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1. Introduction 
Operational ocean data assimilation aims to constrain numerical ocean simulations for accurate 

forecasts of the ocean for up to 96 hours into the future.  Most of the data used for assimilation comes 
from spaced based observations of sea surface height (SSH) and sea surface temperature (SST).  While 
subsurface temperature and salinity observations are also used, there are far fewer observations with far 
less geographical coverage below the surface. 

For more than a decade and a half the Navy has implemented a method for utilizing the abundant 
surface observations to create three-dimensional synthetic fields of temperature and salinity for data 
assimilation.  Synthetic vertical profiles are constructed by projecting remotely observed SSH and SST 
downward from the surface using a global database of statistical relationships.  The original synthetic 
temperature and salinity generation system, which is still in use at the time of writing, is the Modular 
Ocean Data Assimilation System (MODAS) (Fox, et al. 2002). 

Since Navy operations rely heavily on the analysis of ocean acoustics, the vertical structure of 
the ocean is of particular interest because many ocean acoustic phenomena are governed by the vertical 
gradients of sound speed.  Since sound speed depends upon temperature and salinity, there is a need for 
accurate prediction of the vertical structure of the ocean temperature and salinity.  The MODAS system 
is designed only to estimate the values of temperature and salinity without constraint on the vertical 
gradients.  Inaccurate performance of the MODAS temperature and salinity vertical gradient structure 
has motivated efforts to improve the Navy’s methods for synthetic profile creation.  To correct the 
quality of the synthetic vertical ocean gradients, a new system was developed as a result of the NRL 6.2 
project, Improved Synthetic Ocean Profile (ISOP). 

The new ISOP system employs a three layer approach that accounts for the (1) ocean’s surface 
mixed layer, (2) the vertical gradients found below the mixed layer and through the thermocline, and (3) 
the relative quiescence of the deep ocean.  The entire approach is centered on providing correct 
representation of the ocean’s vertical gradients as observed by historical in situ ocean observations.  This 
approach has been described in a patent application that has been submitted (Helber, Carnes and Barron 
2011).  The present document is the first of two parts that describe the ISOP system and its capabilities. 

The ISOP VTR has two parts because there are two modes of operation for generating synthetic 
ocean profiles.  The first mode provides a stand-alone capability for generating ISOP synthetics 
anywhere in the global ocean.  The second mode is where ISOP is used with the Navy’s Coupled Ocean 
Data Assimilation (NCODA) system (Cummings 2005, Smith, et al. 2012), providing synthetics for 
assimilation in the numerical models the Hybrid Coordinate Ocean Model (HYCOM) (Metzger, et al. 
2010) and Navy Coastal Ocean Model (NCOM) (Barron, et al. 2006).  While the core methods of the 
ISOP system for generating ocean synthetic profiles is identical for both modes of operation, there is a 
substantial amount of extra details associated with running ISOP within a data assimilation system to 
warrant two separate documents.  The present document covers the details of the background historical 
in situ observation database, the three layer approach, the algorithms for each layer, and the global ISOP 
stand-alone synthetic validation.  The second part “Validation Test Report for the Improved Synthetic 
Ocean Profile (ISOP) System, Part II: Synthetic Profile Assimilation in Navy Ocean Forecast Systems” 
covers the details of how ISOP is run in the NCODA system including validation of the full data 
assimilation of ISOP with HYCOM and NCOM. 

 
  

________________
Manuscript approved January 31, 2013. 



2 
 

2. Background 
Many different approaches to the construction of synthetic temperature and salinity profiles have 

been published.  Multivariate regression between subsurface variables, temperature or salinity anomaly 
at each depth, and surface variables, steric height anomaly and possibly surface temperature anomaly, 
were used in (Gilson, et al. 1998) and (Fox, et al. 2002).  The primary difficulty with their method is that 
the steric height anomaly at the surface relative to some deep reference level must be computed for each 
profile before the regression analysis can be performed.  Either a significantly reduced database 
consisting of only sufficiently deep profiles that have both temperature and salinity must be used or a 
method must be used to extend profiles and compute salinity when only temperature is available.  This 
problem was removed in (Mellor and Ezer 1991), (Ezer and Mellor 1994), (Ezer and Mellor 1997), 
(Masina, Pinardi and Navarra 2001), (Fischer 2000), and (Guinehut, et al. 2004) since the required 
statistics were computed from previous ocean model simulations rather than from observed profiles.  
The drawback of these methods is that the solution is dependent on the quality of the original 
simulations that may differ from the true ocean. 

Multivariate regression between surface parameters and the amplitudes of empirical orthogonal 
functions (EOFs) computed from historical temperature and salinity profiles were studied as the basis 
for predicting synthetic profiles in (Carnes, Mitchell and DeWitt 1990) and (Carnes, Teague and 
Mitchell 1994).  These regression methods are currently being used in the US Navy’s MODAS system, 
which lacks vertical gradient constraint that we wish to include. 

The elimination or simplification of the regressions can be accomplished by reducing the number 
of EOFs to the number of independent variable (surface variables) for cases where the relationship 
between the dependent variables can be established.   In a study by (Pascual and Gomis 2003), EOFs of 
the vertical structure of dynamic height profiles was computed.  Since the vertical gradient of dynamic 
height versus pressure is the specific volume anomaly, then the amplitudes of dynamic height EOFs also 
apply to the specific volume anomaly profiles computed from the dynamic height EOFs.  Therefore, 
given the surface dynamic height and the surface specific volume anomaly, the amplitudes of the first 
two EOFs can be determined. 

The most promising approach to creating synthetics from surface observations is the variational 
method proposed by (Fujii and Kamachi 2003a).  The method eliminates regressions and the need to 
compute steric height anomalies from historical profiles while properly incorporating the expected error 
statistics.  A key feature of the method is the construction of the first guess error covariance matrix from 
a reduced number of dominant EOF modes computed from historical in situ ocean temperature and 
salinity profile observations.  It is the vertical structure of the coupled temperature and salinity profile 
EOF modes that are utilized for constructing a vertical covariance matrix useful for projecting the 
surface ocean information into the subsurface synthetic profiles.  (Fujii and Kamachi 2003a) used the 
vertical covariance matrix in a one-dimensional variational analysis for a 10° by 10° region of the 
Pacific Ocean east of Japan.  It was also applied in the equatorial Pacific in a three-dimensional 
variational analysis system in (Fujii and Kamachi 2003b).   

The Fujii and Kamachi method described above makes use of the historical vertical structure 
from observations but does not constrain the solution to the vertical gradient of temperature and salinity.  
The use of truncated EOFs, for example, inherently reduces the ability to represent sharp gradients.  To 
account for sharp vertical gradients at the bottom of the ocean mixed layer, the ISOP system is designed 
with a three layer format.  The first layer is the surface mixed layer that is relatively uniform from the 
surface down to mixed layer depth (MLD).  The MLD is an input to the ISOP system.  The second layer 
is the dynamic layer that represents the ocean from the bottom of the MLD through the thermocline and 
down to 1000 m.  The synthetic solution for this layer is derived using a technique based on the (Fujii 
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and Kamachi 2003a) approach applied globally and with additional constraints for the vertical gradients 
of temperature and salinity.  The third layer is from 1000 m to the bottom of the ocean is blended from 
the temperature and salinity values of layer 2 at 1000 m to climatology in the deep ocean.  Together, the 
three ISOP layers provide a complete water column synthetic profile useful for assimilation into 
numerical models that is highly constrained to accurately represent vertical gradients in the ocean. 

 
3. Data preparation 

The goals for the ISOP data aggregation are to obtain the largest collection of in situ 
observations that will characterize the temperature and salinity vertical structure and vertical gradients 
of the global ocean.  With this data the ISOP temperature and salinity vertical covariance and 
climatology databases are constructed.  The horizontal covariance structure is not required for projecting 
surface observations information into the subsurface ocean to create synthetics. 

The data consist of temperature and salinity profiles combined from the Navy’s MOODS 
(Master Oceanographic Observation Data Set) profile archive (Bauer 1982, Jugan and Beresford 1991) 
with classified profiles removed, the WOD 2005 (World Ocean Database) (Boyer, et al. 2006, NODC 
2009), and delayed-mode Argo (Roemmich and Gilson 2009) profiles downloaded from the USGODAE 
server (www.usgodae.org/argo/argo.html) on October 11, 2007.  Only profiles having both temperature 
and salinity were used.  Argo profiles were first removed from MOODS and WOD 2005.  Then, a 
duplicate check was performed that removed any profiles from MOODS that appeared in the WOD 
2005 data set.  The final combined data set consisted of 3,506,496 profiles.  The number of profiles 
measured by each of 22 different categories of instruments is listed in the second column of Table 1.  
The first column of Table 1 is an instrument code number used in MOODS.    

The full data set of profiles was examined using a GUI-based editor.  The editor displayed all 
profiles in geographical blocks up to 10º of latitude by 10º of longitude in size.  Smaller subsets of 
profiles, grouped by position and time of year within the largest block, could be examined in an 
automated sequence of profile overlays of temperature versus depth, salinity versus depth, potential 
density versus depth, potential density versus salinity, temperature versus potential density, and salinity 
versus potential density.  Outliers on each plot could then be easily identified and then marked for 
deletion by the operator.   The editing GUI also allowed profiles to be individually edited, but this 
capability was not used often due to the large amount of time required if applied to the full data set.  The 
manual editing identified and removed 668,416 profiles.  The number of profiles of each measurement 
type in this first set of deletions is listed in Table 2.  Altogether, 668,416 (19.1 % of the total) profiles 
were deleted from the database up to this point.  Next, all profiles where the deepest observation depth 
was less than 200 m, but the bottom bathymetry depth was greater than 400 m were removed.   This step 
removed another 172,105 (4.9 % of the original total) profiles.  The final data set contained 1,969,081 
profiles containing both temperature and salinity from the various instrument types as shown in columns 
6 of Table 2. 

The geographical distributions of temperature and salinity profiles are displayed in Figure 1, as 
the log10 of the number of profiles within each 5º x 5º geographic block.  The distribution of profiles in 
terms of their year of measurement is shown in Figure 2.  Because the MBTs were eliminated from the 
final data set, the number of temperature and salinity profiles is about equal in the years before 1960, but 
after XBTs began to be used in the 1960s, the number of temperature-only profiles far outnumbered 
profiles with both temperature and salinity.  The relative number of profiles with both temperature and 
salinity has been steadily rising since the late 1990s due to the use of Argo floats in deep water. 

The final step in the preparation of the profile data set interpolated each profile to a set of 78 
fixed depths between 0 m and 6600 m using the piece-wise cubic interpolating  polynomial interpolator 
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e.g. (Fritsch and Carlson 1980), similar to the Piecewise Cubic Hermite Interpolating Polynomial 
(PCHIP) interpolating method in MATLAB and GNU OCTAVE.  The advantage of the pchip technique 
is that over intervals of the original data that are monotonically increasing or decreasing, the interpolated 
curve is also monotonic in the same direction.  Also, the interpolated curve contains local extremes only 
at points where the original data do.  As a result, overshoots that might occur with splines near sudden 
gradient changes in the original data are eliminated.  The 78 standard depths are listed by spacing depth 
regimes in Table 3. 

 
4. Three-layer synthetic profile model 

The purpose of the ISOP system is to use surface ocean observations to construct synthetic 
profiles of temperature and salinity that most accurately represent the unobserved subsurface ocean 
conditions.  The inputs ISOP is designed to accept include surface observations or estimates of 
temperature and height and their uncertainties, mixed layer depth, and a first-guess subsurface 
temperature and salinity profile and their uncertainties.  All inputs, their description, and likely sources 
are listed in Table 4 ISOP Inputs.  Given appropriate inputs, ISOP is capable of creating a synthetic 
temperature (T) and salinity (S) profile for any date at any ocean latitude and longitude.  At any one time 
or place any or all observation may not be available when a synthetic is required.  For this reason, the 
ISOP system has the flexibility that allows for any or all of these inputs to be absent.  In the case of no 
inputs, the output is the ISOP climatology T and S profile for the month and location of the requested 
synthetic.  As shown in Table 4, each input value also has a specified value of uncertainty except for the 
mixed layer depth. 

 Synthetic profiles are constructed by combining separate profile segments from three adjacent 
layers to output a complete temperature and salinity profile with its associated uncertainty (Table 5).  
The top layer (Layer 1) extends from the surface to the input MLD, and is computed by linear 
regressions dependent on the MLD and the profile gradient at the MLD.   The second or middle layer 
(Layer 2) extends from the MLD to either the ocean bottom or to 1000 m, whichever is smaller.  The 
synthetic temperature and salinity profiles in the second layer are computed using a one-dimensional 
variational technique using inputs of SST, SSHA, MLD, and first-guess estimates of temperature (T) 
and salinity (S) profile pairs.  The third layer (Layer 3) extends from 1000 m to the ocean bottom, using 
linear regression coefficients for blending Layer 2 synthetics towards climatology with depth. 

All three layers of the ISOP system utilize a static database to construct synthetics anywhere for 
any month in the global ocean.  The top and bottom layer databases contain only regression coefficients 
stored on a ½° global grid.  The middle, dynamic layer, database has covariance information, 
constructed from an m-mode EOF representation of the ocean vertical structure, also on a ½° global grid 
that is used to minimize a cost-function.  The databases for the three layers are combined with the input 
data to create the synthetics.  In section 4.1, the surface mixed layer methods and database construction 
is described.  In section 4.2, the Layer 2 cost function is defined and derived.  Cost function 
minimization is performed by first setting the differentiated cost function equal to zero analytically.  
Section 4.3 describes the synthetic profile below 1000 m. 
 

4.1. Layer 1, Surface mixed layer density model 
The top ISOP layer, Layer 1, extends from the ocean surface down to the input value of MLD.  

ISOP does not associate the MLD with an uncertainty and therefore defines Layer 1 depth to be exactly 
equal to the input MLD.  The structure of the Layer 1 synthetic profile is computed in two ways 
depending on the application of ISOP.  One option is to shift the input first guess profile to match the 
estimated surface potential density at a depth of 4 m, thereby retaining the mixed layer structure of the 
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first guess profile.  The shifted profile is then used as the synthetic Layer 1 solution.  The second option 
is to construct the Layer 1 temperature and salinity using a model derived from historical observations. 
 

4.1.1. Option One 
In cases where it is desirable for ISOP Layer 1 to match the structure of the first-guess profile, an 

option exist where ISOP will shift and interpolate the first-guess profile to match the input SST value 
and the Layer 2 synthetic solution at the MLD.  This option is selected using the ISOP software flag, 
model_ml set equal to true. 

 
4.1.2. Option Two 
For this option, the Layer 1 synthetic profile is required to match the estimated surface potential 

density at a depth of 4 m.  The Layer 1 potential density profile,  z , is constructed in such a way that 

it matches the Layer 2 potential density and vertical gradient of potential density, 
MLDzMLD zG


  , 

at the MLD.  For this reason, the Layer 2 synthetic profile described in the next section is computed 
first.   

The method used in ISOP for determining the MLD from a profile of temperature and salinity is 
the potential-density-threshold method.  The threshold method defines the MLD as the depth below a 
reference depth where the potential density is greater by a specified amount than at the reference depth.  
Use of a 4-m subsurface reference depth, rather than using the surface, is intended to isolate the 
determination of MLD from the diurnal variations of near-surface temperature.  For climatological 
profiles, (Kara, Rochford and Hurlburt 2000) used a 10-m reference depth.  We use a reference depth of 
4 m so as not to eliminate the possibility of very shallow mixed layers that exist in model and 
observational data.   A threshold density difference, Thresh, = 0.15 kg/m3, is used unless the computed 

MLD is greater than 400 m.  Then, the threshold value is reduced to 0.05 kg/m3.  If the MLD computed 
using this new threshold is still greater than 400 m,  then it is reduced to 0.025 kg/m3, and then to 0.01 
kg/m3 and finally to 0.001 kg/m3, until the MLD is less than 400 m.  The Layer 1 potential density 
profile is then constructed with the same change in density between 4 m and the MLD as the final 
threshold value. 

The statistical model for the ISOP mixed layer (Layer 1) was developed by first examining the 
relationship between the potential density anomaly and the density gradient at the MLD.  The potential 
density anomaly is scaled by the potential density threshold value from the MLD calculation,  ,Thresh

, 

and is given by 
       ,Threshz z MLD         ,    (1) 

which is a function of depth.  The density gradient at the mixed layer is also scaled by the potential 
density threshold value 

 ,MLD Threshz MLD
G z  


  

.  (2) 
The quantities given by equation (1) and (2) are investigated at several locations around the world. 

Comparisons indicated that the scaled potential density anomalies,  z , grouped at constant 

scaled depths, z'=z/MLD, are approximately proportional to the product, MLDGMLD .  For example, 

Figure 3 shows a scatter plot of points colored by the value, )(z   , at a scaled depth of z' = 0.812 on 

a graph of GMLD versus MLD determined from 398 profiles surrounding the position at 30° N and 140° 
E.  In this plot, the scaled density anomaly is about -1.0 (dark blue) near the surface and about zero (red) 
near the MLD.   
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There is an approximate inverse relationship between MLDG  and MLD for fixed potential density 

anomaly and depth.  This can be seen in Figure 3 by looking at the pattern dots of a similar color follow.  
For example, yellow dots of equal potential density anomaly have small (large) potential density 
gradient at large (small) MLD.  The relationship is looser at small values of potential density anomaly or 
as the scaled depth, z' (not shown here), approaches unity. 

