the Laplacian (e.g., [8, 10]) andF is an arbitrary positive function. In the
case of an inhomogeneous diffusion (ν 6= const) the global transformation cannot be
found. Transformations of this type, however, can be used locally for constructingB
and the normalization factors (Section 3). All of the formulas that are written below
are assumed to be in the transformed coordinatesx′ with primes omitted to simplify
the notation.

The operator (8.4) is diagonalized with the Fourier transform, and the diagonal
elements areB(k) = F(k2) wherek is the Fourier coordinate (wavenumber). Be-
cause of homogeneity, the matrix elements ofB in thex-representation depend only
on the distancer = |x| from the diagonal. They can be computed by applying the
inverse Fourier transform toB(k):

Bn(x) = (2π)−n
∫

Rn

B(k)exp(−ikx)dk. (8.5)

By integrating over the directions inRn (Appendix 1), (8.5) can be reduced to

Bn(r) = (2π)−n/2

∞
∫

0

B(k)kn−1(kr)sJ−s(kr)dk (8.6)

wherek ≡ |k|, J denotes the Bessel function of the first kind, ands= 1− n/2.
The respective matrix elements of the correlation operator(CFs) are obtained by
normalization:

Cn(r) = Bn(r)/Bn(0) (8.7)

In practical applications, the diffusion operator is not homogeneous, and the analytic
representations (8.6–8.7) cannot be obtained. However, the action ofB on a state
vector can be computed numerically at a relatively low cost.The major problem
with such modelling is the efficient estimation of the diagonal elements
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Bn(x,x)≡
∫

Rn

Bn(x,y)δ (x− y)dy (8.8)

which are necessary to rescaleB to have its diagonal elements equal to unity. In
practice, the rescaling factorsNn(x) are defined as reciprocals ofBn(x,x).

Computing the integral (8.8) numerically is expensive, because the convolutions
with the δ -functions have to be performed at all pointsx of the numerical grid.
However, reasonable approximations [12, 18] forNn(x) can be obtained by using
asymptotic expansions of (8.8) under the assumption of weakinhomogeneity (see
Section 3).

8.2.2 The Gaussian model and its binomial approximations

The Gaussian-shaped correlation model is widely used in geophysical applications.
Numerically, it is implemented by approximating exp(a2D/2) with the binomial:

Bg(D) = exp(
a2D

2
)≈

(

I+
a2D
2m

)m

, (8.9)

wherem is a large positive integer. This numerical approach is often referred to
as ”integration of the diffusion equation” and has been usedin practice for several
decades [3, 4, 5, 7]. There is, however, a certain disadvantage associated with the
numerical stability of the integration: The number of “integration time steps”mhas
to be large enough for the eigenvalues of the binomial operator in the rhs of (8.9)
to be less than 1 in the absolute value. This constraint may limit m from below by a
large value, which can make the computation rather expensive.

Another option is to use a different approximation in (8.9):

Bm(D) =

(

I− a2D
2m

)−m

. (8.10)

The eigenvalues of the operator in the rhs of (8.10) do not exceed 1, and the “inte-
gration procedure” is unconditionally stable. This approach is often referred to as
“implicit integration of the diffusion equation” (see Appendix 2). and has been used
in many practical applications as well [6, 7, 19].

In the Fourier representation both models (8.9) and (8.10) approximate the same
Gaussian function ofk:

Bn
e(k) =

[

1− a2k2

2m

]m

≈ exp(−a2k2

2
) (8.11)

Bn
m(k) =

[

1+
a2k2

2m

]−m

≈ exp(−a2k2

2
) (8.12)
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Since the value ofm in (8.11) is fairly large in practice, the resulting CF is hardly
distinguishable from a Gaussian-shaped curve with a half-width a.

Substituting (8.12) into (8.6), integrating overk, and normalizing the result by
Bn

m(0) yields the CFs of the Matern family [20] enumerated by s= m− n/2 and
scaled bya∗ = a/

√
2m:

Cn
m(ρ) =

ρsKs(ρ)
2s−1Γ (s)

, (8.13)

whereρ = r/a∗, Γ is the gamma-function andK stands for the modified Bessel
function of the second kind [22]. The respective normalization factors are

Nn
m =

√
πΓ (m)

Γ (m−1/2)
ωnan

∗ (8.14)

whereω1 = 2, ω2 = 2π ,andω3 = 4π . In the limiting case ofm→ ∞, the CFs (8.13)
take the Gaussian form:

Cn
∞ = exp(−r2/2a2); n= 1, .. (8.15)

Consecutive approximations of the Gaussian CF by (8.13) areshown in Figure 1. It
is remarkable that whenm= 1, the CFs (8.13) have singularities atρ = 0 in both two
and three dimensions (see also Table 1). This means thatin the continuous casethe
first-order approximations become invalid whenn > 1. Numerically, however, the
CFs do exist forn> 1, but their decorrelation scale is limited by the grid sizeδ (the
corresponding CF is shown by the dotted line in the left panelof Fig. 1). This occurs
because the numerical analogue of theδ -function is never singular, but has a finite
amplitude inversely proportional to the volume of a grid cell, therefore, resulting in a
finite value of the convolution (8.8) even if it is infinite in the continuous case. After
normalization by that finite value, the CF is 1 atr = 0, but its effective decorrelation
scale remains proportional to the local grid size.

