
Chapter 15
A Weak Constraint 4D-Var Assimilation
System for the Navy Coastal Ocean Model
Using the Representer Method

Hans Ngodock and Matthew Carrier

Abstract A 4D-Variational system was recently developed for assimilating ocean
observations with the Navy Coastal Ocean Model. It is described here, along
with initial assimilation experiments in the Monterey Bay using a combination of
real and synthetic ocean observations. For testing a new assimilation system it is
advantageous to use this combination of real and synthetic data over simplified
cases of climatology and twin data. Assimilation experiments are carried out in
a weak constraint formulation, with the model’s external forcing assumed to be
erroneous in addition to initial conditions. The system’s ability to fit assimilated and
non assimilated observations is assessed, as well as the consistency and relevance of
the retrieved model forcing. Experiment results show that the assimilation system
fits the data with relatively high prior errors in the initial conditions and surface
forcing fluxes. However, the retrieved model forcing errors are well within the range
of acceptable corrections according to an independent study.

15.1 Introduction

This paper presents the development of a weak constraint 4D-Var data assimilation
system based on the representer method (Bennett 1992, 2002) for the Navy Coastal
Ocean Model (NCOM). NCOM is an operational ocean model that has been
validated (Martin 2000; Barron et al. 2006). A major effort to implement state-of-
the-art assimilation schemes was undertaken a few years ago, with the development
of a 3DVAR, and a 4D-Var system based on the NCOM numerical code. The
3DVAR system is used for assimilation in global to regional scales, while the 4D-Var
is to be used in limited area models with in-situ observations, provided initial and
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boundary conditions from a global or regional model assimilating with 3DVAR.
Both the adjoint and linear perturbation (also called the forward representer) model
codes were derived for the most part with the help of the Parametric Fortran
compiler (PFC), Erwig et al. 2007.

Some general circulation models of the complexity of NCOM have seen
similar efforts undertaken in the past decade: a 4D-Var assimilation system was
developed for the Ocean Parallelisé (OPA) model (Weaver et al. 2003), for the MIT
general circulation model (MITgcm, Marotzke et al. 1999) also used in the ECCO
consortium assimilation experiments (Stammer et al. 2002), and a similar system
was built for the regional ocean model system (ROMS), Moore et al. 2004. Unlike
the other models using fixed z-levels (OPA and MITgcm) or s-coordinates (ROMS)
NCOM uses a combination of both sigma layers, z-levels and a generalized vertical
coordinate.

It is a common practice to test a recently developed assimilation system with
climatological data or identical twin experiments in which the observations are
simulated by the numerical model. There is hardly a case of failure in twin
experiments, yet a successful assimilation with twin experiments never guarantees
success with real data. On the other hand, climatological data are overly smooth in
both space and time (due mostly to linear interpolation) and lack the variability
associated with real observations. To avoid these simplified cases, the newly
developed NCOM 4D-Var system is tested with real and synthetic observations
generated by the modular ocean data assimilation system (MODAS) Fox et al. 2002,
as well as with real observations collected from satellites and a fleet of gliders during
the second autonomous ocean sampling network (AOSN II) in the Monterey Bay.

There are no specific applications of 4D-Var in the Monterey Bay, let alone
its weak constraint formulation. Strong constraint variational assimilation (Broquet
et al. 2009) has been applied to the California current system (CCS), including an
application to estimate surface forcing correction (Broquet et al. 2011), using the
inverse Regional Ocean Modeling System (IROMS, Di Lorenzo et al. 2007) with
horizontal resolutions of 10 and 30 km. The CCS is a large area that includes the
Monterey Bay, although these applications did not specifically target the Monterey
Bay, given their rather coarse resolutions. Most of the assimilation experiments that
have been carried for the Monterey Bay were based on sequential methods such as
3DVAR and ensemble-based Kalman filters: Chao et al. (2009), Haley et al. (2009),
and Shulman et al. (2009). This study presents an application of the weak constraint
4D-Var in the Monterey Bay in a proof-of-concept context, using synthetic and real
observations. The first objective is to demonstrate the system’s ability to reduce large
discrepancies between the model and the observations, when the latter are assigned
very low errors. Therefore, this paper is more focused on the technical development
of the weak constraint 4D-Var system.

A brief description of the numerical model is presented in the next sec-
tion, followed by the 4D-Var system derivation and implementation in Sect. 15.3.
Section 15.4 deals with the experiments setup and results, and concluding remarks
follow in Sect. 15.5.
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15.2 The Model

NCOM is described in the literature (Martin 2000; Barron et al. 2006). The
description of the model equations given in the appendix is only repeated in order
to exhibit the nonlinear terms in the model equations, as they directly affect the
development of the linearized and adjoint models associated with NCOM. NCOM
is a free surface model based on the primitive equations and employs the hydrostatic,
Boussinesq and incompressible approximations. The model is discretized using
finite differences on an Arakawa C-grid in the spatial dimensions. The equations are
solved in three dimensions for momentum (both zonal and meridional components
of velocity), temperature and salinity, and two dimensions for the free-surface mode:
surface elevation and barotropic velocities.

The leapfrog scheme is used for time stepping in conjunction with an Asselin
filter to avoid time splitting. All terms are treated explicitly in time except for
the solution for the free surface and vertical diffusion. In the solution for the
free surface, the surface pressure gradient terms in the depth-averaged momentum
equations and the divergence terms in the depth-averaged continuity equation are
evenly split between the old and new time levels to minimize the damping of surface
waves. The model equations discretized with finite differences in flux-conservative
form are given in the appendix.