Since the inverse relationship is only approximate, a more accurate estimate was made by fitting 
observations of scaled potential density anomaly,   , to a polynomial equation at each global grid 
location given by 

 
  2

1, 2, 3, 4 ,

2 2 2
5, 6, 7, 8,

, ,k MLD k k MLD k MLD k

k k MLD k MLD k MLD

z G MLD a a G a G a MLD

a MLD a G MLD a G MLD a G MLD

      

  
  (3) 

 The solution is obtained by minimizing the sum, 

       


    
2

, ,
1

, ,
N

k MLD i i i k
i

z G MLD z ,  (4) 

with respect to each of the coefficients, a1 through a8, where k is the depth index and i is the profile 
index.  The i-th observed profile of scaled potential density anomalies are given by 

                  
, , , ,1i k i k i Threshz z ,  (5) 

where the threshold value,  ,Thresh
, may be different for each measured profile. 

The set of coefficients was determined at each of the K scaled depths determined by the formula 
      10 101 log 0.1 0.05( 1) 1 log 1.1kz k      , k = 1, K.  (6) 

The profile defined by equation (6) provides wider spacing near the surface and finer spacing near the 
MLD ( 1z ).  The fit of this equation to the observations is represented by the contours from -0.1 to 1.0 
at intervals of 0.1 in Figure 3. 

The Layer 1 potential temperature and salinity profiles are computed from the Layer 1 synthetic 
potential density profile in the mixed layer using simple relationship computed by linear regression from 
historical profiles.  The temperature coefficient is computed at each point of the global grid by 
minimizing the sum of differences,  

             


     
2

1

ˆ ˆ
N

i i i i
i

z MLD z MLD   (7) 

with respect to the coefficient, Ta , where, 

       , ,
ˆ ˆ( ( ))i i T i iz MLD a z z MLD         .  (8) 

The salinity coefficient is computed by minimizing 

          


     
2

1

ˆ ˆ
N

i i i i
i

S z S MLD S z S MLD   (9) 

with respect to the coefficient, Sa , where, 

       , ,
ˆ ˆ( ( ))i i S i iS z S MLD a z z MLD       .  (10) 

Once the ISOP Layer 1 databases have been constructed, the potential density profile can first be 
computed from the MLD, the threshold potential temperature difference, the vertical gradient at the 
MLD, the surface potential density, and the coefficients in Equation 3.  Next, the potential temperature,
 , and salinity, S, are computed at each scaled depth, ,z  from the synthetic potential density anomaly 
according to, 

   ( ) ( ) ( ) ( )Tz MLD a z z MLD           (11)  
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   ( ) ( ) ( ) ( )SS z S MLD a z z MLD       .  (12) 

The last step is then to compute the temperature from the potential temperature, salinity, and 
pressure, and to then interpolate the profiles from the scaled depths to depth using the MLD. 

Typical examples of the regression between the potential temperature anomalies and potential 
density anomalies at two different scaled depths, at the same geographic location as used in Figure 3, are 
shown in Figure 4.  Figure 4a shows the data and regression results at a scaled depth of about 72% of the 
MLD and Figure 4b shows the results at a depth of about 94% of the MLD.  Generally, the correlation 
between the temperature and potential density anomalies increases as the depth approaches the MLD.  
At this location, changes in density are due mainly to temperature changes so that the correlation 
between salinity anomalies and potential density anomalies are generally low as shown in Figure 5. 

 
4.2. Layer 2 - Dynamic climatology approach 

Synthetic temperature and salinity profiles in the second layer (Layer 2, from the mixed layer to 
1000 m) are computed using a one-dimensional variational technique using inputs of SST, SSHA, MLD, 
and first-guess estimates of temperature (T) and salinity (S) profile pairs.  The solution is obtained 
directly by performing the following steps: 

1) Define the cost function (described in this section) 
2) Differentiate the cost function with respect to  the unknown solution of T and S and their 

EOF amplitudes 
3) Set the differentiated cost function equal to zero 
4) Put the resulting set of equations, including the input data values, in the form D g e 

(equation 48, below) 
5) Invert the D  matrix using upper and lower matrix decomposition 

Steps 1) through 3) are performed analytically once and described in detail in this section.  Steps 4 and 5 
are performed (by ISOP software) every time a synthetic is required.  Using ISOP software, the matrix 
equation D g e   is constructed (using the analytical solution derived in steps 1) through 3) when the 
inputs (SST, SSHA, MLD, first-guess T and S) for a given location and time are provided.  The result is 
a synthetic ocean profile for that time and location. 

All inputs, except for MLD, must also have corresponding uncertainty estimates (see Table 4).  
The cost function constraints, in addition to the input data, included climatological T and S values and 
an m-mode EOF representation of the ocean vertical structure as derived from historical observations.  
The climatology and EOF representation of the ocean are computed from the historical observations 
described in Section 3 above. 

The ISOP climatology is constructed using similar methods as those used for constructing the 
Generalized Digital Environmental Model (GDEM) version 4 (Carnes, Helber, et al. 2010).  The 
purpose of the ISOP climatology is to provide a mean and standard deviation of the ocean.  These 
quantities are used to construct the correlation matrix employed in the EOF analysis, which is described 
in Sections 4.2.1 and 5.2.3.  The primary difference between the ISOP climatology and GDEM is that 
ISOP only uses paired profiles of T and S whereas GDEM uses all T profiles available.  Paired profiles 
of T and S are required for ISOP because the T and S co-variability is important for accurate 
representation of the dynamic structure of the ocean. 
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where ia are the elements of a , ku  are the elements of U, and m is the number of EOFs retained for the 

analysis.  For the first ISOP prototype system m=6.  Since the a  amplitudes are part of the synthetic 
solution, the ia  elements are unknown and are the solution obtained by the minimization of the cost 

function. 
Term J3 constrains the synthetics to the first guess while preserving the covariance structure 

given by R.  If these were observed profiles rather than model forecast profiles, the observation error 
covariance matrix would typically contain non-zero terms only along the diagonal.  Model profile errors, 
however, are expected to be correlated among depths, and we simply assume that R is proportional to B, 
i.e., R=B/Ffg and R-1=FfgB

-1.  Then, term J3 in equation (13) can be written as  

      1 2 2
3 , ,

1

2 /
m

T

fg fg fg i fg i i fg i i
i

J x x R x x F a a a a 



      ,  (21) 

using ( ) ( )fg fg cl clx x x x x x     , and where 
,fg ia  is the ith EOF amplitude of the vector 

 1( )T
fg fg cla U x x   ,  (22a) 

which is similar to equation 19, but computed from the input first-guess temperature and salinity 
profiles.  Since 

fga  is computed from the input first-guess profiles using  

 
2

, , ,
1

N

fg i ik k fg k cl k
k

a u x x


        (22b) 

the first-guess amplitudes are an input to the minimization.  They are computed before the minimization 
of the cost function. 

By the same procedure, the inverse covariance matrix of the vertical difference errors, Bg
-1 , in 

term J2,  is transformed into  
 1 1 1 1T

gB W M W      ,  (23) 

where 1M  is the diagonal matrix of inverses of the eigenvalues (with elements i ),   is the matrix of 

eigenvectors (with elements ji , , for the i-th depth of the j-th EOF), and W is the diagonal matrix of the 

standard deviations of vertical differences (with elements kw iw  down the diagonal).  Similarly to 

equation 22, the amplitudes are defined as 
 1T

clb W d d         (24a) 

Or 

 
2

,
1

N

i ik k k cl k
k

b w d d


  .     (24b) 

As with the U matrix, the upper half of W contains the temperature vertical difference standard 
deviations and the lower half contains the salinity vertical difference standard deviations.  In addition, 
we assume as before with B and R, that Bg is proportional to Rg, i.e., Rg=Bg/Gfg and Rg

-1=GfgBg, where 
Gfg is a constant.  Terms J2 and J4 can them be written as: 

    1 2
2

1

m
T

cl g cl i i
i

J d d B d d b 



      (25) 

      1 2 2
4 , ,

1

2 /
m

T

fg g fg fg i fg i i fg i i
i

J d d R d d G b b b b 



        (26) 

Since the vertical difference amplitudes ib  are amplitudes of the synthetic solution, the elements are 

unknown and are the solution obtained by the minimization of the cost function.  Since 
fgb  is computed 
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from the input first-guess profiles, they are an input to the minimization.  They are computed before the 
minimization of the cost function. 

For the terms J5, J6, J7, and J8 in equation (13), the m-mode EOF representation of temperature, 
T  and salinity, S , is use to constrain the synthetics.  The temperature anomaly components, 

,i i cl iT T T  , 

and salinity anomaly components, 
,i i cl iS S S   , are used rather than using their combined form as 

components of x.  Similarly, we will use 
,i i cl iT T T     and 

,i i cl iS S S      , where the vertical 

difference is given by      
1i i i

   , rather than their combined form as components of d, above.  

Then, the temperature and salinity anomalies and their vertical differences anomalies computed from the 
EOFs are 

 ,
1

m

k k i k i
i

T u a 


    (27) 

 ,
1

m

k k N i k N i
i

S u a  


    (28) 

 ,
1

m

k k i k i
i

T w b


    (29) 

 1 1,
1

m

k k N i k N i
i

S w b   


  .  (30) 

 
The analysis or the solution being sought for the synthetic temperature and salinity profiles is 

given in equation (13) by îT and 
îS .  The terms J5, J6, J7, and J8 of the cost function (13) attempt to keep 

the final synthetic temperature and salinity as well as their vertical differences close to the values 
computed from the EOFs.   

By inserting equations (27), (28), (29), and (30) into terms J5, J6, J7, and J8 of (13), we obtain 

 
 

2

2
,

1
5

1 1

ˆ
ˆ

m

i k i k iN N
i i k

i ii i

u a T
T T

J
u u




 

        
    
 


    (31) 

     
2

2
, 11 1

1 1
6

1 1

ˆ ˆˆ ˆ

m

i k i k i iN N
i i i k

i ii i

w b T TT T T
J

w w

  
 

 

         
    
      

 


      (32) 

 
2

2
,

1
7

1 1

ˆ
ˆ

m

i N k i n k iN N
i i k

i ii N i N

u a S
S S

j
u u

 


  

        
    
 


      (33) 

     
2

2
1 1, 11 1

1 1
8

1 11 1

ˆ ˆˆ ˆ
m

i N k i N k i iN N
i i i k

i ii N i N

w b S SS S S
J

w w

     
 

    

          
    
      

 


    (34) 
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Term J9 of equation (13) will be solved in terms of the analysis temperature and salinity values,

T̂ and Ŝ .  The synthetic profile temperature at the mixed layer depth can be written as a weighted sum of 
the temperature profile components, so that term J9 can be written as 

 
 

2

2

1
9 2 2

ˆ
ˆ

N

MLD i i
MLD MLD i

SST SST

T QT
T T

J
 



       


  (35) 

where Q is a linear interpolation vector which give the interpolated T̂  value at the MLD.  Q is zero 
except at the two depths bounding the MLD.  This term constrains the synthetic temperature toward the 
specified temperature at the base of the mixed layer. 

The cost function constrains the steric height anomaly of the synthetic towards the input surface 
value of SSHA.  Term J10 of equation (13) applies this constraint in terms of steric height at the MLD 
referenced to 1000 m depth.   The input surface SSHA is projected to the MLD by subtracting an 
estimate of the steric height anomaly at the surface relative to the MLD 

0
ˆ ˆ
MLD MLDh h h   .      (36) 

The input SSHA is denoted by ĥ and the steric height anomaly at the surface relative to the MLD given 
by 0 MLDh   is computed using either the first-guess profile or constant T and S values in the mixed layer, 

depending on the Layer 1 option (see Section 4.1). 
The analysis steric height at the MLD is given by ˆ

MLDh .  In term J10 in equation (13) is computed 

as 

 ˆ ˆˆ( , , )
MLD

MLD

ref

h T S p dz ,      (37) 

by integrating the normalized specific volume anomaly,  

  ˆˆ( , , ) (0,35, ) (0,35, )T S p p p     ,  (38) 

computed from the temperature and salinity of the synthetic profile (from the state vector, x), where  is 
the specific volume.  Since we want the cost function (13) to be written as a linear function of the 
amplitudes, 

ia , of the EOFs, the calculation of  is performed using a locally linearized approximation, 

  ˆ ˆˆ ˆ( , , ) ( , , ) ( , , ) ( , , )( )cl cl cl cl cl cl cl clT S p T S p T S p T T T S p S S          (39) 

where Tcl and Scl are the temperature and salinity of the climatology field, and 

 
,S pT

 



 and 
,T pS

 



  (40) 

are the thermal and haline expansion coefficients estimated near each climatology  temperature, salinity, 
and pressure.  To reduce errors caused by the linearization, once the synthetic profile has been 
computed, the values of   and   are recomputed (at the average of synthetic and background T and S) 
and then the synthetic profile is computed again. 

The steric height anomaly is then computed from the integral of the normalized specific volume 
anomaly from the reference level to the MLD,  

    ,
1

ˆ ˆ ˆˆ ˆ, ,
MLD N

MLD i cl i i i i i
iref

h T S p dz X T S   


       (41) 
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where X is a vector of depth intervals required to perform the discrete trapezoidal vertical integration.  
The last term J10 of equation (13) is then, 

 
    

2

2
,

1
10 2 2

ˆˆˆ
N

MLD i cl i i i i i
MLD MLD i

h h

h X T Sh h
J

  

 


        


  (42) 

In the next section, methods for minimizing the cost function are described. 
 
4.2.2. Cost Function Minimization 
The synthetic profile values, îT and 

îS , for i=1,N are computed by solving the system of 

equations created by minimizing the cost function, (13).  Written compactly with the use of the ten Ji 
terms describe in the last section, the cost function is given by 

10

1

  k
k

J J .       (43) 

The solution is the minimization of (43) with respect to each of the 2m component values of the 
unknown EOF amplitudes and 2N analysis values of îT and 

îS . 

The prototype system minimizes (43) directly by setting its derivative equal to zero.  The 
derivatives are partial derivatives with respect to the m amplitudes for the T and S constraints, 




 

 
10

1

0k

kj j

JJ

a a
      (44) 

the m amplitudes for the vertical difference T and S constraints,  




 

 
10

1

0k

kj j

JJ

b b
      (45) 

the N T̂   and N Ŝ   analysis solutions,  
10

1

0
ˆ ˆ

k

kj j

JJ

T T


 
  
       (46) 

10

1

0
ˆ ˆ

k

kj j

JJ

S S


 

  
       (47) 

making a total of 2m+2N unknowns and therefore 2m+2N partial derivative equations that are set to 
zero.  The minimized solution occurs when each of the 2m+2N partial derivative equations are each 
equal to zero.   When (44), (45), (46), and (47) are satisfied, the solution is obtained.  All non-trivial 
partial derivatives are derived in detail in Appendix A. 

The system of equations given by (44), (45), (46), and (47) can be represented by 
 D g e ,       (48) 

where g is the vector of 2m+2N unknowns, 

1 1 1 1̂
ˆˆ ˆ,...., , ,...., , ,...., , ,....,T

m m N Na a b b T T S S      g .     (49) 

In the Appendix A, the set of 2m+2N equations are derived and written in a form where terms that do 
not depend on the unknowns in (48) are on the right hand side of the equal sign and are in e.  The D, in 
(48) contain the terms on the left side of the equal sign.  Also described in Appendix A are the methods 
for solving the system which include upper and lower matrix decomposition. 
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4.2.3. Layer 2 Error Estimates 
Data assimilation systems are built around observation and model error estimates.  For smooth 

integration of ISOP into the Navy’s forecasting systems, error estimates of the synthetics are essential.  
The fundamental idea that facilitates our error estimate is the fact that the Layer 2 synthetics are derived 
from a linear combination of estimated or observed inputs.  The inputs are ocean observations of surface 
temperature (

MLDT ), sea surface height anomaly (
MLDh ), and EOF amplitudes of the first-guess ( ,fg fga b ).  

With the use of eigenvectors ( ,  ), standard deviations ( ,u w ) estimated from historical ocean profiles, 

and expected error variances 2 2, , ,SST h

fg fgF G

  
 
  
 

, synthetic T and S are constructed using the linear 

equation (48).  Given this framework, it follows that we can estimate the synthetic temperature and 
salinity as a linear equation 

2 2

1

m
k

k k i
i i

x
x K I

I





 
    

       (50) 

where iI  is the i-th input value and Kk  is a constant for the k-th depth.  There are 2m+2 input values, 

2m EOF amplitudes  ,fg fga b  and 2 observations  , 
MLD MLDT h .  Given (50), the expected error variance, 

2
,x k , of the T and S synthetics, xk, can be computed as function of the expected error variances,  2

,I j .  