The left panel in Figure 1 shows that low-order binomial approximations (8.13)
underestimate the decorrelation scalea of the target Gaussian function. This un-
pleasant property can be corrected by optimizing the value of a in (8.10) to obtain
the best fit with the Gaussian CF. Since the Gaussian and its approximating func-
tions are both positive and have similar shapes, a reasonable optimization criterion
is to set their integral decorrelation scales equal to each other:

∞
∫

0

Cn
m(ρ)dr≡ aopt√

2m

∞
∫

0

Cn
m(y)dy=

∞
∫

0

exp(− r2

2a2 )dr=

√
πa√
2
. (8.16)

Expression (8.16) shows thataopt = ξ n
ma, where the rescaling coefficientξ n

m is de-
fined as:

ξ n
m =

√
πm





∞
∫

0

Cn
m(y)dy





−1

=
Γ (s)

Γ (s+1/2)

√
m. (8.17)
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Fig. 8.1 Left: Binomial approximations (8.13) of the Gaussian CF in two dimensions (n = 2).
The CF form= 1 is shown by the dotted line for the numerical realization with the grid step
δ = a/4. Middle: Same approximations, but with optimally adjusted correlation radii for various
combinations ofm and n. Right: Differences between the Gaussian CF and its approximations
shown in the middle panel. The horizontal axes are scaled bya.

The values ofξ n
m for m,n< 4 and their respective approximation errors

en
m =

∞
∫

0

|Cn
m−C∞|dr/[

∞
∫

0

|C∞|dr]

are assembled in Table 1.

Table 8.1 Correlation functions associated with the power approximations (8.10) of the Gaussian
CF in n dimensions. The CFs forn = 1 and 3 are rewritten in terms of elementary functions
for convenience. The correlation radius adjustment coefficientsξ n

m are shown below the formulas
together with the corresponding relative errorsen

m in approximation of the Gaussian CF (bold
numbers).

n= 1 n= 2 n= 3
m= 1 exp(−ρ) K0(ρ) exp(−ρ)/ρ√

π 0.33 — —
m= 2 (1+ρ)exp(−ρ) ρK1(ρ) exp(−ρ)

√

π/2 0.13
√

8/π 0.19
√

2π 0.33
m= 3 (1+ρ +ρ2/3)exp(−ρ) ρ2K2(ρ)/2 (1+ρ)exp(−ρ)√

27π/8 0.08
√

16/3π 0.10
√

3π/4 0.13

The coefficientsξ n
m along with relationship (8.12) provide an expression for esti-

mating the scaling parameter in the binomial model (8.10) which approximates the
Gaussian-shaped CF with a given radiusa:

abinom= ξ n
ma/

√
2m (8.18)
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8.2.3 The inverse polynomial model

A certain disadvantage of the binomial models (8.9) and (8.10) is their inability to
represent oscillating CFs whose spectra may have multiple maxima. This issue can
be overcome by considering the BEC models of the form.

B =

[

I+
J

∑
j=1

a jD j

]−1

(8.19)

Herea j are the real numbers, constrained by the positive definiteness requirement
of B. In the Fourier representation, the operator (8.19) acts asmultiplication by the
inverse of the polynomial ink2, and the positive-definiteness property translates into
the requirement that the spectral polynomial

B−1(k2) = 1+
J

∑
j=1

a j(−k2) j (8.20)

to be positive for allk2 > 0. This constraint is equivalent to the statement that the
rhs of (8.20) must not have real positive roots. Therefore,B−1(k2) can also be rep-
resented in the form

B−1(k2) =
1
Z

M

∏
m=1

(k2+ z2
m)(k

2+ z̄2
m), (8.21)

whereM = J/2,
Z = ∏

m
|z2

m|2, (8.22)

the overline denotes the complex conjugate, andzm= am+ ibm are arbitrary complex
numbers with Im(z2

m) 6= 0. In its general form, the polynomial (8.21) is additionally
multiplied by the product of the arbitrary number of real negative roots (bm = 0).
The ensuing analysis of (8.21) will be simplified by omittingthe product (summa-
tion) limits overm and assuming there are no real negative or multiple roots. The
latter requirement is not restrictive in practice, becauselocation of the roots is never
known exactly, and the BEC spectrum can always be well approximated by (8.21)
[21].

It is instructive to note that the polynomial (8.21) can alsobe rewritten as

B−1(k2) =
1
Z

M

∏
m=1

(a2
m+(k−bm)

2)(a2
m+(k+bm)

2), (8.23)

Compared to the spectral representation (8.20), representation (8.23) has the advan-
tage that its free parameters are not constrained by the positive-definiteness require-
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ment, and they have a sensible meaning of the scales (b−1) and ”energies” (a−1) of
the modes forming the spectrum.

Using equation (8.6), the matrix elements ofB can now be written as

Bn(r)=
Zr−s

(2π)
n
2

∞
∫

0

ks+1Js(kr)dk

∏
m
(k2+ z2

m)(k2+ z̄2
m)

, (8.24)

wheres= n/2−1. The integral in (8.24) can be taken by decomposing

B(k) =
Z

∏
m
(k2+ z2

m)(k2+ z̄2
m)

(8.25)

into elementary fractions:

B(k) = ∑
m

[

qm

k2+ z2
m
+

q̄m

k2+ z̄2
m

]

, (8.26)

where

qm =
Z

(z̄2
m− z2

m) ∏
j 6=m

(z2
m− z2

j )(z
2
m− z̄2

j )
(8.27)

After substitution of (8.26) into (8.24), the integral is reduced to the sum of
Hankel-Nicholson type integrals [22] and can be taken explicitly, yielding

Bn(r)=
2r2−n

(2π)
n
2
∑
m
〈qmρs

mKs(ρm)〉 (8.28)

whereρm = zmr, and angular brackets denote taking the real part (cf. eq. (8.13)).
The corresponding correlation functionsCn(r) are obtained through normalizing

(8.28) byBn(0). The first three values atr = 0 are

B1(0) = ∑
m
〈qmz̄m〉|zm|−2 (8.29)

B2(0) =− 1
π ∑

m
〈qm logzm〉 (8.30)

B3(0) =− 1
2π ∑

m
〈qmzm〉 (8.31)

The normalization factors can be found by integratingCn(r) overRn:

Nn =
2

Bn(0) ∑
m

〈qmz̄2
m〉

|zm|4
(8.32)
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Relationships (8.28)-(8.32) provide analytical expressions for the CFs and the
normalization factors.

0 2 4 6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
co

rr
el

at
io

n n=1

 

 
b=2
b=1
b=2

0 2 4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

n=2

 

 
b=4
b=2
b=2

0 1 2 3
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

n=3

 

 
b=10
b=4
b=2

Fig. 8.2 Two-parameter CFs corresponding to the inverse BEC (8.21) with a = 1,M = 1. The
horizontal axis is scaled bya. Dotted lines show CFs corresponding to the special case with two
negative rootsk2

1 =−a, k2
2 =−b not described by the spectral polynomial (8.21).

In the important case of the quadratic polynomial (M = 1) the BEC model is
defined by two parametersa,b (Figure 2). Expressions for the respective CFs in
1- and 3-dimensional cases can be rewritten in terms of the elementary functions
[9, 21]

C1(a,b, r)=

√
a2+b2

b
exp(−ar)cos(br−arctan

a
b
) (8.33)

C3(a,b, r)=exp(−ar)
sin(br)

br
(8.34)

and the normalization factors are given by

N1=
4a

a2+b2 ; N2=
8πab

2(a2+b2)2arctan(b/a)
; N3=

8πa
(a2+b2)2 (8.35)

In practical applications, a BEC model is often constructedby fitting the spec-
tral (8.25) or correlation (8.28) functions to those derived from experimental data.
These functions are characterized by 2mparameters which give enough freedom for
approximating complex spectra. The approximation procedure can be formulated as
a least squares problem in 2m dimensions, which may be rather difficult to solve
due to the non-linearity ofB with respect to the fitting parametersam andbm. There-
fore, it is useful to have guidance on how the BEC model parameters are related to
the scales and amplitudes of the physical modes that contribute to the experimental
spectrum (Fig. 3).

The contribution of themth mode to the spectrum can be assessed by integrating
the right hand side of (8.26):



8 Correlation modeling with diffusion operator 187

Em=

∞
∫

0

[

qm

k2+ z2
m
+

q̄m

k2+ z̄2
m

]

dk=
π〈qmz̄m〉
|zm|2

(8.36)

In the limit when distances|bl − bm| between the spectral peaks ofB are much
larger than their half-widthsam, (i.e.am/bm ≪ 0 in particular), equation (8.36) can
be simplified using the asymptotic approximations

zm ≈ ibm; qm ≈ b3
m

4iamΠm
; Πm ≡ ∏

j 6=m

(1−b2
m/b2

j )
2

to yield

Em ≈ πb2
m

4amΠm
. (8.37)

Asymptotic values of the spectral density at the peaks are respectively

B(bm)≈
b2

m

4a2
mΠm

=
Em

πam
, (8.38)

i.e. the peak amplitudes are inversely proportional tob2
m and to the square of the

mode scalea−1
m . Expressions (8.36)–(8.38)can be useful in generating thefirst guess

values forzm to initialize an iterative procedure of approximating experimental data.
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Fig. 8.3 An example of the normalized spectrum (left) and the respective correlation function
(right) for the fourth-order polynomial (8.26) in two dimensions. (M = 2; z1 = .5+ 3i; z2 =
.2+6i).

After the model parameters are established, the action ofB−1 can be computed
recursively (cf. equations (8.21)-(8.22):

B−1 = ∏
m

[

I−|z2
m|−2D(2〈z2

m〉I−D)
]

(8.39)
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The inverse BEC model (8.39) can then then be employed to compute either the
action ofB with an iterative inversion algorithm or to directly compute the gradient
of a 3dVar cost function involving the quadratic formxTB−1x, wherex is the state
vector.

The above analysis gives an insight on the shape of the local CFs and provides a
direct connection between the scales described byB and the polynomial coefficients
of the considered BEC models (8.9), (8.10), (8.25) or (8.39). The second important
ingredient in constructing the BEC operatorC (eq. (8.3)) is estimating the diagonal
elements ofB, which is a more technical but equally important problem.

8.3 Diagonal estimation

8.3.1 Stochastic methods

In the last few decades a large family of stochastic algorithms were developed for
estimating elements and traces of extra-large matrices emerging from numerical
soluitons of the PDEs in applied physics (e.g., [23, 24, 25]). Weaver and Courtier
[27] were among the first to use this approach in geophysical applications for esti-
mating the diagonal of the operator (8.9).