Expected error variance is given by 

   2 T

x cl clx x x x          (51) 

or 

 
2

2 2 2 2
22

, ,
1 1

m m
k k

x k k cl k k i k i
i ii i

x x
x x K I K I

I I


 

 

     
               

     (52) 

since the climatology is the average ocean state.  This reduces to 

 
2

2 2
22

, ,
1

m
k k

x k k cl k i i
i i i

x x
x x I I

I I






   
         

 .    (53) 

This is to a good approximation equal to 

   
2

2 2
22

, ,
1

m
k

x k k cl k i i
i i

x
x x I I

I






  
       

     (54) 

or 

 




        


2
2 2

2 2
, ,

1

m
k

x k I i
i i

x

I
     (55) 

assuming each input is independent. 
To make (55) useful, we need to derive a method for solving the partial derivative.  Starting with 

equation (19) and shifting ia  to the other side of the equal sign we have 

( )clx x U a         (56a) 

or in summation form we have 
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,
1

m

k cl k ik k i
i

x x u a


  .     (56b) 

Taking the derivative of (56b) we obtain 

1

m
k i

k ik
ij j

x a
u

I I




 


  .     (57) 

This can be used in (55) to compute the error variances. 
Alternatively, using the solution for the synthetic minimization, equation (48) can be used in the 

form 
g D e1 . 

The components of g are such that 

 

2 2
1

2 2
1

ˆ
m N

k k m pk m p
p

T g D e



 



         (58) 

and 

 

2 2
1

2 2
1

ˆ
m N

k k m N pk m N p
p

S g D e



   



        (59) 

Now the expected error of each synthetic temperature and salinity value can be computed at 
every depth as 

   2 2 2
2 2
, ,

1

ˆ
m

T k I i k i
i

T I 




     (60) 

   2 2 2
2 2
, ,

1

ˆ
m

S k I i k i
i

S I 




     (61) 

Since D is independent of the input values, then inserting Eq. (58) into (60) and (59) into (61), 
we obtain error variances of the synthetics, 
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and 
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Differentiating the components of the vector e from Eq. (48) and substituting into Eqs. (62) and 
(63) we obtain the error variance at each depth index, k, for temperature and salinity, 
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4.3. Layer 3 - Synthetic profiles below 1000 m depth 

Temperature and salinity profiles in Layer 3, between 1000 m depth and the bottom, are 
computed by an anomaly decay scheme from profile values at the bottom of Layer 2.   Given that TS(z) 
and SS(z) are the synthetic profiles and TG(z) and SG(z) are the GDEM 4 profiles of temperature and 
salinity, then the Layer 3 profiles are computed as 

 ( ) ( ) ( (1000) (1000)) ( ),   1000S G S G TT z T z T T F z for z m    .  (66) 

  ( ) ( ) (1000) (1000) ( ),   1000S G S G SS z S z S S F z for z m    ,  (67) 

where the units for depth (z) in these equations is meters.  Ts(1000) and Ss(1000) are the synthetic 
temperature and salinity at 1000 m depth computed at the bottom of Layer 2 and FT and FS are decay 
functions that have a value of one at 1000 m, and decay toward zero as depth increases below 1000 m.  
The decay function profiles were computed between 1000 m and 1800 m from historical observations by 
linear regression, i.e., 

  ( ) ( ) ( ) (1000) ,   1100 1800T T T TF z C z z for z to m     (68) 

  ( ) ( ) ( ) (1000) ,   1100 1800S S S SF z C z z for z to m      (69) 

where the temperature and salinity correlations, CT and CS, were computed from historical observations 
as, 
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ˆ( ) ( ) ( )i i GT z T z T z         (71) 

1

1
( ) ( )

N

i
i

T z T z
N 
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      (72) 

and )(ˆ zTi  is the temperature observation of the i-th profile at depth z.  The correlations for salinity are 

computed in a similar manner.  Below 1800 m, where observations are generally too sparse, the decay 
function was computed as an extension of the exponential trend between 1000 m and 1800 m, i.e., 
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     ( ) (1800) exp 1000 / ( ) (1000) ,

1800  the

T T Tv T TF z sign C z L z
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
  (73) 

   ( ) (1800) exp((1000 ) / ) ( ) (1000)

  1800  the

S S Sv S SF z sign C z L z

for z to bottom

  


,  (74) 

where the units of z is meters.  The vertical length scales in units of meters are computed as, 

 
 800 / log (1800)Tv TL C 

  (75) 

 
 800 / log (1800)Sv SL C 

.  (76) 
As with the upper two layers, statistics for calculation of the synthetics in layer 3 were computed 

at each point of a global grid with 0.5° spacing in latitude and longitude.  Note that Eq. 71 reduces to Eq. 
66 when z =1800 m. 

 
4.3.1. Layer 3 error estimates 
The error variance of the layer 3 temperatures and salinities down to 1800 m is the sum of two 

independent errors, one due to the error of the regression and the second due to error in the layer two 
estimate of T and S at 1000 m (TS(1000) and SS(1000)).  The total error variance is then, 

 2 2 2 2
,1000( ) ( )(1 ( )) ( ) 1000 1800T T T T Tz z C z F z m z m         (77) 

 2 2 2 2
,1000( ) ( )(1 ( )) ( ) 1000 1800S S S S Sz z C z F z m z m       .  (78) 

The first term on the right hand side is the regression error variance written in terms of the 
correlations.  The second term is the expected error variance (Eqs. 62 and 63) due to the error of the 
temperature or salinity at 1000 m computed from the layer 2 equations.   

Below 1800 m depth, there are no statistics computed from the observations from which to 
estimate errors.  However, below 1800 m, the correlations were assumed to decay exponentially with the 
vertical length scale found at 1800 m.  Substituting the exponential correlation functions from Eqs. (73) 
and (74) into (77) and (78), we obtain estimates of the temperature and salinity below 1800 m as, 

 mzzFLzzz TTTvTT 1800)())/)1000(2exp(1)(()( 2
1000,

22     (79) 

 mzzFLzzz SSTvSS 1800)())/)1000(2exp(1)(()( 2
1000,

22   .  (80) 
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5. Calculation of the statistical databases for each Layer 
The databases of statistical quantities for each of the three layers were computed at each point of 

a global grid having a resolution of 0.5 degree in latitude and longitude.  All results are based on 
calculations made from the edited global data set of temperature and salinity profiles, described in 
Section 2, which had been interpolated to 78 standard depths from the surface to 6600 m depth, and 
including 47 depths from the surface to 1000 m depth.  Only profiles having both temperature and 
salinity observations were used, reducing the number of useable profiles to 1.97 million.  The various 
statistics were computed at each grid point for each of the three ISOP layers using only locally 
surrounding profiles contained within the rectangular region and within the specified time window, 
centered on the grid point analysis position, with east-west and north-south lengths, in units of 
kilometers, defined by 

  2( 1)*100 * 1.3 1.7exp /15.0

( 1)*100

aX k km

Y k km

     
 

  
    (81) 

respectively, where a is the latitude in units of degrees.  At the equator, the rectangle is twice as large in 

the east-west direction as in the north-south direction.  Beginning with k=1, the number of profiles 
within the box is counted.  If the number is fewer than a specified minimum (200 in Layer 1, 750 in 
Layer 2, and 50 in Layer 3), then the value of k is incremented upward by one, repeatedly, until at least 
the specified minimum number of profiles (independent of time of year) are obtained.  In Layers 1 and 
3, all profiles within the box, independent of time of year were used in the calculations.  In Layer 2, 
monthly analyses were performed using profiles within specific time-of-year bounds which varied with 
depth. In each layer, each profile is weighted in the analysis according to their distance from the central 
grid point. 

 
5.1. Layer 1 – Mixed Layer 

The ISOP Layer 1 is the near-surface mixed layer of the synthetic profile.  It is computed after 
the Layer 2 temperature and salinity profiles have been computed because the Layer 1 model of the 
mixed layer potential density profile requires the value of the potential density gradient (from Layer 2) 
at the depth of the mixed layer before it can be computed.  At the same time, calculation of Layer 2 
profiles require knowledge of the Layer 1 steric height at the surface relative to the MLD in order to 
compute the steric height at the MLD relative to 1000 m from the steric height at the surface relative to 
1000 m.  Both of these calculations could have been performed simultaneously with suitable 
manipulation of the equation for both layers.  However, instead we perform a short iteration where an 
estimate of the upper mixed layer temperature and salinity is first made.  From that, the steric height at 
the surface relative to the MLD is computed, which is used in the Layer 2 calculations.  Once the Layer 
2 profiles are computed, the vertical gradient of the potential density is computed at the MLD, which, in 
turn, is used in the recalculation of the Layer 1 profiles.  The procedure typically converges well enough 
after only two iterations. 

When the ISOP synthetic profiles are constructed and used for assimilation into an ocean model, 
we typically compute the MLD from the model forecast (at the analysis time) using the potential density 
threshold method.  In addition, rather than compute the mixed layer temperature and salinity profiles 
using the Layer 1 mixed layer model equations and statistics, we use the model profiles above the MLD.   
The only further requirement is that the model mixed layer profiles must be linearly stretched; the 
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temperature is stretched to match a specified sea surface temperature and Layer 2 temperature at the 
MLD and the salinity is stretched to match the Layer 2 salinity at the MLD. 

A global database of statistics required to support calculation of profiles in the mixed layer is 
constructed from local profiles at each point of a global 0.5° x 0.5° grid.  The procedure for selecting 
profiles for each calculation is described at the top of Section 4.  The selection process obtains a 
minimum of 200 pairs of temperature and salinity profiles.  The MLD is determined for each pair using 
the potential density threshold method.  In addition, the vertical gradient of potential density at the MLD 
is computed.  Each profile is then interpolated to the 21 scaled depths ( z in Equation 6) between the 
surface and the MLD.  Using this data set, the ISOP global mixed layer model database is constructed, 
for each grid location, using the unweighted and time-of-year-independent regressions represented by 
Equations 4, 8, and 9. 

At each grid location, the potential density profile in the mixed layer was computed for each 
profile used in the construction of the ISOP data base at this grid location.  The calculation for each 
profile used the original profile's MLD, threshold value, and potential density gradient at the MLD.  The 
fraction of the variance accounted for the regression at each scaled depth, kz  is computed by the 

following ratio, 
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where the sigma values with the over hat are the observed values and the sigma values without the over 
hat are the values computed from the ISOP mixed layer model equations, and 

       , , , ,
ˆ ˆ ˆ 1i k i k i Threshz z              (83) 

       , , , ,1i k i k i Threshz z         
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The percent of the potential density variance accounted for by the regression is displayed at the 
scaled depth of 8.867 * MLD in Figure 6.    

Figure 7 shows a vertical section through the central Pacific Ocean from south to north along 
190° E of statistics from the ISOP Layer 1 (mixed layer) potential temperature model.  Figure 8 and 9 
show the mixed layer model applied to two example profiles from the Pacific Ocean. 
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5.2. Layer 2 
5.2.1. Data set at each grid position 
The global database of required statistics for Layer 2 are computed at each point of the global 

0.5° by 0.5° grid using all profiles within the local rectangular region obtained in the profile search 
procedure described at the beginning of Section 5.  The value of the observed temperature or salinity at 
each standard depth for each of the N profiles within the final rectangular region surrounding a grid 
point is assigned a weight.  If the value at the kth depth of the ith profile is missing, then the weight, wi,j = 
0.  Otherwise, the weight is defined in terms of the distance of that profile from the grid point, the day of 
the year when the observation was made, and whether there is a bottom obstruction between the profile 
position and the grid point position at and below a given depth. 

For profile observations at each depth, z (units of meters), we define a function  mb dd   that 

has a value of one for month m (m=1, 12) only if the day (of the year) of the observation, d, is within the 
time period, max max( ) ( )mt z d d t z     , where the day at the center of month m is defined by 

15.25 30.5 ( 1)md m    ,      (87) 

and the half-width, )(max zt (in units of days), is defined by, 
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      (88) 

Otherwise, the value is zero, i.e.,   0 mb dd . 

Each profile was previously interpolated to the set 47 analysis depths between the surface and 
1000 m (see Section 2).  The maximum bottom bathymetry depth, bmax, within the 0.5°x0.5° (latitude, 
longitude) rectangle centered at the analysis position, was determined from the NRL DBDB2 v3.0 
global 2-minute-resolution bottom topography (Ko 2009).  No analyses were performed at a location 
where bmax < 5 m. 

The lengths of the sides of the final rectangle also define the decay scales, 
 / 110.cos( /180

/110.

aL X

L Y
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 
      (89) 

in units of geographical degrees, in the function, 

         2 2

, exp(k i d m b k m i a k aw d d z b L L            
   (90) 

used for weighting the ith observation at the kth depth, zk, when computing means, variances, and 
covariances.  The weights vary as a function of the distance from between the grid point analysis 
position, at longitude and latitude given by a and a , respectively, and the position of the i-th profile at

i and i .  Defining bmin as the minimum bottom depth on a rhumb line between the analysis position 

and the observation position, 
 min min0k kz b z b          (91) 
 min min1k kz b z b    .     (92) 

The bottom depth values along the rhumb line were extracted using bilinear interpolation from DBDB2 
bathymetry. 
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The deepest analysis depth at each location was the minimum of either 1000 m or the deepest 
standard depth (of the 47 depths in the upper 1000 m) with at least two observations remaining after 
performing the subsetting discussed above. 

 
5.2.2. Calculation of means and standard deviation profiles 
At each grid location, the profile of the weighted means and standard deviations of temperature 

and salinity were computed together with similar calculations performed on the differences of vertically 
adjacent values: 
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where the i subscript indicates the ith profile and the k subscript indicates the value at the kth depth, zk.  

The result of each calculation was discarded if the sum of weights ( 

N

i ikw
1 , ) was less than 0.1 or if the 

number of values with non-zero weights was less than 20 in the upper 100 m depth, or less than 10 
below 100 m depth. 

The mean temperature and salinity profiles were corrected to compensate for biases introduced 
by the changing number of observations, Nk, at each depth, using the "vertical gradient correction" 
method developed for the calculation of the GDEM ocean temperature and salinity climatology (Carnes 
2009, Carnes, Helber, et al. 2010).  This technique computes the corrected temperature and salinity 
mean, kT and kS , by minimizing the cost functions 
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with respect to each of the final corrected mean temperature or salinity values, where M is the index of 
the deepest depth with useable values.  Before performing this calculation, any value of the two sets of 
standard deviations less than 0.001 were set to 0.001 to remove poorly conditioned equations.  The 
minimization of each equation leads to a tridiagonal system of M equations described in (Carnes, 
Helber, et al. 2010), where several examples are also shown.  This technique is effective in correcting 
the means because the vertical gradients provide estimates of the between-layer relationships missing 
from the uncorrected layer-by-layer calculations of the means.  Often, the basic shape of different 
profiles is similar even though the profiles may be shifted relative to each other.  In fact, we often find 
that a running accumulated sum of the mean vertical difference profiles provides a better estimate of the 
average profile shape than does the mean profile.  However, the accumulated vertical profile, starting 
from the mean value at the first depth, usually slowly drifts from the mean value curve as the vertical 
accumulation proceeds.  However, the accumulation plus a drift correction is essentially provided by the 
minimization of the cost functions above. 

A similar set of calculations was also performed to compute vertical-gradient-corrected means 
and standard deviations of the consecutive vertical differences of temperature and salinity.  The means, 
standard deviations and covariances of the vertical differences are needed for calculation of synthetic 
profiles.  

 
5.2.3. Calculation of correlations, eigenvalues, and eigenvectors 
The fundamental structure of the Layer 2 synthetic profiles come from the EOF representation of 

the ocean that is used to construct the cost function (13) described in section 4.2.1.  The EOFs are 
represented in terms of eigenvalues and eigenvectors as part of the covariance matrix decomposition, 
equation (16).  Correlations, rather than covariances, were computed and used in the calculation of 
eigenvectors because the calculations are combining temperature variability with salinity variability (see 
section 4.2.1).  The correlation matrix, C in Eq. 16, of the combined temperature and salinity profiles 
were computed for each month using edited profile database and same space and time weighting scheme 
used for computing the means. 