The underlying idea is to define an ensemble ofK random vectorssk on the
model grid and perform componentwise averaging of the productss̃=Bs according
to the formula:

d̃(x) = s⊙ s̃⊘s⊙s, (8.40)

where the overline denotes averaging over the ensemble and⊙, ⊘ stand for the
componentwise multiplication and division of the vectors respectively. Simple con-
siderations show that when all the components ofs have identicalδ -correlated dis-
tributions with zero mean, the contributions tod̃ from the off-diagonal elements
tend to cancel out, and̃d converges tod = diagB asK → ∞. More accurately, the
squared relative approximation error

ε2(x) = (d̃−d)2/d2 (8.41)

is inversely proportional to the ensemble sizeK. In other words, one may expect to
achieve 10% accuracy at the expense of approximately 100 multiplications byB if
the first ensemble member gives a 100% error. This estimate may seem acceptable
since in geophysical applications the BE variances are usually known with limited
precision and approximating the diagonal with 5-10% error seems satisfactory.

The above described Monte-Carlo (MC) technique was developed further by
Bekas et al [26], who noticed that the method may converge tod in thefinitenumber
of iterations that equals to the matrix dimensionN if the ensemble vectors are mu-
tually orthogonal. An easy way to construct such an ensembleis to draw the vectors
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sk from the columns of theN×N Hadamard matrix (HM), which span the model’s
state space (see Appendix 3).

In the numerical experiments below we use MC and HM techniques as testbeds
for the diagonal estimation methods which can be derived from analytical consider-
ations and are exploit prior knowledge of the structure ofB.

8.3.2 Locally homogeneous approximations

Consider homogeneous (ν = const) operators (8.2) witha2 = 1/2 and assume that
the coordinate axes are aligned along the eigenvectors of the diffusion tensor, whose
(positive) eigenvalues areλ 2

i , i = 1, ..,n. Then the matrix elements ofBg,m can be
written down explicitly as

Bg(x,y) = exp(D/2) = d exp

[−ρ2

2

]

(8.42)

Bm(x,y) = (I−D/2m)−m = d
ρ̄sKs(ρ̄)
2s−1Γ (s)

(8.43)

where

ρ =
√

(x− y)Tν−1(x− y)

is the distance between the correlated points (measured in terms of the smoothing
scalesλi), d = (2π)−n/2Ω−1 are the (constant) diagonal elements ofBg,m, Ω =

Πλi =
√

detν is the diffusion volume element, and̄ρ =
√

2mρ .
Whenν varies in space, (8.42-8.43) are no longer valid, and the diagonal ele-

mentsd depend onx and the type of theB operator. However, if we assume thatν
is locally homogeneous (LH), i.e. varies in space on a typical scaleL which is much
larger thanλi , the diagonal elementsd(x) can be expanded in the powers of the
small parameterε = λ̄/L, whereλ̄ is the mean eigenvalue of

√
ν. The zeroth-order

LH approximation term (LH0) is apparently

d0(x) = (2π)−n/2Ω(x)−1 (8.44)

because for infinitely slow variations ofν (L → ∞), the normalization factors must
converge to the above expression for the constant diagonal elementsd. It is note-
worthy that the formula (8.44) is found to be useful even in the case of strong inho-
mogeneityε ≥ 1. In particular, numerical experiments of Mirouze and Weaver [17]
have shown that such an approximation provided 10% errors ina simplified 1d case.

The accuracy of (8.44) can formally be increased by considering the next term in
the expansion of the diagonal elements ofBg,m. The technique of such asymptotics
has been well developed for the diagonal of the Gaussian kernel (8.42) in Rieman-
nian spaces (e.g., [15, 16]). More recently, the approach was considered by Purser
[13, 14] in the atmospheric data assimilation context. The application of this tech-
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nique to the diffusion operator (8.1) in flat space yields thefollowing asymptotic
expression for the diagonal elements ofBg in the local coordinate system where
ν(x) is equal to the identity matrix, andD takes the form of the Laplacian operator:

Bg(x,x) =
1

(2π)n/2

[

1− 1
2

trh− 1
12

(

∆
2

trh+∇·divh
)]

+O(ε5) (8.45)

Hereh is a small (|h| ∼ ε) correction toν within the vicinity of x. Note that the
terms in the parentheses have the orderO(ε3), because each spatial differentiation
adds an extra power ofε.

The asymptotic estimate (8.45) involves second derivatives which tend to amplify
errors in practical applications whenε may not be small. Therefore, using (8.45) in
its original form could be inaccurate even at a moderately small value of ε. To
increase the computational efficiency, it is also desirableto formulate the first-order
approximation as a linear operator, which acts ond0(x). Keeping in mind that|h| ∼
ε, and utilizing the relationships:

d0(x) = (2π)−n/2Ω(x)−1 ≈ (2π)−n/2
(

1− 1
2

trh
)

(8.46)

exp(∆/2)≈ I+
1
2

∆ , (8.47)

the second term in the parentheses of (8.45) can be represented as follows:

∇·divh =
1
n

∆ trh+∇·divh′ (8.48)

whereh′ is the traceless part ofh. On the other hand, if the divergence ofh′ is
neglected, the equation (8.45) can be rewritten in the form

Bg(x,x)≈
1

(2π)n/2

(

1+ γn
∆
2

)(

1− 1
2

trh
)

(8.49)

where

γn =
1
6
+

1
3n

. (8.50)

Taking (8.46-8.47) into account and replacing∆ by D, the desired ansatz for the
first-order approximation (LH1) of the diagonal elements isobtained:

d1
g = exp

(

γn
D
2

)

d0
g (8.51)