The numerical values of the temperature changes in units of degree Celsius are often much larger 
than the changes in salinity in units of PSU.  Without scaling, the salinity prediction is severely reduced 
unless a large number of modes (empirical orthogonal modes, or eigenvectors) are used.  Also, the 
scaling helps to improve predictability in the depth domains with lower variability, but at the expense of 
predictability in the higher variability depths (like in the thermocline).  Scaling could have been 
designed to meet other requirements.  For example, temperature and salinity could have been scaled 
according to their effects on changes in density or on changes in sound speed.   Many of the temperature 
or salinity profiles used in the calculation of the correlations for each month had missing values (or a 
weight equal to zero), including missing values near the surface if the observation date was not within 
the day-of-the-year time range of the month being computed, or near the bottom of the profile if it was 
shorter than surrounding profiles.  When computing products of scaled anomalies from two different 
depths, the product could be computed only if the values were not missing at both depths.  As a result, 
the mean values computed at each depth in the previous section often used a different (and larger) set of 
observations than was used for a particular correlation calculation.  Our approach compensated for the 
missing data by recomputing the average values for each two-depth pair.  For a particular two-depth 
pair, the mean at each depth was computed from only the subset of values used in the products, and 
therefore the subset that was not missing at both depths on each profile.  For example, if the correlation 
is being computed between temperature at two different depths, zi and zj, then  
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Finally, eigenvectors and eigenvalues of the correlation matrix, C, were computed by singular 
value decomposition.  Similarly, the correlation matrix of the combined temperature and salinity vertical 
(adjacent) differences was computed, and the eigenvalues and eigenvectors also computed.  In the end, 
we computed a separate set of means, standard deviations, eigenvalues, and eigenvectors at each point of 
the global 0.5°x0.5° grid for each month.  We arrange the eigenvector modes in order of their 
eigenvalues, with the mode having the highest eigenvalue occurring first and with the eigenvalues 
decreasing as the mode number increases.  In the prototype ISOP databases, only the six largest modes 
were saved.  We can determine the fraction of the variance of the entire data set accounted for these 
modes because the trace of the C correlation matrix is equal to the sum of the eigenvalues of  C.  The 
trace of C is the sum of the variance (of the scaled anomalies) at each depth.  Figures 10, 11, and 12 
show global maps of the percent of total variance accounted for by the first mode, by the sum of the first 
and second modes, and by the sum of the first three modes, respectively.  These figures indicate that, 
over much of the world's oceans, the running sum of the eigenvalues, starting with mode 1, the mode 
with the largest eigenvalue, rapidly converges toward the total variance over all depths, i.e., the trace of 
the correlation matrix.  The rapid convergence allows us to efficiently use only a small subset of the 
eigenvectors with the largest eigenvectors to compute synthetic profiles.  The percentage is over 80% by 
just the first mode over much of the Southern Ocean and in the areas of the Kuroshio Extension and the 
Gulf Stream Extension.  The lowest accumulated variance is found in the equatorial regions of the 
Indian, Pacific, and Atlantic Oceans.  There may be is a certain background noise floor everywhere 
where fluctuations at one depth are not correlated with those at another or where fluctuations of 
temperature are not correlated with fluctuations of salinity.  In regions where the variability is low and 
only slightly larger than the noise background, then only a small part of the variability is vertically 
correlated.  In this case, the first few modes will account for only a small fraction of the total variance.  
Another factor in the interpretation of the eigenvalues is that the temperature and salinity anomalies 
were scaled by the local standard deviations before calculation of the correlations and eigenvectors, so 
each depth for both temperature and salinity contributes an equal share to the total (scaled) variance.   
Scaling makes interpretation of both the eigenvalues and the eigenvectors difficult. 

The eigenvectors are computed separately at each grid point location, so they don't necessarily 
vary smoothly between locations.  The shape of eigenvector vertical profiles at adjacent grid points 
might be nearly the same, but their signs can be different, or the structure found in one mode at one grid 
point location can suddenly shift into the structure of other modes at the adjacent grid location.  
However, as shown next, the general structure of eigenvectors, for at least the first mode, generally 
changes smoothly.  The next set of plots shows horizontal (global map) and vertical section views of the 
first half (temperature) and last half (salinity) of the combined July mode 1 temperature and salinity 
eigenvectors for two different months.  Figure 13, displays the absolute value of the first mode 
temperature eigenvector at a depth of 160 m, and Figure 14 shows the comparable salinity eigenvector 
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map.  The 160 m depth was chosen because it is typically below the mixed layer and within the main or 
seasonal thermocline.  These two maps delineate the positions of many of the major fronts, particularly 
in the tropical and subtropical regions.  In plots of higher modes, not shown, the spatial scales are 
generally smaller and the major oceanic features are more difficult to recognize.  

Vertical sections of the first mode eigenvectors of the scaled temperature and salinity are shown 
in Figure 15.  In each plot, the sign of the eigenvector profile at each position along the section was 
adjusted to produce a smoothly changing picture.  Even in scaled form and with only the first mode 
showing some of the major oceanic feature along the section are vision, including the Subarctic Front 
near 60° S in the salinity, the boundary between the lower salinity central water of the subtropical gyres 
and the higher salinity central water of the subtropics.  In the temperature vertical section, the dominant 
negative (blue) feature that dives down toward the north in the upper 500 m between about 10° N and 
25° N, follows the isohalines in the salinity vertical section (not shown), but is perpendicular to 
isotherms.  However, it does approximately follow a local temperature minimum that progresses 
downward along the temperature eigenvector feature.   
 

5.3. Layer 3 
The synthetic profiles in the deep layer, below 1000 m depth, are computed by extending the 

Layer 2 temperature and salinity anomaly (difference from GDEM) at 1000 m downward.  The method, 
described in Section 4.3, is equivalent to predicting the deeper anomaly from the 1000-m anomaly using 
the slope computed from a linear regression of historical data between the anomalies from GDEM at 
1000 m and the anomalies from GDEM at greater depths.  The regressions require calculation of the 
variances at each depth and calculation of the correlations between anomalies at 1000 m and anomalies 
at deeper depths.  The profile observations below 1800 m depth are too sparse in most regions to 
compute the correlation with adequate accuracy, and variances were also not computed below 1800 m.  
As a result, for consistency, once the correlations are computed from the covariances and the computed 
variances, we eliminated all of the variances computed as part of the regressions, and replaced them with 
variances from the GDEM4 climatology at all depths in Layer 3.  In addition, as discussed in Section 
4.3, correlations between 1000 m and the specified depths below 1800 m are assumed to have an 
exponential form with length scale selected to match the computed correlation between 1000 m and 
1800 m depth. 

The salinity analysis was performed separately from the temperature analysis.  At each grid 
location, a search for deep temperature or salinity profiles, depending on the analysis, was made in an 
expanding rectangular region given by Eq. 88, until at least 50 profiles were found that extended down 
to the standard depth nearest (but above) the local bottom depth or to at least to a depth of 1800 m, 
whichever was greater.  Unlike the monthly analyses performed for Layer 2, a single annual analysis, 
independent of time of year, was performed for Layer 3.  As was done for the Layer 2 calculations, 
observations from a profile made at depths below the shallowest bottom bathymetry depth between the 
profile observation position and the grid point analysis position were excluded.  Finally, each computed 
vertical covariance was excluded if made from fewer than 30 observation pairs.  Unlike the method used 
for Layer 2, the Layer 3 covariances were computed using equal weights for each observation, 
irrespective of their distances from the grid point analysis position.   

The fields of correlations and GDEM standard deviations were smoothed horizontally by 15 
application of a 9-point smoothing filter (Shapiro 1970).  Vertical sections in Figure 16 of the deep 
temperature and salinity decay functions between 1100 m and 5000 m along 215 E (145 W) longitude 
from the Antarctic coast to the Alaska coast.  The value given by this function is multiplied times the 
Layer 2 temperature or salinity anomaly from GDEM at 1000 m and added to the GDEM profile at 
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greater depths to produce the Layer 3 temperature or salinity profile.  Even though the number of 
profiles used in the calculations at each position are nearly the same for temperature as for salinity, the 
extension functions are quite different.  Only the values from 1100 m and 1800 m are supported by 
correlations computed by observations.  Below 1800 m the decay function values are computed by 
extending the correlations at 1800 m and using the GDEM standard deviations below 1800 m.   

In order to produce two-dimensional global maps of the primary features of the three-
dimensional decay functions, the vertical length scales, TL̂  and SL̂ , were computed at each grid location 

as the depth where the decay functions, )(zFT  and )(zFS , respectively,  in Eqs. 68, 69, 73, and 74 

reached a value, e-1, minus the 1000 m depth.  With these length scales, decay functions can be obtained 
as: 

 ˆ ˆ( ) exp ( 1000) / 1800T TF z z L z m       (106) 

 ˆ ˆ( ) exp ( 1000) / 1800S SF z z L z m      . (107) 

The length scales, TL̂ and SL̂ , are plotted in global maps in Figures 17 and 18, respectively.  The 

dominant features of the temperature length scale are the long (2500 m to 3000 m) scales south of the 
Sub Antarctic Front, the short (less than 500 m) length scales near the equator and the intermediate 
values in the Mediterranean, Sea of Japan, Labrador Sea, Bering Sea, Alaskan Stream, and the 
southeastern tropical and subtropical Atlantic.  The salinity length scales have high values (greater than 
2500 m) south of the Polar Front along the Antarctic coast.  Values near 2000 m are found in parts of the 
Mediterranean, in the Bay of Bengal, In the northern Atlantic Subpolar Gyre, and in the Greenland and 
Norwegian Seas.   Intermediate scales (1000 m to 1500 m) are found near the Sub Antarctic Front, in the 
tropical Pacific, the subtropical gyre of the South Atlantic, and in the Alaska Current, Alaska Stream, 
and the Bering Sea.  Lowest values are in the equatorial Atlantic and the southern portion of the Indian 
Ocean subtropical gyre.   

 
6. Validation Testing 

The quality of ISOP synthetics have been evaluated globally and in two sub-regions, the Gulf of 
Mexico and a region around Hawaii known as the RIMPAC region.  These validation experiments are 
direct comparisons of ISOP to in situ observations.  In the scientific literature comparisons of models 
with observations is commonly call misfit error.  The estimated synthetic error output from ISOP is used 
in data assimilation systems and is examined in the VTR Part II. 

 
6.1. ISOP SETUP 

There are two ISOP configurations tested in this document, the first (1) represents ideal (
IdealISOP ) and the second (2) operational ( operISOP ) implementations.  The IdealISOP  configuration 

provides an estimate of the best possible accuracy that can be expected, while the operISOP  
configuration provides accuracy that may be obtained in an operational implementation.  The inputs for 
the IdealISOP  configuration are derived from the validation profiles themselves and provide a best 
possible capability limit of ISOP if the inputs provided were of exceptional quality.  The operISOP  
configuration uses inputs from legacy capabilities that are not as good as current Navy operational 
systems.  For this reason, the error levels for the operISOP  configuration are conservative, representing 
the lower limit for ISOP accuracy.  We expect the actual operational accuracy for ISOP to be greater 
than the operISOP  results of this analysis.  The IdealISOP  and operISOP  validation cases provide an 
upper and lower bound, respectively, on the performance expected from ISOP. 
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In order to demonstrate the improved capability of ISOP, we have also generated MODAS 
synthetics and extracted GDEM 4.0 (Carnes, Helber, et al. 2010) matching profiles.  To match the two 
ISOP configurations, we have two MODAS configurations with the same ideal and operational inputs 
used for ISOP.  All of the synthetics and ancillary products are listed in Table 7, and are matched to the 
validation profile observations described in the next section. 

 
6.2. Validation Data 

For the global validation we have compiled and quality controlled a global set of observation 
profiles that have not been used in the making of ISOP.  The dataset is therefore completely independent 
of the ISOP background statistics and provides ideal data set for validation purposes. The data sources 
are the same as described in section 3, a combination of profiles from the Navy’s MOODS, the WOD 
through 2009, and Argo (USGODAE 2012).  Only profiles having both temperature and salinity were 
used and the same quality control procedures are used as describe in section 3.  The total collection of 
data from July 2008 through November 2009 contains 111,199 profiles and of those, 74,314 profiles 
extend to at least 1000 m.  Of those, 44,118 extend down to 1800 m.  We have performed two global 
validation cases. Test Case 1: Global Validation uses the 74,314 profiles that extend to at least 1000 m.  
Test Case 2: Global Deep Ocean Validation uses the 52,480 profiles that extend to at least 1800 m in 
order to test the quality of the Layer 3 synthetics. 

For the Gulf of Mexico (GOM) region validation, we have collected 4001 paired T and S profiles 
mostly from the years 2010 and 2011 that have passed a minimum set of requirements within the 
latitude and longitude limits of 18°N to 32°N and 100°W and 77°W.  All profiles retained have depth 
ranges from above 12 m to at least 120 m with at least 5 levels in the profile.  The data source is the 
National Oceanographic Data Center (NODC) World Ocean Database (WOD) (NODC 2009).  To 
evaluate ISOP in water shallower than 1000 m, a subset of 1202 profiles are used for this purpose. 

For the RIMPAC region validation, we have collected 3227 paired T and S profiles that have 
passed the same minimum set of requirements listed for the GOM region within the latitude and 
longitude limits of 18°N to 23°N and 161.5°W to 153.5°W.  The data source is the Navy’s MOODS 
profile archive updates that were provided for NRL in January 2011 and April 2012.  Most of the data 
are from 2009 through 2011 but some of the data date back to 2005.  

 
6.3. Validation Metrics 

Since a main focus of the ISOP system is to improve the representation of acoustically relevant 
features of ocean structure, key acoustic metrics for this analysis are Sonic Layer Depth (SLD; Helber et 
al. 2008), the Mixed Layer Depth (MLD; Kara et al. 2000) and Below Layer Gradient (BLG).  The BLG 
is the change in sound speed per 100 feet in units of m/s per 100 ft.  The software used for computing 
SLD and BLG is version controlled in the NRL’s software repository (R. W. Helber 2012). 

For completeness, we also validate the T, S, and Sound Speed (SSPD) profiles themselves.  The 
validation of SLD, MLD, and BLG, however, is different from the validation of T, S, and SSPD.  The 
difference is that there is one value for SLD, MLD, and BLG for each ocean profile.  This clearly is not 
the case for T, S, and SSPD, since there are values at every depth in the profile.  For this reason, the T, 
S, and SSPD difference (or misfit) of observation – synthetic at each depth is computed.  Then the 
RMSE and Skill Score (SS) are computed for each difference profile to give one value, either RMSE or 
SS for each profile match. 
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6.4. Validation Methods 
All comparisons of SLD, MLD, and BLG are done relative to the validation profile observations 

with the convention of observation – synthetic.  For example, in each 10° by 10° region or each of the 
sub-regions, the mean bias (MB) is given by 

 
1

1 n

i i
i

MB syn obs
n 

        (108) 

and the root mean square error (RMSE) is given by 
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where n is the number of profiles.  In cases where the MB of RMSE is computed for T, S, and SSPD for 
every profile over a depth range, the MB for the ith profiles is 
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and the RMSE is becomes 
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where a and b are the start and stop depth indexes in the profile interpolated to standard depths.  To 
provide global or regional estimates of MB and RMSE, the median of iMB  and iRMSE  are then 

computed.  These values, along with the error values of SLD, MLD, and BLG are then binned in either 
10° by 10° regions or the sub-regions in the GOM and RIMPAC.   

When RMSE  is computed at each depth, the standard error (STDE) is computed as 
2
RMSESTDE n        (112) 
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and n is the number of profiles.  This standard error estimate assumes that all estimates are independent.  
Since not all estimates are independent, STDE is an underestimate of error uncertainty.  Regardless, the 
STDE estimate gives an approximate estimate of the uncertainty of the error estimates themselves. 

Another way to consider the ISOP error levels is to compare ISOP with the GDEM climatology 
error levels using skill score (SS) (Murphy 1988).  This is done by comparing the mean square error 
(MSE) of the synthetic to the MSE of the GDEM climatology using the formula 
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In equations 108-111 and 114-116, isyn , iobs , and iGDEM  are any of the metric variables SLD, 

MLD, or BLG for the ith ISOP or MODAS synthetic, in situ observation, and GDEM climatology 
profile, respectively.  The isyn  represents any of the ISOP or MODAS configurations (Table 7) and the 

ith profile of each type is from a 10°by 10° region or one of the sub-regions.  Following these methods, 
the quality of the ISOP acoustic parameters are validated relative to MODAS synthetics, GDEM 
climatology, and in situ observations. 
 

6.5. Results: Test Case 1: Global Validation 
The purpose of Test Case 1 is to validate the global quality of ISOP synthetics against 

independent observation.  To present the global geographical error characteristics of the ISOP system, 
we first compute the SLD RMSE and MB error in 10° by 10° blocks.  In each 10° by 10° geographical 
ocean region with at least 5 in situ observations, we compute the mean bias (MB) as the mean misfit 
synthetic – observation.  The root mean square error (RMSE) is the root mean square of the misfit 
synthetic – observation.  The results for SLD for the IdealISOP  and OperISOP   cases are shown in Figure 
19 and Figure 20, respectively.  The vast majority of the global ocean has a RMSE error less than 40 m 
and a shallow bias less than 24 m for the OperISOP  case (Figure 20).  Synthetic ocean profiles and 
climatologies have a long standing shallow bias, which is represented in Figure 20 by negative mean 
bias since the MB convention is the synthetic minus the observation.  Given ideal inputs, IdealISOP  
(Figure 19) has a substantial improvement over the case with operational inputs (Figure 20). 

Next, ideal and operational RMSE and MB results (Figures 21 and 22) are shown for MLD 
using the same color bar as for SLD.  The MLD represents the ocean dynamical and turbulent response 
to air-sea interaction.  MLD tends to be shallower with less variance than the SLD resulting in smaller 
error levels. 

The results for BLG are shown in Figures 23 and 24.  The units are m/s per 100 ft.  The 
themocline structure along the equator is not well represented by climatologies.  The seasonal cycle at 
the equator is heavily modulated by atmospheric mesosclae wind forcing that drives equatorial trapped 
Kelvin and Rossby waves.  For this reason, the below layer gradient has larger error levels along the 
equator compared to the rest of the ocean. 

To demonstrate the global relative accuracy of each ISOP configuration relative to MODAS and 
GDEM, we take the median RMSE and MB for SLD, MLD, and BLG for all 10° by 10° regions (Table 
9).  For every parameter, the Ideal ISOP case had the best performance.  The next best performance is 
from ISOP with operation inputs. 