The relationship (8.51) was derived by Purser et al. [12] forthe one-dimensional
case (γ1 = 0.5) and tested by Mirouze and Weaver [17], who reported a significant
(2-4 times) improvement of the accuracy in 1d simulations.
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An estimate similar to (8.51) can also be obtained forBm, possibly with a dif-
ferent coefficient̃γn. It is assumed, however, thatγ̃n may not differ too much from
γn given similarity in the shapes (Fig. 1) of the correlation functions (8.42)-(8.43).
Furthermore, because of the approximate nature of (8.51), the best representation of
d(x) in realistic applications may be achieved with a value ofγn that ts significantly
different from the one given by (8.50). For this reason, a more general form of (8.51)
was adopted in the numerical experiments, assuming

d1
g(x)≈ exp[γD/2]d0

g(x); d1
2(x)≈ [I− γD/4]−2d0

2(x) (8.52)

for the Gaussian model and its second-order (m= 2) spline approximation (10).
The following experiments investigate the dependence of the respective approx-

imation errors〈εg,2〉 on the free parameterγ.
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Fig. 8.4 Left: A composite map of five columns of theBg operator. White circles denote locations
of the diagonal elements of the corresponding correlation matrices. Right panel shows the map of
the non-normalized diagonal elements ofBg. Depth contours are in meters.

8.3.3 Numerical results

To assess the efficiency of the methods outlined in Sections 3.1-3.2, two series of nu-
merical experiments with realistically inhomogeneous BECmodels are performed.
In the first series the methods were tested in the 2d case with the state vector having
a dimension of several thousand. In the second series, the LH0 and LH1 techniques
are examined in a realistic 3d setting with a state space dimension ofN ∼ 106.
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8.3.3.1 Experimental setting in 2d

The state space is described by scalar functions defined on the orthogonal curvilin-
ear grid of the Navy Coastal Ocean Model (NCOM) [28] set up in the Monterrey
Bay (Fig. 4). The numberN of grid points (dimension of the state space) was 3,438.
A vector fieldu(x) was used to generate the diffusion tensor as follows. The smaller
principal axisλ2 of

√
ν is set to be orthogonal tou with the corresponding ”back-

ground” length scaleλ2 = 3δ , whereδ (x) is the spatially varying grid step. The
length of the larger axisλ1 is set to be equal to max(1,

√

|u|/u)λ2, whereu is a
prescribed threshold value of|u|. If u is a velocity field, then a structure like this
simulates enhanced diffusive transport of model errors in the regions of strong cur-
rents on the background of isotropic error diffusion with the decorrelation scaleλ2.

In the 2d experiments, the vector fieldu is generated by treating bottom topog-
raphyh(x) (Fig. 4) as a stream function. The threshold valuev was taken to be
one-fifth of the rms variation of|∇h| over the domain.

All the experiments described in the next two sections are performed using the
BEC models (8.42-8.43) with the parametersn= m= 2. A composite map of five
columns ofBg is shown in Figure 4a. The diffusion operator (1) is constrained to
have zero normal derivative at the open and rigid boundariesof the domain in both
2d and 3d experiments.

Numerically, the action ofBg on a state vectory0 was evaluated by explicitly
integrating the corresponding diffusion equationyt =D/2y for the virtual ”time pe-
riod” defined byν, starting from the ”initial condition”y0. The minimum number of
”time steps” required for the scheme’s stability in such a setting was 5,256. The ac-
tion of B2 was computed by solving the system of equations(I−D/4)2y = y0 with
a conjugate gradient method. The number of iterations, required for obtaining a so-
lution, varied within 2,000-2,500. To make the shapes of theBg andB2 compatible
(Fig. 1), the diffusion tensor inB2 was multiplied by 8/π (see Table 1).

The exact valuesd(x) of the diagonal elements are shown in Figure 4b. Their
magnitude appears to be lower in the regions of ”strong currents” (largeu), as the
correspondingδ -functions are dispersed over larger areas by diffusion.d(x) are
higher near the boundaries because part of the domain available for dispersion is
screened by the condition that prescribes zero flux across either open or rigid bound-
aries.

8.3.3.2 Statistical methods

The MC method is implemented in two ways: In the first series ofexperiments, the
components ofsk are taken to be either 1 or -1 with equal probability. In the second
series they are drawn from the white noise on the interval [-1, 1]. The residual error
ε is computed using equation (8.41). In both series, the ratesof reduction ofε with
iterationk are similar and closely follow the

√
k law (upper gray line in Fig. 5a).
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To improve the accuracy, the MC estimates are low-pass filtered with the corre-
spondingB-operators at every iteration (Fig. 5b). To optimize the filter, the diffu-
sion operators inBg,2 are multiplied by the tunable parameterγ, which effectively
reduced the mean decorrelation (smoothing) scaleγ−1/2 times. The lower lines in
Figure 5a demonstrate the result of such optimal smoothing:this procedure resulted
in an almost four-fold reduction of the domain-averaged error 〈ε〉 to 0.1 after per-
forming 60 iterations (averaging over 60 ensemble members).
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Fig. 8.5 a) reduction of the domain-averaged diagonal estimation error 〈ε〉 with iterations for th
HM (black) and MC (gray) methods for theB2 model. The lower curves are obtained after optimal
smoothing of the estimates. The thin horizontal lines show the error levels that are provided by the
asymptotic zeroth- (〈ε〉=0.17) and first-order (〈ε〉=0.10) methods which do not require iterative
schemes. b) Horizontal distribution ofε(B2) after 60 iterations of the HM method with smoothing.

Experiments with the HM method (black curves in Fig 5a) show that horizontal
smoothing significantly improves the accuracy of the estimates, especially after the
first few dozens of iterations. Comparison with the MC method(gray curves in Fig.
5a) demonstrates a noticeable advantage of the HM technique(black curves), which
remains visible at higher iterationsk > 100 even after smoothing (lower curves).
This advantage increases with increasing iterations for two reasons: The HM method
converges faster thank−1/2 by its nature, whereas the efficiency of smoothing (tar-
geted at removing the small-scale error constituents) degrades as the signal-to-noise
ratio of the diagonal estimates increases with the iteration numberk.

From the practical point of view, it is not reasonable to do more than several hun-
dred iterations, as〈ε〉 drops to the value of a few per cent (Fig. 5a), which is much
smaller than the accuracy in the determination of the background error variances. It
can therefore be concluded that it is advantageous to use theHM technique, when
making more than a hundred iterations is computationally affordable.
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8.3.3.3 Asymptotic expansion method

Since the principal axes of the diffusion tensor at every point are defined by con-
struction, computation of the zeroth-order approximation(8.44) to the normaliza-
tion factors is not expensive. Near the boundaries, however, the factors described by
(8.44) have to be adjusted by taking into account the geometric constraints imposed
on the diffusion. This adjustment was computed for points located closer than 3λ1

from the boundary and it was assumed that the boundary had negligible impact on
the shape of the diffusedδ -function [18].

Figure 6 demonstrates the horizontal distribution of the error ε(x) obtained by
approximating the diagonal elements ofBg with (8.44) (zeroth-order LH method,
or LH0) and with (8.51), (the first-order LH method LH1). Despite an apparent
violation of the LH assumption in many regions (e.g.,λ1 changes from 20δ to the
background value of 3δ at distancesL ∼ 5− 6δ < λ1 across the shelf break), the
mean approximation error of the diagonal elements appears to be relatively small
(19%) for the LH0 method, with most of the maxima confined to the regions of
strong inhomogeneity (Fig. 6a). The next approximation (Fig. 6b) reduces〈ε〉 to
9%. Numerical experiments with theB2 model have shown similar results (16%
and 10% errors).
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Fig. 8.6 Diagonal approximation errors under the zeroth-order (a),and first-order (b) LH methods
for theBg model. The thin black line inside the boundaries shows the domain of error averaging.

Another series of experiments are performed with the varying scaling parame-
ter γ to find an optimal fit tod. Computations were made for 0≤ γ ≤ 1. The best
result forBg was obtained forγ2 = 0.30 which is fairly consistent with the value
(γ2 = 0.33) given by (8.50). In the case of theB2 operator, the optimal value is
γ2 = 0.24, still in a reasonable agreement with (8.50), given the strong inhomo-
geneity ofν and deviation of theB2 operator from the Gaussian form. A somewhat
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smaller value ofγ2(B2) can be explained by the sharper shape of the respective cor-
relation function at the origin (Fig. 1), which rendersd0 to be less dependent on the
inhomogeneities in the distribution ofν, and, therefore, requires less smoothing in
the next approximation.

8.3.4 Numerical efficiency

Table 2 provides an overview of the performance for the tested methods. For com-
parison purposes we show CPU requirements by the smoothed MCand HM meth-
ods after they achieve the accuracies of the LH0 and LH1 methods. It is seen that
both MC and HM methods are 300-1000 times more computationally expensive
than the LH technique. In fact, for the 2d case considered, the computational cost of
the stochastic diagonal estimation method is similar to thecost of the 3dvar analysis
itself, which required several hundred iterations. The remarkable CPU saving are
due to the fact that the LH methods explicitly take into account information on the
local structure ofB which can be derived by analytical methods. Comparison of the

Table 8.2 Relative CPU times required by the MC and HM methods to achieve the accuracies〈ε〉
of the LH0 and LH1 methods (shown in brackets).

MC/LH0 MC/LH1 HM/LH0 HM/LH1
Bg 755 1205 680 520

(.19) (.09) (.19) (.09)
B2 780 490 850 330

(.17) (.10) (.17) (.10)

spatial distributions of the approximation error〈ε〉(x) (Fig. 5b, 6b) favor the LH
methods as well: They show significantly less small-scale variations and may have
a potential for further improvement. Comparing Fig. 5b and 6b also shows that,
in contrast to the statistical methods, LH0 errors tend to increase in the regions of
strong inhomogeneity, but decrease substantially after smoothing by the LH1 algo-
rithm. At the same time, the LH1 errors tend to have relatively higher values near the
boundaries. The effect is less visible in the HM pattern (Fig. 5b). This feature can be
partly attributed to certain inaccuracy in estimation of the near-boundary elements.
However, there is certainly room for further improvement with the issue.
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8.3.5 LH experiments in 3d setting

To check the performance of the LH0 and LH1 methods further, alarger 3d NCOM
domain is set up in the Okinawa region (Fig. 7) with horizontal resolution of 10 km
and 45 vertical levels. The state vector dimensionN (total number of the grid points)
in this setting was 862,992.

Because of the largeN, it is computationally unfeasible to directly compute all
the diagonal elements of the BEC matrix. Therefore, accuracy checks are performed
on a subset of 10,000 points, randomly distributed over the domain and the value of
〈ε〉 is estimated by averaging over these points.
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Fig. 8.7 Diagonal elements ofBg in the Okinawa region atz= 20m. The actual values are multi-
plied by 104.