To further test the ocean dynamical representation of ISOP we also test the accuracy of the 
synthetic T and S over four depth ranges.  We compute the global median of MB of T, S, and SSPD for 
all 10° by 10° regions for each of the depth ranges 0 to 50 m, 50 to 100 m, 100 to 150 m, and 150 to 200 
m (Table 10).  Results indicate that the smallest errors are at the surface and largest errors occur in the 
upper portion of the thermocline, which occurs in the depth range of 50 to 100 m. 

We show geographical plots of the T, S, and SSPD misfit errors in Figures 25 through 30.  On 
the top panel (a) of each Figure we have the RMSE error over the upper 1000 m.   The lower panel (b) is 
the MB for the depth range 50 to 100.  These figures characterize the global error characteristics of 
ISOP for the ideal and operational configurations as labeled in each Figure. 

The RMSE and MB error levels provide an incomplete picture of the error characteristics of 
ISOP.  First, RMSE and MB error levels are elevated where the variance of SLD is large.  For example, 
in the southern ocean in the vicinity of the Antarctic circumpolar current, RMSE and MB errors are 
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large because the depth variability of SLD is large there.  Conversely, in the tropics where the SLD 
tends to be shallow, the errors are also shallow. 

Another way to consider the ISOP error levels is to compare ISOP with the GDEM climatology 
error levels using skill score (SS) (Murphy 1988).  This is done by comparing the mean square error 
(MSE) of the synthetic to the MSE of the GDEM climatology using the formula given by equation (110) 
described in section 6.4.  Figure 31 shows the skill score for Ideal ISOP relative to GDEM temperature 
and salinity over the upper 1000 m.  Warm colors indicate that ISOP has skill over climatology while 
grey indicates no improvement.  Cool colors in figure 31 indicate regions where ISOP was worse than 
GDEM, which rarely occurs.  The skill score for the operational case is in figure 32. 

To demonstrate the global relative accuracy of each configuration, we take the median RMSE of 
the upper 1000 m and SS for T, S, and SSPD of all 10° by 10° regions (Table 10d).  For every 
parameter, the Ideal ISOP case had the best performance except for salinity in the 0 to 50 m depth range.  
The next best performance is from ISOP with operation inputs. 

To gain an understanding of the geographical distribution of where ISOP performs better then 
MODAS we have plotted the difference in T and S RMSE over the upper 1000 m depth range in Figures 
33, 34, and 35. 

 
6.6. Results: Test Case 2: Layer 3 Validation 

Using the separate set of validation profiles that extend down to at least 1800 m, we evaluate the 
quality of the Layer 3 ISOP synthetics.  The total number of profiles that extend to at least 1800 m is 
52,480 from the year 2009 through 2001.  We find that ISOP deep synthetic values are accurate within 
the expected error levels.  The exception is two bad profiles, one in the south Mediterranean Sea and the 
other near Antarctica.  To place the error levels within the context of the existing operational systems. 
ISOP errors are compared with error levels of MODAS and GDEM.  The results suggest that while 
ISOP, MODAS, and GDEM are cool and fresh relative to more recent observations, data aliasing due to 
irregular sampling distribution could account for the bias. 

The global deep validation data set initially contained 52.480 profiles with paired observed 
temperature (T) and salinity (S) values from the near surface (<12 m depth) and extend to at least 1800 
m depth.  The data set covers the time period from January 2009 through January 2011 (Figure 36) and 
all the profiles are independent from those used to construct the ISOP database.  Of the original 52,480 
profile 52,288 profiles were used to perform the validation analysis.  The 192 profile (0.4%) that were 
dropped from the analysis either did not have a GOFS, MODAS, and GDEM profile pair, or the inputs 
for ISOP for those profiles did not fall within acceptable parameter ranges.  The geographical 
distribution of the observation profiles in 1/2 ° bins is shown in Figure 37. 

We evaluate the skill of operational ISOP ( OperISOP ) compared to operational MODAS (
operMODAS ) and GDEM  (see Table 7) in the depth range of Layer 3 in three ways.  First, histograms 

are computed of median bias in the depth range from 1000 to 1400 m.  Second, the median bias is 
plotted geographically also for the depth range from 1000 to 1400 m.  Finally, we computed the root 
mean square (RMS) error versus depth below 1000 m. 

For the median bias in the depth range from 1000 to 1400 m, both T and S values for each paired 
set observation and synthetic profiles from OperISOP , operMODAS , and GDEM are included in a 
histogram analysis shown in Figures 38 and 39.  The median is computed as the median bias over the 
1000 to 1400 m depth range from each profile pair.  These methods give a T and S bias number for each 
observation and synthetic profile pair.  All of the profile pairs are then included in the histogram for 
each synthetic type.  We find a cool and fresh bias for the synthetic profiles in this depth range.  Since 

OperISOP  has the largest number of profile in the low bias bins, OperISOP  therefore has the lowest bias 
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error in this depth range.  This can be seen more clearly in the next figures that show the geographical 
error of T and S bias. 

The 1000 to 1400 m T in OperISOP  tends to have a cool bias globally (Figure 40).  The bias is 
particularly large in the northeast Atlantic Ocean.  There is a slight warm bias in the southern Indian 
Ocean.  The 1000 to 1400 m T bias in operMODAS  and GDEM has a similar pattern but tends to be 
worse (Figures 41 and 42).  operMODAS  has a larger region of warm bias in the south Indian Ocean.  
All synthetics have a cool bias near the Antarctic Circumpolar Current region. 

A similar bias pattern is seen in the salinity values (Figure 43, 44 and 45).  Of particular interest 
is the larger fresh bias in the northeast Atlantic Ocean.  The source of this bias is under investigation. 

RMS errors with depth for temperature, salinity, and sound speed are shown in Figures 46, 47 
and 48, respectively. 

The slight increase in errors near 1200 m is due to a few very large outliers in two small isolated 
regions of the ocean.  One is in the southern part of the Mediterranean Sea (Figure 49) and the other is 
near Antarctica (Figure 50). 

 
6.7. Results: Gulf of Mexico Validation 

This section describes experiments to validate the ISOP synthetics in the Gulf of Mexico 
(GOM).  The observational data was made during 2010 and most was taken following the oil spill of the 
Deepwater Horizon drilling platform. 

This report details the performance of ISOP stand-alone synthetics in the GOM region relative to 
4001 in situ observation profiles from July 2008 through October 2011 (Figure 51).  The latitude and 
longitude coordinates of the region are 18°N to 32°N and 100°W to 77°W.   

The validation test cases for the stand-alone ISOP synthetics is described in Table 7.  The goal is 
to provide an ISOP synthetic test case for and ideal configuration and a case that is characteristic of and 
operational implementation of ISOP.  For comparison, MODAS synthetics are also provided, also 
designed to have the characteristics of an ideal and operational implementation of MODAS (Table 7). 

Results indicate substantial improvement of ISOP over MODAS in the GOM for T (Figure 52), 
S (Figure 53), and sound speed (Figure 54).  For each case, the standard error (equation 112) is plotted 
in dashed lines plus and minus on either side of the main error estimate.  Since some of the observations 
may not be completely independent, standard error is an under-estimate of error uncertainty.  Since the 
difference between each case are far from overlapping within the standard error estimates, Figures 52 
through 54 suggests that the improvement of ISOP over MODAS accuracy is likely statistically 
significant. 

Below 1000 m all synthetics have similar error levels.  Because ISOP is designed to improve the 
accuracy of the shape of synthetic profiles, we compare ISOP mixed layer depth (MLD) with the 
observations (Figure 55).  In general, ISOP has a shallow bias with MLD. 

To summarize the validation results for SLD, MLD, and BLG, Tables 11, 12 and 13 show the 
misfit error synthetic-observation for all test cases in Table 7.  Green shading indicates the smallest 
misfit error percentages.  ISOP performed better than MODAS in all cases except for BLG median % 
misfit.  The relative % misfit for SLD, MLD, and BLG between ISOP and MODAS and ISOP and 
GDEM is shown in Tables 14, 15, and 16.  We find that ISOP has smaller error levels for all cases 
accept the median difference for SLD. 
 

6.7.1. Profiles in Water Less Than 1000 m Deep 
To test the quality of the ISOP synthetics where the water depth is shallower than ISOP layer 2, 

we have taken a subset of 1202 GOM validation profiles that are in water less than 1000 m (Figure 56).  
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Figures 57 and 58 show the RMS misfit error for T and S versus depth, respectively.  For each case, the 
standard error is plotted in dashed lines plus or minus on either side of the main error estimate.  Results 
indicate that ISOP accuracy is nearly equal to climatology and MODAS in shallow water.  The 
magnitude of the error is also slightly larger in the upper 120 m.  This result indicates that shallow water 
is difficult to reproduce synthetically due to complications in satellite altimetry near the coast and other 
factors. 

 
6.8. Results: RIMPAC Validation 

This describes experiments to validate the ISOP synthetics surrounding Hawaii, a region known 
as the RIMPAC.  This region does not have a large sea surface height signal, and therefore does not 
have the type of dynamics that are easily accounted for in synthetic generation.  Regardless of this fact, 
ISOP synthetics are preforming as well as to be expected in this region.  Results show that ISOP 
performs slightly better than MODAS, which performs slightly better than GDEM climatology. 

This report details the performance of ISOP stand-alone synthetics in the RIMPAC region 
relative to 3,227 observation profiles from 2009 through April 2012.  Because, we did not have the 
Global Ocean Forecasting System (GOFS) for the entire time, there are only 814 profiles that were used 
in the validation (Figure 59).  The latitude and longitude coordinates of the region are 18°N to 23°N and 
161.5°W to 153.5°W.   

The validation test case for the operational stand-alone ISOP synthetics is described in Table 17.  
The goal is to provide an ISOP synthetic test case that is characteristic of and operational 
implementation of ISOP.  For comparison, MODAS synthetics are also provided, also designed to have 
the characteristics of an operational implementation of MODAS (Table 18). 

The results of the validation experiment suggest that ISOP synthetics are as accurate as can be 
expected.  The error values are slightly better than those for the Gulf of Mexico, for example.  ISOP is 
more accurate than MODAS for temperature (T; Figure 60), salinity (S; Figure 61) and sound speed 
(SSPD; Figure 62) at all depths from 10m to 500 m.  For each case, the standard error is plotted in 
dashed lines plus and minus on either side of the main error estimate.  Since the difference between each 
case are far from overlapping within the standard error estimates, Figures 60 through 62 suggests that 
the improvement of ISOP over MODAS accuracy is likely statistically significant. 

 
7. Summary and Conclusions 

The Navy’s global ocean forecasting system (GOFS) relies more heavily on space based 
observations of the ocean surface than any other in situ observation.  The reason for this is the relative 
abundance of surface observations compared to sub-surface observations, especially in near-real-time.  
For this reason, the ISOP system will provide an essential capability designed to project surface ocean 
information into the subsurface for data assimilation. 

The ISOP system relies on a large database of historically observed in situ ocean profile 
observations of paired temperature and salinity values.  These data are used to construct both T and S 
climatology and a six-mode EOF representation of the vertical structure error covariance.  Both the 
climatology and the error covariance include the vertical gradients of T and S.  The vertical gradients are 
a unique aspect of this system that is a departure from prior art on the subject.  Due to the importance of 
ocean vertical gradients for acoustic transmission, the U.S. Navy is highly interested in accurate vertical 
gradient prediction. 

This document details the methods for constructing the synthetics in addition to creating the 
ISOP databases of vertical structure eigenvalues and eigenvectors and the T and S climatology.  The 
equations are derived in detail with an appendix designed to help interpret the computer code 
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implementation of the equations.  The terms of the equations are labeled for reference to computer code 
that computes each term in the operational prototype system.   

The methods described in this document are identical to the methods used for creating ISOP 
synthetics within the Navy Coupled Ocean Data Assimilation (NCODA) system.  Validation of ISOP 
cycling with a models running NCODA is contained in a separate document titled “Validation Test 
Report for the Improved Synthetic Ocean Profile (ISOP) System, Part II: Synthetic Profile Assimilation 
in Navy Ocean Forecast Systems.” 

The validation experiments in this report suggest that ISOP has substantial skill improvement 
over MODAS.  In Figure 52, 53, 54, 60, 61, and 62 the standard errors of the misfit estimates 
themselves for each test case are shown.  Since the difference in error between ISOP and MODAS far 
exceeds this standard error limits, the improvement of ISOP over MODAS is very likely statistically 
significant.  The same statistical significance is likely throughout the validation analysis. 
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Appendix: Cost function System of Equations 
 
We must take the partial derivative of the cost function (13) with respect to the m EOF 

amplitudes a, with respect to the m vertical difference EOF amplitudes b, and with respect to the T̂   and 
Ŝ  at each of the N depth levels.  The cost function has ten terms, 

1 2 3 4 5 6 7 8 9 10J J J J J J J J J J J           
which are 

   
2

1 1
1

1

m
T T i

b b
i i

a
J x x B x x a a


 



       

   
2

1
2

1

m
T i

b g b
i i

b
J d d B d d






     

     2 2
,1

3
1

2m
T i fg i i fg

fg fg fg
i i

a a a a
J x x R x x F






 
      

     2 2
,1

4
1

2m
T i fg i i fg

fg g fg fg
i i

b b bb
J d d R d d G






 
      

 
2

2

1
5

1 1

ˆ
ˆ

m

i k ik iN N
i i k

i ii i

u a T
T T

J
u u




 

        
    
 


   

     
2

2
11 1

1 1
6

1 1

ˆ ˆˆ ˆ

m

i k ik i iN N
i i i k

i ii i

w b T TT T T
J

w w

  
 

 

         
    
      

 


   

 
2

2

1
7

1 1

ˆ
ˆ

m

i N k i Nk iN N
i i k

i ii N i N

u a S
S S

J
u u

 


  

        
    
 


   

     
2

2
1 1 11 1

1 1
8

1 11 1

ˆ ˆˆ ˆ
m

i N k i n k iN N
i i i k

i ii N i N

w b S SS S S
J

w w

     
 

    

          
    
      

 


   

 
2

2

1
9 2 2

ˆ
ˆ

N

MLD i i
MLD MLD i

SST SST

T QT
T T

J
 



       


 

   
2

2
,

1
10 2 2

ˆ ˆˆ
N

MLD b i i i i i i
MLD MLD i

h h

h T T dzh h
J

  

 


          


 



34 
 

and each of these terms can be operated on by each of the 2m+2N partial derivatives.  The 
minimized solution occurs when each of the 2m+2N partial derivative equations are each equal to zero.  
For example, the equation for the partial derivative of J with respect to ap is 

1 2 3 4 5 6 7 8 9 10

p p p p p p p p p p p

J J J J J J J J J J J

a a a a a a a a a a a
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.   (A1) 

Since there are m modes, the above expression represent m equations.  The m equations for bp are 
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The 2N equations for T and S are 
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and 
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.  (A4) 

When the 2m+2N equations (A1, A2, A3, and A4) are all equal to zero, the solution is obtained.  

Below are each of the ten cost function terms differentiated with respect to each ap, bp, q̂T  , or q̂S .  Many 
of the derivatives are zero because some of the terms do not depend on some of the EOF amplitudes or 

q̂T  , or q̂S .  Only the non-zero terms are shown.  To keep things straight, the index for the derivative 
mode is p while the cost function term index for mode is k.  The index for the derivative depth level is q, 
while the index for the cost function term is i.  That way we can keep track of the indexes, which is 
important. 

 
Term J1: 

   
2

1 1
1

1

m
T T i

b b
i i

a
J x x B x x a a


 



     
 

1 2 p

p p

aJ

a 





 
Term J2: 

   
2

1
2

1

m
T i

b g b
i i

b
J d d B d d






   
 

2 2 p

p p

bJ

b 





 
 

  



35 
 

Term J3: 
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Now for the J5 term with respect to T.  Start with 
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      
  

 
 


  

   
1

6
1

1 1

ˆ ˆ2
N m

ip

k ik ip i i
i kp i

J
b T T

b w


 




 

        
 

 

   
1 1

6
1

1 1 1

ˆ ˆ2 2
m N N

ip

k ik ip i i
k i ip i

J
b T T

b w


 

 


  

         
    

Split out the terms so that all T̂  are in separate terms.  That will be important for when we 
construct the matrix equation for solving. 

 
1 1 1

6
1

1 1 1 1

ˆ ˆ2 2 2
m N N N

ip ip

k ik ip i i
k i i ip i i

J
b T T

b w w

 
 

  


   

         
     
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Now with respect to T. 

       1 11
6 1 1

1

ˆ ˆ ˆ ˆ

2
ˆ ˆ

m m

i k ik i i i k ik i iN
k k

iq i q i

w b T T w b T T
J

T w T w

  
 



                
     

   
   

 
  

The only non-zero terms are those when i=q and i+1=q. 