The diffusion tensor is constructed in the same way that is described in Section
3.1, but the generating fieldu(x) is taken to be the horizontal velocity field from an
NCOM run. The value ofλ3 (in the vertical direction) is independent of horizontal
coordinates, but varies in the vertical as 3δz, whereδz is the vertical grid step. Figure
7 illustrates spatial variability of theBg diagonal elements atz=20 m. The smallest
values are observed in the regions of the Kuroshio and the North Equatorial Current,
where the largest velocities are observed, and theΩ =

√
detν reaches its largest

values (eq. 8.44). To better test the algorithm, a relatively small threshold value of
v=.02 m/s is prescribed, so that diffusion is anisotropic in more than 90% of the grid
points.
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Figure 8 demonstrates the accuracy of LH0 and LH1 methods in such setting:
the LH0 method provides an accuracy of 9% which is further improved to 6% by
the LH1 scheme. The major improvement occurs in the regions where points with
highly anisotropicν neighbor isotropic points and reduce the diagonal elementsin
the latter. The effect is reflected by the negative bias of thescatter plot at high values
of d0, which reaches its maximum of .0237 in the points with isotropic ν (Fig. 8a).
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3 given by (8.50).

Figure 8c shows the dependence of approximation errorε on the value ofγ3 for
both correlation models. The best approximation is obtained at γ3 = 0.26, a value
somewhat lower than suggested by the heuristic formula (γ3=5/18=0.28, dashed
line). Similarly to the 2d case, the optimal value ofγ3(B2) = 0.21 is less than
γ3(Bg), which is in agreement with the more rapid off-diagonal decay of the B2

matrix elements.
In general, it appears that the relationship (8.50) provides a reasonable guidance

to the estimation of the smoothing parameter in the LH1 method. For theBg model,
the operator acting ond0

g can be implemented by either reducing the number of

“time steps” in integration of the diffusion equationγ−1 times, or byγ−1/2-fold
reduction of the decorrelation radius. For theB2 model only the second option is
applicable: it also reduces the number of iterations required for computing the action
of theB2 due to the decrease of the condition number.

8.4 Summary and discussion

BEC modeling with the diffusion operator is an efficient and flexible tool for eval-
uating matrix-vector products of large dimension which emerge in minimization
algorithms of variational data assimilation. In this chapter, we discussed two ma-
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jor issues associated with this type of models: construction of a positive-definte
smoothing operatorB as a rational function ofD and the estimation of diagB.

In section 2 analytic relationships between the polynomialcoefficients ofB and
the parameters controlling the shape of correlation functions were derived. Although
only homogeneous operators in boundless domains were considered, these relation-
ships provide reasonable guidance to constructing more realistic BEC operators,
especially in cases when the typical scale of variability ofthe diffusion tensor is
much larger than the local decorrelation scaleρc and/or most of the observations
are separated from the boundaries by distances, exceedingρc. In a similar way,
weak inhomogeneity can be introduced by variable coefficientszm(x), and the local
CF shapes can be assessed using (8.13), (8.28-8.31).

Similar issues have been recently studied by many authors (e.g., [8, 10, 11,
17]). In particular, analytic formulas analogous to (8.33)-(8.35), were derived in
somewhat different setting by Hristopulos and Elogne [10, 11] whom considered
quadratic polynomials of similar structure. Xu [8] analyzed Taylor expansions of
expB and obtained recursive relations for the polynomial coefficients associated
with an arbitrary CF. Mirouze and Weaver [17] demonstrated apossibility to gener-
ate oscillating CFs using higher-order polynomials in one dimension.

Relationships (8.28-8.32) generalize these results for the polynomial model of an
arbitrary orderM. We assume, however, that the inverse quadratic model (M = 1) is
of major practical interest for two reasons. First, the BEC operators that are encoun-
tered in GFD applications are rarely homogeneous and observational statistics are
usually insufficient to capture the details of the spatial variability of the CFs. There-
fore, experimental estimates of the BECs are either limitedto low-rank ensemble
estimates or have to rely on the very rough assumption of homogeneity. Needless
to say, that in the latter case the structure of a sample CF should be elaborated with
sufficiently low detailization and be well accounted for by atwo-parameter BEC
model (Fig. 2) . The second reason is that the use of higher-order polynomials con-
siderably degrades the conditioning of the linear systems that are being solved in
the assimilation process and, therefore, may require sophisticated preconditioners.

The second equally important aspect of the d-operator BEC modeling is the com-
putational efficiency of estimating the diagonal elements of B. Two types of the BEC
operators were considered: with the Gaussian-shaped kernel Bg and with the kernel
generated by the second-order binomial approximation toBg. The tested techniques
include the ”stochastic” MC and HM methods, which retrieve diagB iteratively from
its action on a sequence of model state vectors, and the ”deterministic” scheme
based on the analytic diagonal expansion under the assumption of local homogene-
ity of the diffusion tensor. The deterministic scheme was tested in two regimes: the
zeroth (LH0) and the first-order (LH1) approximations.

Numerical experiments conducted with realistic diffusiontensor models show
that: a) the HM technique proves to be superior in efficiency compared to the MC
technique when accuracies of less than 10% error (k > 100) are required; b) both
stochastic methods require 300-1000 times more CPU time to achieve the accuracy,
compatible with the most efficient LH1 method; c) with the Gaussian model, the
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LH1 method demonstrates the best performance with the valueof the smoothing pa-
rameterγ compatible with the one given by the relationship (8.50) derived from the
asymptotic approximation of the Gaussian kernel diagonal.In deriving the ansatz
(8.51) for the LH1 model, we followed the approach of Purser et al [12], whom
proposed to smooth the zeroth-order diagonal by the square-root of the BEC opera-
tor in the one-dimensional case. Using the asymptotic technique for the heat kernel
expansion, we obtained a formula for higher dimensions, andtested its validity by
numerical experimentation.