       

       

1 1
6 1 1

1 1 1 1 1 1
1 1

1 1

ˆ ˆ ˆ ˆ

2
ˆ ˆ

ˆ ˆ ˆ ˆ

2
ˆ

m m

q k qk q q q k qk q q
k k

q q q q

m m

q k q k q q q k q k q q
k k

q q q

w b T T w b T T
J

T w T w

w b T T w b T T

w T w

 

 

 
 

     
 

 

                
     

   
   

               
   

   
   

 

 
 

       1 1 1 1
6 1 1

1 1

ˆ ˆ ˆ ˆ
1 1

2 2
ˆ

m m

q k qk q q q k q k q q
k k

q q q q q

w b T T w b T T
J

T w w w w

    
 

 

                 
    

   
   

 
 

       1 1 1 1
6 1 1

2 2
1

ˆ ˆ ˆ ˆ

2 2
ˆ

m m

q k qk q q q k q k q q
k k

q q q

w b T T w b T T
J

T w w

    
 



                 
    

   
   

 
 

       1 16
12 2

1 11 1

ˆ ˆ ˆ ˆ2 2
2 2

ˆ

m m
q q q q

k qk k q k
k kq q q q q

T T T TJ
b b

T w w w w
  


  

    
   
  

 
   1 116

2 2
1 1 1

ˆ ˆ ˆ ˆ
2 2 2

ˆ

m
q q q qqk q k

k
kq q q q q

T T T TJ
b

T w w w w

   

  

     
       
  

1 1 16
2 2 2 2

1 1 1 1

ˆ ˆ ˆ ˆ
2 2 2 2 2

ˆ

m
qk q k q q q q

k
kq q q q q q q

T T T TJ
b

T w w w w w w

    

   

     
         


 
Make is to that all T̂   are in terms by themselves. That will be important for when we construct 

the matrix equation for solving. 

1 1 16
2 2 2 2

1 1 1 1

ˆ ˆ1 1ˆ2 2 2 2
ˆ

m
qk q k q q

k q
kq q q q q q q

T TJ
b T

T w w w w w w

    

   

                    
  
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Term J7: 

 
2

2

1
7

1 1

ˆ
ˆ

m

i N k i Nk iN N
i i k

i ii N i N

u a S
S S

J
u u

 


  

        
    
 


   

 
2

7 1

1

ˆ
m

i N k i Nk iN
k

ip p i N

u a S
J

a a u

 


 

     
   

 
 


  

   
7 1 1

1

ˆ ˆ

2

m m

i N k i Nk i i N k i Nk iN
k k

ip i N p i N

u a S u a S
J

a u a u

    
 

  

            
    

   
   

 
  

 
7 1

1

ˆ

2

m

i N k i Nk iN
k

i Np
ip i N

u a S
J

a u




 



 

    
  

 
 




 

 7

1 1

ˆ
2

N m
i

k i Nk i Np i Np
i kp i N

J S
a

a u
    

  

 
    
   

 7

1 1 1

ˆ
2 2

N m N
i

k i Nk i Np i Np
i k ip i N

J S
a

a u
    

   

   
        
  

 
Re order the summations so that the summation over the m modes is on the outside.  That will be 

important for when we construct the matrix equation for solving. 

 7

1 1 1

ˆ
2 2

m N N
i

k i Nk i Np i Np
k i ip i N

J S
a

a u
    

   

 
     
  
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Now with respect to S. 

   
7 1 1

1

ˆ ˆ

2
ˆ ˆ

m m

i N k i Nk i i N k i Nk iN
k k

i i N i Nq q

u a S u a S
J

u uS S

    
 

  

            
     

   
   

 
  

 
7 1

ˆ
1

2
ˆ

m

q N k q Nk q
k

q N q Nq

u a S
J

u uS

 


 

    
  

 
 


 

 
7 1

2

ˆ

2
ˆ

m

q N k q Nk q
k

q Nq

u a S
J

uS

 




     
  

 
 


 

 
7 1

2

ˆ
2 2

ˆ

m

k q Nk
qk

q N q Nq

a
SJ

u uS

 


 

 
      

  
 
 


 

7
2

1

ˆ
2 2

ˆ

m
q Nk q

k
k q N q Nq

SJ
a

u uS

 

  

  
      

  
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Term J8: 

     
2

2
1 1 11 1

1 1
8

1 11 1

ˆ ˆˆ ˆ
m

i N k i N k i iN N
i i i k

i ii N i N

w b S SS S S
J

w w

     
 

    

          
    
      

 


   

   
2

1 1 11
8 1

1 1

ˆ ˆ
m

i N k i N k i iN
k

ip p i N

w b S S
J

b b w

    


  

       
   

 
 


  

       1 1 1 1 1 11
8 1 1

1 1 1

ˆ ˆ ˆ ˆ

2

m m

i N k i N k i i i N k i N k i iN
k k

ip i N p i N

w b S S w b S S
J

b w b w

          
 

    

                
    

   
   

 
  

   1 1 11
8 1

1
1 1

ˆ ˆ

2

m

i N k i N k i iN
k

i N p
ip i N

w b S S
J

b w




    


 
  

      
  

 
 


  

   1 1 11 1
1 18 1

1 11 1

ˆ ˆ
2 2

m

i N k i N k i N pN N
i N p i ik

i ip i N i N

w b S SJ

b w w

        
  

    

 
        
      

 


   

 

   1 1
1 18

1 1
1 1 1 1

ˆ ˆ
2 2
N m N

i N p i i

k i N k i N p
i k ip i N

S SJ
b

b w


 

 
  

   
    

              
    

   1 1
1 18

1 1
1 1 1 1

ˆ ˆ
2 2

m N N
i N p i i

k i N k i N p
k i ip i N

S SJ
b

b w


 

 
  

   
    

              
    

 
1 1 1

1 1 18
1 1

1 1 1 11 1

ˆ ˆ
2 2 2

m N N N
i N p i i N p i

k i N k i N p
k i i ip i N i N

S SJ
b

b w w

 
 

  
    

   
      

                      
     
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Now with respect to S. 

   
2

1 1 11
8 1

1 1

ˆ ˆ

ˆ ˆ

m

i N k i N k i iN
k

i i Nq q

w b S S
J

wS S

    


  

       
    

 
 


  

       1 1 1 1 1 11
8 1 1

1 1 1

ˆ ˆ ˆ ˆ

2
ˆ ˆ

m m

i N k i N k i i i N k i N k i iN
k k

i i N i Nq q

w b S S w b S S
J

w wS S

          
 

    

                
     

   
   

 
  

The only terms that have a non-zero contribution are when i=q and i=q-1. 

       

     

1 1 1 1 1 1
8 1 1

1 1

1 1 1 1 1 1 1 1 1
1

1 1

ˆ ˆ ˆ ˆ

2
ˆ ˆ

ˆ ˆ

2
ˆ

m m

q N k q N k q q q N k q N k q q
k k

q N q Nq q

m

q N k q N k q q q N k q N k
k k

q N q

w b S S w b S S
J

w wS S

w b S S w b

w S

 

 

         
 

   

            


  

                
     

   
   

      
 

 
 

 

  1
1

1 1

ˆ ˆ
m

q q

q N

S S

w




  

    
 
 
 
 


 

       1 1 1 1 1 1 1 1
8 1 1

1 1 1 1 1 1

ˆ ˆ ˆ ˆ
1 1

2 2
ˆ

m m

q N k q N k q q q N k q N k q q
k k

q N q N q N q Nq

w b S S w b S S
J

w w w wS

            
 

         

                 
    

   
   

 

       1 1 1 1 1 1 1 1
8 1 1

2 2
1 1 1

ˆ ˆ ˆ ˆ

2 2
ˆ

m m

q N k q N k q q q N k q N k q q
k k

q N q Nq

w b S S w b S S
J

w wS

            
 

    

                 
    

   
   

 
 

       1 1 1
1 18 1 1

2 2
1 1 1 1 1 1

ˆ ˆ ˆ ˆ
2 2

ˆ

m m

k q N k k q N k
q q q qk k

q N q N q N q Nq

b bS S S SJ

w w w wS

     
  

         

   
              

    
   
   

 
 

1 1 1 1 18
2 2 2 2

1 1 1 1 1 1 1 1 1 1

ˆ ˆ ˆ ˆ
2 2 2 2 2

ˆ

m
q N k q N k q q q q

k
k q N q N q N q N q N q Nq

S S S SJ
b

w w w w w wS

       

               

     
         
  

1 1 1 1 18
2 2 2 2

1 1 1 1 1 1 1 1 1 1

ˆ ˆ1 1ˆ2 2 2 2
ˆ

m
q N k q N k q q

k q
k q N q N q N q N q N q Nq

S SJ
b S

w w w w w wS

       

               

                    
  
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Term J9: 

 
2

2

1
9 2 2

ˆ
ˆ

N

SST i i
SST MLD i

SST SST

T QT
T T

J
 



       


 

2

19
2

ˆ

ˆ ˆ

N

SST i i
i

q q SST

T QT
J

T T 


      
  


 

9
2

1 1

2 ˆ ˆ
ˆ ˆ

N N

SST i i SST i i
i iq SST q

J
T QT T QT

T T  

                 
    

9
2

1

2 ˆ
ˆ

N

SST i i q
iq SST

J
T QT Q

T  

        
  

9
2 2

1

ˆ2 2
ˆ

N
q SST q

i i
iq SST SST

Q T QJ
QT

T   

   
 


 

 
Term J10: 

   
2

2
,

1
10 2 2

ˆˆˆ
N

MLD b i i i i i i
MLD MLD i

h h

h T S dzh h
J

  

 


          


 

 
2

,
110

2

ˆˆ

ˆ ˆ

N

MLD b i i i i i i
i

q q h

h T S dz
J

T T

  




          
  



 

   10
, ,2

1 1

2 ˆ ˆˆ ˆ
ˆ ˆ

N N

MLD b i i i i i i MLD b i i i i i i
i iq h q

J
h T S dz h T S dz

T T
     

  

                           
    

 10
,2

1

2 ˆˆ
ˆ

N

MLD b i i i i i i q q
iq h

J
h T S dz dz

T
   

 

           
  

10
,2 2 2

1 1 1

2 22 ˆˆ
ˆ

N N N
q q q q

MLD b i i q q i i i i i i
i i iq h h h

dz dzJ
h dz dz Tdz S dz

T

 
   

    

          
    
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Now with respect to S 

 
2

,
110

2

ˆˆ

ˆ ˆ

N

MLD b i i i i i i
i

hq q

h T S dz
J

S S

  




          
  



 

   10
, ,2

1 1

2 ˆ ˆˆ ˆ
ˆ ˆ

N N

MLD b i i i i i i MLD b i i i i i i
i ihq q

J
h T S dz h T S dz

S S
     

  

                           
    

10
,2 2 2

1 1 1

2 22 ˆˆ
ˆ

N N N
q q q q

MLD b i i q q i i i i i i
i i ih h hq

dz dzJ
h dz dz Tdz S dz

S

 
   

    

          
  

 
 

The terms containing temperature or salinity observations (T
~or S 

~
) are present for each standard 

depth only when an observation is available at that depth. 
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To keep track of all the terms, we list all the derivative terms in their final form here: 

1 2 p

p p

aJ

a 





 2 2 p

p p

bJ

b 





 ,3 2 2p fg p

fg fg

p p p

a aJ
F F

a  


 


 
,4 2 2p fg p

fg fg

p p p

b bJ
G G

b  


 


 

 5

1 1 1

ˆ
2 2

m N N

k ik ip ip
k i ip i

J T
a

a u
  

  

  
    
  

 

 5
2

1

ˆ2
2

ˆ

m
q

k qk
kq q q

TJ
a

T u u





  
 

 

 
1 1 1

6
1

1 1 1 1

ˆ ˆ2 2 2
m N N N

ip ip

k ik ip i i
k i i ip i i

J
b T T

b w w

 
 

  


   

         
   

 

1 1 16
2 2 2 2

1 1 1 1

ˆ ˆ1 1ˆ2 2 2 2
ˆ

m
qk q k q q

k q
kq q q q q q q

T TJ
b T

T w w w w w w

    

   

                    


 

 7

1 1 1

ˆ
2 2

m N N
i

k i Nk i Np i Np
k i ip i N

J S
a

a u
    

   

 
     
  

 

7
2

1

ˆ
2 2

ˆ

m
q Nk q

k
k q N q Nq

SJ
a

u uS

 

  

  
      


 

 
1 1 1

1 1 18
1 1

1 1 1 11 1

ˆ ˆ
2 2 2

m N N N
i N p i i N p i

k i N k i N p
k i i ip i N i N

S SJ
b

b w w

 
 

  
    

   
      

                      
   

 

1 1 1 1 18
2 2 2 2

1 1 1 1 1 1 1 1 1 1

ˆ ˆ1 1ˆ2 2 2 2
ˆ

m
q N k q N k q q

k q
k q N q N q N q N q N q Nq

S SJ
b S

w w w w w wS

       

               

                    


 

9
2 2

1

ˆ2 2
ˆ

N
q SST q

i i
iq SST SST

Q T QJ
QT

T   

   
 



 

10
,2 2 2

1 1 1

2 22 ˆˆ
ˆ

N N N
q q q q

MLD b i i q q i i i i i i
i i iq h h h

dz dzJ
h dz dz Tdz S dz

T

 
   

    

          
  

 

10
,2 2 2

1 1 1

2 22 ˆˆ
ˆ

N N N
q q q q

MLD b i i q q i i i i i i
i i ih h hq

dz dzJ
h dz dz Tdz S dz

S

 
   

    

          
  
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Put it all together: 
Now we need to put those all together to form the 2m+2N equation.  The m equations for T and 

S EOF amplitudes are: 

 

 

,

1 1

1 1 1 1

2 2 2 2

ˆˆ
2 2 2

m N
p p fg p

fg fg k ik ip
k ip p p p

N m N N
i

ip k i Nk i Np i Np
i k i ii i N

a a aJ
F F a

a

ST
a

u u

 
  

   

 

  
    

  
       

 
    

 

 

     

The m equations for the T and S difference EOF amplitudes are: 

 

 

1 1
,

1
1 1 1 1

1 1
1 1 1

1 1
1 1 1 11 1

ˆ ˆ2 2 2 2 2 2

ˆ ˆ
2 2 2

m N N N
p p fg p ip ip

fg fg k ik ip i i
k i i ip p p p i i

m N N N
i N p i i N p i

k i N k i N p
k i i ii N i N

b b bJ
G G b T T

b w w

S S
b

w w

 
 

  

 
 

 


   

  
    

   
      

            

     
               

   

  
1

  

The N equations for the T analysis derivatives are: 

  1 1 1

2 2 2 2 2
1 1 1 1 1

,2 2 2 2
1 1

ˆ ˆ ˆ2 1 1ˆ2 2 2 2 2
ˆ

22ˆ ˆ2 2

m m
q qk q k q q

k qk k q
k kq q q q q q q q q

N N
q SST q q q

i i MLD b i i q q i i i
i iSST SST h h

T T TJ
a b T

T u u w w w w w w

Q T Q dz
QT h dz dz Tdz

 



  

   

  

    

 

                        
        

 

 

 



2

1 1

2
ˆ

N N
q q

i i i
i ih

dz
S dz




 

   

The N equations for the S analysis derivatives are: 

1 1 1 1

2 2 2 2
1 1 1 1 1 1 1 1 1

1

,2 2
11 1

ˆ ˆ 1 1ˆ2 2 2 2 2
ˆ

ˆ 22
2

m m
q Nk q q N k q N k q

k k q
k kq N q N q N q N q N q N q Nq

N
q q q

MLD b i i q q
iq N h

S SJ
a b S

u u w w w w wS

S dz
h dz dz

w

  


 

 

      

              



  

                              
      

 

 


2 2

1 1

2
ˆˆ

N N
q q

i i i i i i
i ih h

dz
Tdz S dz


 

 

  
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Put in form Dg=e 

Set to zero and put in the Da=e form 

 

 

1 1 1

,

1 1 1

ˆ

ˆ

m N N
p p

fg k ik ip ip
k i ip p i

m N N
fg pi

k i Nk i Np i Np fg
k i i i N p

a a T
F a

u

aS
a F

u

  
 

  


  

  
   

     
 

 
  

 

  

  

    
1 1 1 1

,

1 1

ˆˆ

m N m N

k ik ip k i Nk i Np
k i k i

N N
p p fg pi i

ip i Np fg fg
i ii i N p p p

a a

a a aT S
F F

u u

   

 
  

 
   


  

      
   

   
      

   

   

 
 

Next m equations: 

 

 

1 1

1
1 1 1 1

1 1 1
1 1 1 ,

1 1
1 1 1 11 1

ˆ ˆ2 2 2 2 2

ˆ ˆ
2 2 2 2

m N N N
p p ip ip

fg k ik ip i i
k i i ip p i i

m N N N
i N p i i N p i fg p

k i N k i N p fg
k i i ii N i N p

b b
G b T T

w w

S S b
b G

w w

 
 

 

 
 



 


   

  
    

   
      

       
 

     
                

   

   
 

 

 

1 1

1
1 1 1 1

1 1 1
1 1 1 ,

1 1
1 1 1 11 1

ˆ ˆ

ˆ ˆ

m N N N
p p ip ip

fg k ik ip i i
k i i ip p i i

m N N N
i N p i i N p i fg p

k i N k i N p fg
k i i ii N i N p

b b
G b T T

w w

S S b
b G

w w

 
 

 

 
 



 


   

  
    

   
      

       
 

     
                

   

   
 

   
1

1 1
1 1 1 1

1 1 1 1
1 1 1 ,

1
1 1 1 11 1

ˆ ˆ
ˆ ˆ

m N m N
p p

k ik ip k i N k i N p fg
k i k i p p

N N N N
ip ip i N p i i N p i fg p

i i fg
i i i ii i i N i N p

b b
b b G

S S b
T T G

w w w w

   
 

   




   
   

   
    


      

         
   

    
           

   

   

   
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Next N equations: 

  1 1 1

2 2 2 2 2
1 1 1 1 1

,2 2 2 2 2
1 1 1 1

ˆ ˆ ˆ1 1 1ˆ

1ˆˆ ˆ

m m
q qk q k q q

k qk k q
k kq q qq q q q q

N N N N
q q q q q SST q

i i i i i i i i MLD b i i
i i i ih h SST SST h

T T T
a b T

u w wu w w w w

dz dz Q T Q
Tdz S dz QT h dz

 


 
  

    

  

    

   

    
            

   


       

 

  



q qdz 

 
 


 

  1 1 1

2 2 2 2 2
1 1 1 1 1

,2 2 2 2 2
1 1 1 1

ˆ ˆ ˆ1 1 1ˆ

1ˆˆ ˆ

m m
qk q k q q q

k qk k q
k kq q q q q q q q

N N N N
q q q q q q SST

i i i i i i i i MLD b i i
i i i iSST h h SST h

T T T
a b T

u w w u w w w w

Q dz dz Q T
QT Tdz S dz h dz

 


 
  

    

  

    

   

     
             

   


       

 

  



q qdz 

 
 


 

 

Final N equations 

1 1 1 1

2 2 2 2
1 1 1 1 1 1 1 1 1

1

2 2 2
1 11 1

ˆ ˆ 1 1ˆ2 2 2 2 2

ˆ 2 2
ˆˆ2

m m
q Nk q q N k q N k q

k k q
k kq N q N q N q N q N q N q N

N N
q q q q q

i i i i i i
i iq N h h

S S
a b S

u u w w w w w

S dz dz
Tdz S dz

w

  

 
 

 

      

              



   

      
                

     


     

 

  ,2
1

2 N

MLD b i i q q
ih

h dz dz 
 

  
 


 

1 1 1 1

2 2 2 2
1 1 1 1 1 1 1 1 1

1

2 2 2 2
1 11 1

ˆ ˆ 1 1ˆ

ˆ 1ˆˆ

m m
q Nk q N k q N k q q

k k q
k kq N q N q N q N q N q N q N

N N
q q q q q

i i i i i i ML
i iq N h h h

S S
a b S

u w w u w w w

S dz dz
Tdz S dz h

w

  

 
 

  

      

              



   

      
                

     


     

 

  
,

1

N

D b i i q q
i

dz dz 


 
 

 
  
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The equations used to code the minimization: 
 

   
1 1 1 1

,

1 1

ˆˆ

m N m N

k ik ip k i Nk i Np
k i k i

N N
p p fg pi i

ip i Np fg fg
i ii i N p p p

a a

a a aT S
F F

u u

   

 
  

 
   


  

      
   

   
      

   

   

 
      (A1) 

 

   
1

1 1
1 1 1 1

1 1 1 1
1 1 1 ,

1
1 1 1 11 1

ˆ ˆ
ˆ ˆ

m N m N
p p

k ik ip k i N k i N p fg
k i k i p p

N N N N
ip ip i N p i i N p i fg p

i i fg
i i i ii i i N i N p

b b
b b G

S S b
T T G

w w w w

   
 

   




   
   

   
    


      

         
   

    
           

   

   

   
   (A2) 

 

  1 1 1

2 2 2 2 2
1 1 1 1 1

,2 2 2 2 2
1 1 1 1

ˆ ˆ ˆ1 1 1ˆ

1ˆˆ ˆ

m m
qk q k q q q

k qk k q
k kq q q q q q q q

N N N N
q q q q q q SST

i i i i i i i i MLD b i i
i i i iSST h h SST h

T T T
a b T

u w w u w w w w

Q dz dz Q T
QT Tdz S dz h dz

 


 
  

    

  

    

   

     
             

   


       

 

  



q qdz 

 
 


(A3) 

 

1 1 1 1

2 2 2 2
1 1 1 1 1 1 1 1 1

1

2 2 2 2
1 11 1

ˆ ˆ 1 1ˆ

ˆ 1ˆˆ

m m
q Nk q N k q N k q q

k k q
k kq N q N q N q N q N q N q N

N N
q q q q q

i i i i i i ML
i iq N h h h

S S
a b S

u w w u w w w

S dz dz
Tdz S dz h

w

  

 
 

  

      

              



   

      
                

     


     

 

  
,

1

N

D b i i q q
i

dz dz 


  
 


(A4)

 

 
  



51 
 

These equations (A1, A2, A3, and A4) represent the 2m+2N equations that make up the system 
of equations that are solved using the “Numerical Recipes” (1986) LUDCMP and LUBKSB functions 
for performing the LU decomposition.  The equations need to be put in the form 

 D g e       (A5) 
and are solved with calls to the functions like this: 
call LUDCMP(D,N,NP,INDX,S) 
call LUBKSB(D,N,NP,INDX,e) 
At the start D and e are from the corresponding variables in equation A5.  After the calls are 

made the solution g is returned in e. 
 
For the case of ISOP, the order of the terms is defined by  

1 2 1 2 1 2 1 2
ˆ ˆ ˆˆ ˆ ˆ, , , , , , , , , , , , , ,T

m m N Na a a b b b T T T S S S        g     . 

Part of the solution is the EOF amplitudes.  These amplitudes can be used to reconstruct the EOF 
representation of the synthetic.  The right-hand-side of equation A5, e, is then 

,1 1

,

,1 1

,

1
, 1 12 2

1

,2 2
1

, 1 12
1

,2
1

1

1

1

1

fg fg

fg fg m m

fg fg

fg fg m m

N
SST

MLD b i i
iSST h

N
N SST

MLD b i i N N
iSST h

N

MLD b i i
ih

N

MLD b i i
ih

F a

F a

G b

G b

Q T
h dz dz

Q T
h dz dz

h dz dz

h dz








 
 

 
 

 













  
  

 

    
 

   
 


 











e





 


 






N Ndz

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
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For constructing the matrix A, let us start with A1 for p=1: 

   1 1
1 1 1 1

,11 1
1 1

1 1 1 1 1

ˆˆ

m N m N

k ik i k i Nk i N
k i k i

N N
fgi i

i i N fg fg
i ii i N

a a

aT S a a
F F

u u

   

 
  

 
   


  

      
   

   
       

   

   

 
 

This is the equation for the first row of the matrix. 

           1 1 1 1 2 1 2 1 1 1
1 1 1 1 1 11 1

1 1
11 1 1 1 1

1 1

1 1
, , , ,

ˆ ˆˆ ˆ
, , , , ,

N N N N N N

fg i i i N i N i i i N i N im i i Nm i N
i i i i i i

N N
N N N N

N N N N

F

T T S S

u u u u

           
 

   

     
     

 
 

    

   

     

 
 

This is a lengthy process but I am unsure if it will help much.  Instead, I’m going to label each 
term of equations A1, A2, A3, and A4.  Then we can match each term up with the computer code. 
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The equations used to code the minimization with labels: 
 

   



1.1 1.2

1 1 1 1

,

1 1

1.51.3 1.4 1.6 1. .1

ˆˆ

m N m N

k ik ip k i Nk i Np
k i k i

N N
p p fg pi i

ip i Np fg fg
i ii i N p p p

r

a a

a a aT S
F F

u u

   

 
  

 
   


  

   
   

   
   

      
   

   

 



  

      (A1) 

 

   
2.1 2.2 2.42.3

1

1 1
1 1 1 1

1 1 1
1 1

1
1 1 1 1

2.5 2.6 2.7

ˆ
ˆ ˆ

m N m N
p p

k ik ip k i N k i N p fg
k i k i p p

N N N
ip ip i N p i

i i
i i ii i i N

b b
b b G

S
T T

w w w

   
 

  



   
   

  
  


    

   
     

   

 
      

 

   

  

 



1
1 ,

1 1

2. .12.8

ˆN
i N p i fg p

fg
i i N p

r

S b
G

w





 

  

 
   

 




   (A2) 

 

 
3.2 3.5 3.63.3 3.43.1

1 1 1

2 2 2 2 2
1 1 1 1 1

2 2
1 1

3.83.7

ˆ ˆ ˆ1 1 1ˆ

ˆ ˆ

m m
qk q k q q q

k qk k q
k kq q q q q q q q

N N
q q q
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These terms are matched up with the computer code in isop_syn_compute.f for solving these 

equations.  The comments in isop_syn_compute.f match the labels of the terms in A1, A2, A3, and A4.  
In the computer code the eigenvectors are split up into variables for the T-vectors and a separate set for 
the S-vectors.  In the equation above, the T-eigenvectors are listed 1 to N and the S-eigenvectors are 
listed N+1 to 2N. 
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Tables 
Table 1. Instrument Description 
The description of the measurement instrument for each instrument type number. 
Instrument Type Number Description of Instrument Type 
 1  Message data (regardless of instrument) 
 4  SEABIRD CTD Time Series 
 5  Air-deployed CTD (AXCTD) 
19  Submarine deployed CTD 
25  Hydrocast: bottles and reversing thermometers 
30  Unknown electronic salinity, temp., depth instruments 
31  Salinity, temperature and depth probe (STD) 
32  Low-resolution STD from NODC 
  Conductivity, temperature, depth probe (CTD) 
  CTD time series (YO-YO) 
33  Sound velocity, salinity, temp, and depth (SVSTD) 
35  Sippican XCTD 
38  Seabird CTD SBE-19 (Seacat profiler) 
41  Seabird CTD SBE-911 (deep ocean) 
42  Seabird CTD SBE-25 
43  Falmouth CTD 
51  Argo/Palace floats 
62  tesac RTDHS message data 
64  Palace/Apex floats RTDHS message data 
65  Glider RTDHS message data 
71  Undulating ocean recorder (UOR) 
73  Unknown instrument 
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Table 2. Number of Observations 
The number of profiles of each instrument type before and after each step in removal.  The "Instrument 
Type Number" refers to the description of each type of instrument in Table 1.    "Original Number" is 
the number of temperature and salinity profiles of raw unedited data.  The third column, "Number 
Removed",  is the number of  profiles removed either because they were removed during manual quality 
control, because the number of observation depths is less than 2, and the fourth column lists the number 
of  profiles remaining after the removal.  The fifth column list the number of  profiles removed because 
the bottom bathymetry depth was greater than or equal to 400 m, but the greatest depth of the profiles 
was less than 200 m.  The sixth column lists the final number of temperature/salinity profiles remaining 
in the final profile data used in the construction of ISOP.  The totals from columns two through six are 
listed in the bottom row. 

Instrument 
Type Num. 

Original 
Number 

Number 
Removed

Number 
Remaining

Number 
Removed

Final 
Number 

 1 682052 -52513 629539 -85212 38623 
 4 3130 -4 3126 0 3126 
 5 83 -9 74 0 74 
19 38 -1 37 0 37 
25 1708992 -437824 1271168 -41393 1173847 
30 34128 -3056 31072 -2897 28076 
31 13274 -2122 11152 -183 10254 
32 656 -181 475 -4 469 
33 494042 -70821 423221 -12725 403331 
35 1289 -80 1209 -93 1116 
36 7737 -1348 6389 -207 6182 
37 1962 -1311 651 -3 592 
38 5392 -377 5015 -50 4965 
41 7388 -139 7249 -41 7208 
42 128 -1 127 -1 126 
43 1138 -108 1030 -17 1013 
51 290107 -55095 235012 -2012 215169 
62 9685 -1397 8288 -90 6477 
64 81940 -30468 51472 -478 41695 
65 8443 -79 8364 -623 7741 
71 21225 -1083 20142 -5448 14573 
73 133667 -10399 123268 -20628 4386 
Total 3506496 -668416 2838080 -172105 1969081 
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Table 3. Standard Depths 
The 78 standard depths listed by depth ranges with the same level spacing. 
every 2 m from 0 m to 10 m 0, 2, 4, 6, 8, 10 
every 5 m from 10 m to 100 m 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 

70, 75, 80, 85, 90, 95, 100 
every 10 m from 100 m to 200 m 110, 120, 130, 140, 150, 160, 170, 180, 

190, 200 
every 20 m from 200 m to 300 m 220, 240, 260, 280, 300 
every 50 m from 300 m to 400 m 350, 400 
every 100 m from 400 m to 1600 m 500, 600, 700, 800, 900, 1000, 1100, 1200, 

1300, 1400, 1500, 1600 
every 200 m from 1600 m to 6600 m 1800, 2000, 2200, 2400, 2600, 2800, 3000, 

3200, 3400, 3600, 3800, 4000, 4200, 4400, 
4600, 4800, 5000, 5200, 5400, 5600, 5800, 
6000, 6200, 6400, 6600 
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Table 4 ISOP Inputs 
Name Label Description Source 
Sea surface temperature SST Observations or estimates 

of the sea surface 
temperature 

Satellite observations, OI 
SST products, model 
forecasts 

Sea surface temperature 
uncertainty 

SST_err The uncertainty estimate 
for the input SST 

Depending on source, 
observation error estimate, 
OI or model uncertainty 

Sea surface height 
anomaly 

SSHA Sea surface height 
difference from the 
annual mean. 

Satellite Sea surface height 
difference from the record 
length mean, steric height 
difference from the annual 
mean steric heght* 

Sea surface height 
anomaly uncertainty 

SSHA_err The uncertainty estimate 
of SSHA 

Depending on source, 
derived from observation 
error estimate 

Mixed layer depth MLD Estimated depth of the 
mixed layer 

Model forecast, climatology 
estiamte 

First-
guess 
estimate, 
subsurface 
profiles 

Temperature  T_fg Subsurface temperature 
profile 

Model forecast, climatology 

Temperature 
uncertainty 

T_fg_err Uncertainty of 
Subsurface temperature 
profile 

Model uncertainty, 
climatological standard 
deviation 

Salinity S_fg Subsurface salinity 
profile 

Model forecast, climatology 

Salinity 
uncertainty 

S_fg_err Uncertainty of 
Subsurface salinity 
profile 

Model uncertainty, 
climatological standard 
deviation 

* Sea surface height estimates for ISOP have representation error associated with them because it is not 
possible to remotely measure steric height referenced to 1000 m.  Correction factors are applied in 
attempt to reduce representation errors. 

 
Table 5. ISOP Output 
Name Label Description 
Temperature profile T Synthetic temperature profile estimate 
Temperature profile 
uncertainty 

T_err Synthetic temperature profile uncertainty 
estimate 

Salinity profile S Synthetic salinity profile estimate 
Salinity profile uncertainty S_err Synthetic salinity profile uncertainty 

estimate 
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Table 6. List of Cost Function Symbols 
variable/symbol Description 
x Analysis vector of the temperature and salinity solution being sought 
xcl Climatology temperature and salinity vector 
xfg First-guess (model forecast) temperature and salinity vector 
d Analysis vector of the difference of adjacent depth levels 
dcl Climatology temperature and salinity difference of adjacent depth levels vector 
dfg First guess temperature and salinity difference of adjacent depth levels vector 
B Climatological error covariance matrix 
Bg Climatological vertical difference error covariance matrix 
R First-guess error covariance matrix 
Rg Vertical difference first-guess error covariance matrix 
()T Matrix transpose 
()-1 Matrix inverse 
N Number of depth levels in analysis profile 
m Number of EOF modes retained (prototype m=6) 

iT  m-mode eigenfunction derived temperature at the depth level i 

îT  Analysis temperature solution being sought at depth level i 

,cl iT  Climatological temperature at depth level i 

,fg iT  
First-guess temperature at depth level i 

iT   ,i i cl iT T T   

îT   ,
ˆ ˆ
i i cl iT T T   

iT   1i i iT T T      

iS  m-mode eigenfunction derived salinity at the depth level i 

îS  Analysis salinity solution being sought at depth level i 

,cl iS  Climatological salinity at depth level i 

,fg iS  First-guess salinity at depth level i 

iS  ,i i cl iS S S    

ˆ
iS  ,

ˆ ˆ
i i cl iS S S    

iS  1i i iS S S      

iu  Standard deviation of iT  and iS  at the depth level I, elements of U 

iw  Vertical difference standard deviation of iT  and iS  at the depth level I, elements of 

W 
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MLDT   
Observed temperature anomaly at the MLD 

M̂LDT   
Analysis temperature anomaly at the MLD 

SST  
The SST error variance. 

MLDh  
Observed estimate of steric height anomaly at the MLD. 

ˆ
MLDh  

Analysis steric height anomaly at the MLD referenced to layer 2 bottom depth. 

MLD  
The MLD error variance. 