It should be noted that the formal asymptotic expansion (8.45) is local by nature
and tends to diverge in practical applications, where spatial variations of the diffu-
sion tensor may occur at distancesL comparable with the typical decorrelation scale
λ̄ . To effectively immunize the expansion from the ill-effects of the abrupt changes
in ν, we utilized a non-local empirical modification, still fully consistent with the
original expansion in the limit̄λ/L → 0, but sufficiently robust with respect to the
numerical errors related to the high-order derivatives ofν . A similar technique was
developed by Purser [12, 13], who used empirical saturationfunctions to stabilize
higher-order approximations of theBg.

In general, results of our experiments show high computational efficiency of the
LH1 scheme, whose total CPU requirements is just a fraction of the CPU time re-
quired by the convolution with the BEC operator – a negligible amount compared
to the cost of a 3dVar analysis. Therefore, LH1 approximations to the BEC diag-
onal may serve as an efficient tool for renormalization of thecorrelation operators
in variational data assimilation, as they are capable of providing accuracy to 3-10%
error in realistically inhomogeneous BEC models.

A separate question, that requires further investigation,is the accurate treatment
of the boundary conditions. In the present study we assumed that boundaries affect
only the magnitude of the corresponding columns ofB, but not their structure. This
approximation is only partly consistent with the zero normal flux conditions for d,
but can be avoided if one uses ”transparent” boundary conditions (e.g. [17]) which
do not require computation of the adjustment factors. On theother hand, it might be
beneficial to keep physical (no-flux) boundary conditions inthe formulation of d, as
they are likely to bring more realism to the dynamics of the BEfield.

Another important issue is parameterization ofν(x) using the background fields
and their statistics. In the simple diffusion tensor model used in the experiments,
anisotropic BE propagation is governed by the background velocity field and su-
perimposed on the small-scale isotropic BE diffusion, which takes place at scales
that are not well resolved by the grid (less than 3δ ). More sophisticated parameter-
izations ofν(x) are surely possible and require further studies. In particular, recent
studies have shown that sinceν(x) has onlyn(n+1)/2 independent components, it
can be estimated from ensembles of moderate (∼ 100n) size with reasonable accu-
racy [29, 30, 31, 32]. Finally, the considered BEC models could also be effectively
used for adaptive/flow-dependent covariance localization[33, 34], which is an is-
sue of crucial importance in improving the forecast skill ofthe state-of-the-art data
assimilation systems.
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Appendix 1

Let θ be the angle betweenx andk in R
n andn> 2. Then the integral (8.5) can be

rewritten in spherical coordinates as

Bn(r) = (2π)−n

∞
∫

0

B(k)
∫

Ωn−1

exp(−ikr cosθ )kn−1dk dΩn−1, (8.53)

wheredΩn−1 is the element of the surface area of the unit sphere. Since cosθ
changes symmetrically within the limits of integration, the imaginary part of the
exponent vanishes. Furthermore, using the identitydΩn−1 = dΩn−2 · sinn−2 θdθ ,
the integral (8.53) can be rewritten as

Bn(r) = (2π)−n

∞
∫

0

B(k)kn−1dk
∫

Ωn−2

dΩn−2

π
∫

0

cos(krcosθ )sinn−2θdθ (8.54)

Integration overθ and substitution of the formula for the surface of(n− 2)-
dimensional unit sphere into (8.54) yields (8.6).

The general relationship (8.6) also holds forn= 1,2 although these cases require
a special (less complicated) treatment.

Appendix 2

In practice, the matrix elements of the operator (8.10) are never calculated explicitly
due to the immense cost of such a computation. Instead, the result x̂m(x) of the
action byB on a (discrete) model state vectorx̂0(x) is calculated by solving the
linear system of equations

(

I− D̂/2m
)m

x̂m = x̂0, (8.55)

whereD̂ denotes the discretized diffusion operator. Ifx̂0(x) represents the ”initial
state” and the “time step”δ t is prescribed such that the “integration time” ismδ t =
1, then action of the operator (8.55) can be identified as a result of a discrete-time
integration of the diffusion equation∂tx = D/2x with the implicit scheme
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x̂i − x̂i−1 =
1
2

δ t D̂ x̂i , i = 1, ...,m (8.56)

starting from the initial statêx0. Herei denotes the time step number.
Similarly, the action of exp(D/2) is never computed by convolving a state vector

x̂0 with the discretized kernel (8.42), but rather by the discrete-time integration of
the diffusion equation with the explicit numerical scheme

x̂i − x̂i−1 =
1
2

δ t D̂ x̂i−1, i = 1, ...,m (8.57)

such that
x̂m =

(

I+ D̂/2m
)m

x0 (8.58)

in correspondence with the asymptotic relation (8.9) for the Gaussian kernelBg.

Appendix 3

By definition, a Hadamard matrix (HM) is a square matrix whoseentries are either
1 or -1 and whose columns are mutually orthogonal. The simplest way to construct
HMs is the recursive Sylvester algorithm which is based on the obvious property: if
HN is anN×N Hadamard matrix, then

H2N =

[

HN HN

HN −HN

]

is also an HM. Starting fromH2= [1 1; 1−1], the HMs with orderN=2n, n= 1,2...
can be easily constructed. HMs withN = 12,20 were constructed ”manually” more
than a century ago. A more general HM construction algorithm, which employs the
Galois fields theory, was found in 1933. In the present study we used the MatLab
software that only handles the cases whenM/12, orM/20 is a power of 2. Despite
this restriction, the available values ofM were sufficient for purposes of this chapter.
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