U Vector of T and S standard deviations [1 by N] 
C Vertical correlation matrix, [N by N] 
  Eigenvectors for T and S, [N by m] 
  Eigenvalues for T and S, [m by m] 

ik  
Eigenvector elements of   

i  
Eigenvalue elements of   

ia  
ith T and S EOF amplitude, solution being sought 

,fg ia  ith first-guess T and S EOF amplitude, computed from first guess input 

W  Vector of T and S vertical difference standard deviations [1 by N] 
  Eigenvectors for T and S vertical difference, [N by m] 
M  Eigenvalues for T and S vertical difference, [m by m] 

ik  
Eigenvector elements of   

i  
Eigenvalue elements of M  

ib  
ith vertical difference T and S EOF amplitude, solution being sought 

,fg ib  ith first-guess vertical difference T and S EOF amplitude, computed from first 
guess input 

  normalized specific volume anomaly 
  Thermal expansion coefficient for density 
  Haline expansion coefficient for density 

,cl i  ith climatology normalized specific volume anomaly 

fgF  Error covariance proportional constant, /fgF B R  

fgG  Error covariance proportional constant, 
fg g gG B R  
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Table 7. Validation Cases 
The ISOP validation cases with their labels and input configurations. 
Configuration 
Label 

First-
Guess 

SSHA SST MLD 

IdealISOP  GOFS Obs Obs Obs 
OperISOP  GOFS MODAS 

2D 
MODAS 
2D 

GOFS

Idea lM ODAS  NA Obs Obs NA 
OperMODAS  NA MODAS 

2D 
MODAS 
2D 

NA 

GDEM NA NA NA NA 
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Table 8. Global Median RMSE and MB 
 
Global median RMSE for parameters SLD, MLD, and BLG.  The smallest error levels 
are shaded dark green and the next smallest in light green 

Synthetic 
RMSE 

SLD MLD BLG 
Idea lISOP  27.75 25.48 0.97 
OperISOP  32.39 27.40 1.03 

Idea lM ODAS  40.31 37.05 1.12 
OperM ODAS  41.18 36.77 1.27 

GDEM  35.95 29.62 1.24 
Global median MB for parameters SLD, MLD, and BLG. 

Synthetic 
MB 

SLD MLD BLG 
Idea lISOP  -10.00 -5.67 -0.37 
OperISOP  -15.00 -7.03 -0.45 

Idea lM ODAS  -30.00 -20.61 -0.56 
OperM ODAS  -25.00 -20.03 -0.59 

GDEM  -20.00 -11.29 -0.45 
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Table 9. Global Errors with Depth 
a) Global median for MB of temperature in four depth ranges.  

Product T MB 
0-50 m 50-100 m 100-150 m 150-200 m 

Idea lISOP  -0.04 -0.36 -0.22 -0.28 
OperISOP  -0.12 -0.48 -0.33 -0.41 

Idea lM ODAS  -0.21 -0.77 -0.56 -0.65 
OperM ODAS  -0.22 -0.74 -0.53 -0.62 

GDEM  -0.19 -0.71 -0.53 -0.64 
b) Global median for MB of salinity in four depth ranges. 

Product S MB 
0-50 m 50-100 m 100-150 m 150-200 m 

Idea lISOP  -0.04 -0.09 -0.07 -0.09 
OperISOP  -0.04 -0.09 -0.08 -0.09 

Idea lM ODAS  -0.06 -0.13 -0.11 -0.12 
OperM ODAS  -0.06 -0.13 -0.11 -0.13 

GDEM  -0.03 -0.10 -0.08 -0.10 
c) Global median for MB of sound speed in four depth ranges. 

Product SSPD MB 
0-50 m 50-100 m 100-150 m 150-200 m 

Idea lISOP  -0.17 -1.15 -0.63 -0.89 
OperISOP  -0.35 -1.53 -0.97 -1.25 

Idea lM ODAS  -0.64 -2.39 -1.73 -2.07 
OperM ODAS  -0.67 -2.32 -1.56 -1.91 

GDEM  -0.58 -2.07 -1.57 -1.90 
d) Global median RMSE and SS for temperature, salinity, and sound speed over the 

upper 1000  m. 
 RMSE SS 
 T S SSPD T S SSPD 

Idea lISOP  0.39 0.10 1.40 0.69 0.28 0.66 
OperISOP  0.49 0.10 1.74 0.53 0.26 0.49 

Idea lM ODAS  0.56 0.13 2.04 0.39 -0.26 0.34 
OperM ODAS  0.66 0.14 2.36 0.17 -0.35 0.08 

GDEM  0.77 0.12 2.58 NA NA NA 
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Table 10. GOM SLD % Misfit Statistics 

Case Median Mean RMS 

IdealISOP  0 -4.3 19.7 

OperISOP  -7.7 -11.4 21.2 

IdealMODAS  0 -8.1 25.3 

OperMODAS  -1.2 -9.6 26.2 

GDEM  -12.5 -14.2 22.8 

 

Table 11. GOM MLD% Misfit Statistics 

Case Median Mean RMS 

IdealISOP  -1.6 -4.5 17.0 

OperISOP  0 -3.9 24.4 

IdealMODAS  -27.0 -28.5 27.3 

OperMODAS  -27.8 -29.1 27.0 

GDEM  -19.6 -22.6 28.3 

 

Table 12. GOM BLG % misfit Statistics 

Case Median Mean RMS 

IdealISOP  -2.3 -2.4 9.1 

OperISOP  -2.4 -1.9 9.6 

IdealMODAS  -1.6 -2.0 11.3 

OperMODAS  -3.0 3.4 12.4 

GDEM  -8.8 -9.7 12.0 
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Table 13. GOM SLD Relative % Misfit Statistics 
The mean and median difference between percent misfit from observations. 

Case Median Difference Mean Difference 

IdealISOP ‐
IdealMODAS  0 -8.1 

OperISOP ‐
OperMODAS  0 -4.6 

IdealISOP ‐GDEM  0 -8.0 

OperISOP ‐GDEM  0 -3.8 

 

Table 14. GOM MLD Relative % Misfit Statistics 
The mean and median difference between percent misfit from observations. 

Case Median Difference Mean Difference 

IdealISOP ‐
IdealMODAS  -15.8 -19.3 

OperISOP ‐
OperMODAS  -12.2 -13.1 

IdealISOP ‐GDEM  -12.1 -16.2 

OperISOP ‐GDEM  -10.0 -9.7 

 
Table 15. GOM BLG Relative % Misfit Statistics 
The mean and median difference between percent misfit from observations. 

Case Median Difference Mean Difference 

IdealISOP ‐
IdealMODAS  -1.4 -1.9 

OperISOP ‐
OperMODAS  -1.2 -2.4 

IdealISOP ‐GDEM  -4.4 -6.1 

OperISOP ‐GDEM  -4.2 -5.9 
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Table 16 RIMPAC Validation ISOP Cases 
ISOP Inputs  Input Sources 

First guess  GOFS Analysis 

SST  MODAS 2D 

SSHA  MODAS 2D 

MLD  GOFS Analysis 
 

Table 17 RIMPAC Validation MODAS Cases 
MODAS Inputs  Input Sources 

SST  MODAS 2D 

SSHA  MODAS 2D 
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Figure 1.  The log10 of the total number of (a) temperature and (b) salinity profiles binned in 5°by 5°degree geographical 

blocks. 
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Figure 2. The total number of temperature and salinity profiles binned per year in the ISOP database. 
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Figure 3.   Values of scaled potential density anomaly at a scaled depth of z/MLD = 0.812 as a function of MLD 
and the scaled potential density vertical gradient at the MLD.  The colored circles are value computed from 
profiles surround the analysis position at 30° N and 140° E.  The contours are computed from Equation 3 fit to 
the observations. 
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Figure 4a  Relationship between potential temperature and potential density anomalies (difference from the 
values at the MLD) at a scaled depth of 0.71093 times the MLD determined from observations near at 30° N 
and 140° E. 
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Figure 4b  Same as for Figure 2a, but at a scaled depth of 0.93866 times the MLD. 
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Figure 5 Relationship between salinity and potential density anomalies (difference from the values at the MLD) 
at a scaled depth of 0.93866 times the MLD determined from observations near at 30° N and 140° E 
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Figure 6  Percent of the potential density variance at scaled depth of  0.867 * MLD accounted for by prediction 
from regression equation (Equation 3) as function of the MLD, the threshold potential density difference, and 
the potential density vertical gradient at the MLD.  
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Figure 7.  Top frame is the average MLD and the average potential density gradient at the MLD.  The second 
frame is the average potential density versus scaled depth (depth/MLD) versus latitude.   The third frame is the 
standard deviation of the potential density, and the bottom frame is the percent of variance (about the mean 
potential density) accounted for by the potential density mixed layer model.  
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Figure 8  Comparison of observed profile (black dotted line) at 1.18° N and 222.14° E to the annual mean 
potential density profile in the mixed layer (green line), and to the modeled profile computed from the observed 
profile's MLD, potential density threshold value (0.15 kg/m**3), and potential density gradient at the MLD.  
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Figure 9.  Same as Figure 6, but for independent profile at 2.19° N and 223.21° E. 
 

 

 

 

 

 

Figure 10. The percent of variance accounted for by the first mode eigenvectors. 
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Figure 11. The percent of variance accounted for by the first and second mode eigenvectors. 
 

 

 

 

Figure 12. The percent of variance accounted for by the first, second, and third mode eigenvectors. 
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Figure 13  Absolute value of the mode 1 temperature eigenvector for June at 160 m depth. 

 

Figure 14  Same as Figure 4, but for salinity. 
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Figure 15.  Vertical sections of first mode eigenvectors of the scaled temperature and salinity for June in the 
Pacific Ocean along 215° E (145° W) longitude from the coast of Antarctica to the coast of Alaska.  
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Figure 16. Vertical sections between 1100 m and 5000 m along 215 E (145 W) longitude from the Antarctic 
coast to the Alaska coast. 
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Figure 17. Global distribution of the temperature vertical length scale T̂L  for the Layer 3 relaxation to 

climatology. 
 

 

Figure 18. Global distribution of the salinity vertical length scale SL̂  for the Layer 3 relaxation to climatology. 
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Figure 19. The ideal ISOP SLD (a) RMSE and (b) MB error binned in 10° by 10° blocks.  The units are in 
meters and each non-white block in (a) has at least 5 validation profiles.  The convention of MB is synthetic – 
observation. 
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Figure 20. The operational ISOP SLD (a) RMSE and (b) MB error binned in 10° by 10° blocks.  The units are 
in meters and each non-white block in (a) has at least 5 validation profiles.  The convention of MB is synthetic – 
observation. 
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Figure 21. The ideal ISOP MLD (a) RMSE and (b) MB error binned in 10° by 10° blocks.  The units are in 
meters and each non-white block in (a) has at least 5 validation profiles.  The convention of MB is synthetic – 
observation. 
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Figure 22. The operational ISOP MLD (a) RMSE and (b) MB error binned in 10° by 10° blocks.  The units are 
in meters and each non-white block in (a) has at least 5 validation profiles.  The convention of MB is synthetic – 
observation. 
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Figure 23. The ideal ISOP BLG (a) RMSE and (b) MB error binned in 10° by 10° blocks.  The units are in 
meters and each non-white block in (a) has at least 5 validation profiles.  The convention of MB is synthetic – 
observation. 
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Figure 24. The operational ISOP BLG (a) RMSE and (b) MB error binned in 10° by 10° blocks.  The units are 
in meters and each non-white block in (a) has at least 5 validation profiles.  The convention of MB is synthetic – 
observation. 
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Figure 25. The median IdealISOP  T (a) RMSE and (b) MB error in the 50 to 100 m depth range binned in 10° by 
10° blocks. 
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Figure 26. The median IdealISOP  S (a) RMSE and (b) MB error in the 50 to 100 m depth range binned in 10° by 
10° blocks. 
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Figure 27. The median OperISOP  T (a) RMSE and (b) MB error in the 50 to 100 m depth range binned in 10° by 
10° blocks. 
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Figure 28. The median OperISOP  S (a) RMSE and (b) MB error in the 50 to 100 m depth range binned in 10° by 
10° blocks. 
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Figure 29. The median  IdealISOP  SSPD (a) RMSE and (b) MB error in the 50 to 100 m depth range binned in 10° by 10° 
blocks. 
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Figure 30. The median  .OperISOP  (a) RMSE and (b) MB binned in 10° by 10° blocks for sound speed (SSPD)  in the 50 to 

100 m depth range. 
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Figure 31. The IdealISOP  median skill score in each 10°by 10° bin for (a) temperature and (b) salinity over the 
upper 1000 m. 
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Figure 32. The OperISOP  median skill score in each 10°by 10° bin for (a) temperature and (b) salinity over the 
upper 1000 m. 
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Figure 33. The geographical distribution of the difference in RMSE for (a) T and (b) S for 
Ideal IdealISOP MODAS . 
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Figure 34. The geographical distribution of the difference in RMSE for (a) T and (b) S for 
Oper OperISOP MODAS . 
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Figure 35. The geographical distribution of the difference in SSPD RMSE for (a)  Ideal IdealISOP MODAS and (b) 

Oper OperISOP MODAS . 
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Figure 36.  The number of profiles verses month in the global deep validation data set that are used in the validation 
analysis.  There are a total of 52,288 profiles. 
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Figure 37. The number of profiles plotted geographically in ½°bins for the global ocean.  

 

 

Figure 38. The histogram of temperature (T) bias for  OperISOP ,  operMODAS , and GDEM  in the depth range from 

1000 to 1400 m. 
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Figure 39. The histogram of temperature (T) bias for  OperISOP ,  operMODAS , and GDEM  in the depth range from 

1000 to 1400 m. 

 

 

Figure 40. The geographical distribution of  OperISOP  T bias error in the 1000 to 1400 m depth range. 
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Figure 41. The geographical distribution of  operMODAS  T bias error in the 1000 to 1400 m depth range. 

 

Figure 42. The geographical distribution of GDEM T bias error in the 1000 to 1400 m depth range. 
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Figure 43. The geographical distribution of  OperISOP  S bias error in the 1000 to 1400 m depth range. 

 

 

Figure 44. The geographical distribution of  operMODAS  S bias error in the 1000 to 1400 m depth range. 
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Figure 45. The geographical distribution of GDEM S bias error in the 1000 to 1400 m depth range. 

 

Figure 46. This figure is of RMS Error for temperature for  OperISOP , 
operMODAS , GDEM versus depth. 
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Figure 47. This figure is of RMS Error for salinity for  OperISOP , 
operMODAS , GDEM versus depth. 

 

Figure 48. This figure is of RMS Error for sound speed for  OperISOP , 
operMODAS , GDEM versus depth. 
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Figure 49. Bad ISOP synthetic from the Mediterranean Sea located at 35.7N, 23.0E. 

 

Figure 50. Bad ISOP synthetic near Antarctica located at 35.7N, 23.0E. 
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Figure 51. A histogram of the number of profiles used  in the validation  listed by month.   A total of 4001 profiles were 

used. 
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Figure 52.  RMS Errors for temperature (left) of  IdealISOP , OperISOP , 
IdealMODAS , operMODAS , and  GDEM  versus 

depth.  The number of profiles used in the error analysis versus depth (right).  Since not all profiles extend to 1200 m, 

the number of profiles in the analysis decreases with depth.  Also, many profiles start below 10 m, reducing the number 

of profiles in the 0 m bin.  Dashed lines represent the standard error limits for each case. 
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Depths.  

Figure 53.  RMS Errors for salinity (left) of  IdealISOP , OperISOP , 
IdealMODAS , operMODAS , and  GDEM  versus 

depth.  The number of profiles used in the error analysis versus depth (right).  Dashed lines represent the standard error 

limits for each case. 
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Figure 54.  RMS Errors for sound speed (left) of  IdealISOP , OperISOP , 
IdealMODAS , operMODAS , and  GDEM  versus 

depth.  The number of profiles used in the error analysis versus depth (right).  Dashed lines represent the standard error 

limits for each case. 
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Figure 55. The mixed layer depth % misfit error estimates for   IdealISOP  the Gulf of Mexico.  Units are in m. 
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Figure 56. The location of all validation profiles color coded for the Navy’s DBDB2 bathymetry depths at the same 

location. 
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Figure 57. The RMS Errors for temperature (left) of  IdealISOP , OperISOP , 
IdealMODAS , operMODAS , and  GDEM  

versus depth for only the 1202 profiles in water shallower than 1000 m.  Dashed lines represent the standard error limits 

for each case. 
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Figure 58. The RMS Errors for salinity (left) of  IdealISOP , OperISOP , 
IdealMODAS , operMODAS , and  GDEM  versus 

depth for only the 1202 profiles in water shallower than 1000 m.  Dashed lines represent the standard error limits for 

each case. 
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Figure 59. A histogram of the number of profiles in the RIMPAC region used in the validation listed by date.  A total of 

814 profiles were used. 
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Figure 60. On the left we have temperature RMS Error versus depth.  On the right we have the number of validation 

profiles that were used at each depth, which were computed every ten meters starting at depth zero.  Since fewer 

profiles have an observation at depth zero, the number of profiles is lower at the surface. Dashed lines represent the 

standard error limits for each case. 
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Figure 61. On the left we have salinity RMS Error versus depth.  On the right we have the number of validation profiles 

that were used at each depth. Dashed lines represent the standard error limits for each case. 
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Figure 62. On the left we have sound speed RMS Error versus depth.  On the right we have the number of validation 

profiles that were used at each depth. Dashed lines represent the standard error limits for each case. 
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