The model domain used for this experiment contains the Monterey Bay, California
region. This location is favorable for ocean modeling due to its strong land/sea breeze
circulation patterns, complex coastline with steep topography, and the existence of
frequent local upwelling and relaxation events (Shulman et al. 2002). The domain
covers latitudes 35:6ı–37:49ı North and longitudes 121:38ı–123:2ı West with a
horizontal resolution of 2 km and 41 layers in the vertical. The model was initialized
on 01 August, 2003 and ran for one month to 01 September, 2003. The initial condi-
tions were obtained from downscaling the operational 1=8ı resolution global NCOM
to an intermediate model with horizontal resolution of 6 km, and then via a 3-to-1
nesting ratio to the 2 km model. Horizontal viscosities and diffusivities are computed
using either the grid-cell Reynolds number (Re) or the Smagorinsky schemes, both
of which tend to decrease as resolution is increased. The grid-cell Re scheme sets
the mixing coefficient K to maintain a grid cell Re number below a specified value,
e.g. if Re D u�dx=K D 30, then K D u�dx=30. Hence, as dx decreases, K decreases
proportionally. A similar computation is performed for the Smagorinsky scheme.

Surface boundary conditions (e.g. wind stress, IR radiation flux, etc.) are
provided by the atmospheric mesoscale model COAMPS (Hodur 1997), which is
run at the same horizontal resolution as the ocean model, with forcings archived
every 12 h at the synoptic times of 0000 and 1200 UTC. Open boundary conditions
use a combination of radiative models and prescribed values provided by the
1=8ı Global NCOM (GNCOM). Different radiative options are used at the open
boundaries depending on the model state variables: a modified Orlanski radiative
model is used for the tracer fields (temperature and salinity), an advective model for
the zonal velocity (u), a zero gradient condition for the meridional velocity (v) as
well as the barotropic velocities, and the Flather boundary condition for elevation.
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15.3 The 4D-Var System

15.3.1 Linearization

Nonlinear terms in the model consist of all the advection terms in the momentum and
tracer equations, the horizontal mixing with the Smagorinsky formula, the curvature
correction, the vertical mixing with coefficients computed using the Mellor-Yamada
2.5 turbulence closure. Additional nonlinearities stem from the discretization in flux
conservative form where vertical increments �z in the sigma layers depend on the
free surface elevation. As a consequence, even the time discretization is nonlinear.
Nonlinearities also appear in the free surface, or barotropic mode, with the multiplica-
tion by the depth variables Du and Dv in (15.23) and (15.24). However, the barotropic
transports Du Nu and DvNv are computed explicitly first, then the barotropic velocities
(Nu and Nv) are derived by dividing the barotropic transports by the depth variable,
which is a nonlinear operation. The baroclinic pressure gradient is computed from the
density field obtained from the state equation as a nonlinear function of temperature
and salinity. Other nonlinearities appear in the various radiative conditions at the open
boundaries of the model domain mentioned above.

With the exception of the Mellor-Yamada turbulence closure, all of these
nonlinear terms are linearized according to the first-order Taylor’s approximation
for the derivation of the tangent linear model.

For the sake of clarity, let’s rewrite the leap-frog time discretization of (15.14),
see the appendix, in the form

�xu�yu

2�t

�
.�zu/nC1 unC1 � .�zu/n�1 un�1

�
D Gn; (15.1)

where Gn represents the terms in the right hand side of (15.14) evaluated at time
level n, and the depth increment .�zu/nC1 is available from a previously computed
elevation. The numerical model is updated by

unC1 D 1

.�zu/nC1

�
.�zu/n�1 un�1 C 2�t

�xu�yu
Gn

�
(15.2)

The linearization of (15.2) is

ıunC1 D 1

.�zu/nC1

�
.�zu/n�1 ıun�1 C .ı�zu/n�1 un�1 C 2�t

�xu�yu
ıGn

�

� .ı�zu/nC1

h
.�zu/nC1

i2

�
.�zu/n�1 un�1 C 2�t

�xu�yu
Gn

�
(15.3)

where u is the background solution, i.e. the solution around which the model is
linearized, G and �z are computed using the background solution, and ıu, ıG

and ı�z are the linear perturbations of u, G and �z respectively. In both (15.2)
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Fig. 15.1 Time evolution of
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(and hence (15.3)) a small positive number is usually added to the denominator to
prevent it from vanishing. As mentioned above the depth increments in the vertical
discretization in NCOM depend on the time varying elevation only in the sigma
layers. In the z-level portion of the vertical grid, (15.2) and (15.3) take the form

unC1 D un�1 C 2�t

�xu�yu�zu
Gn (15.4)

and

ıunC1 D ıun�1 C 2�t

�xu�yu�zu
ıGn: (15.5)

As for the vertical mixing coefficients from the Mellor-Yamada turbulence closure
scheme, they are provided by the nonlinear model trajectory around which the model
is linearized.

The stability of the linearized model is assessed by the time evolution of small
perturbations: the tangent linear model is initialized by random three dimensional
perturbations of the temperature and salinity fields and integrated over time. At each
time step the norms of the perturbed temperature and salinity fields are computed
and divided by the norms of their respective initial perturbations. Results plotted in
Fig. 15.1 show that the linear perturbations are stable and bounded for about 12–15
days before they start to grow exponentially. Initial perturbations here are generated
by the adjoint integration forced by Dirac impulses at randomly selected grid points.
This process produces three-dimensional initial fields with dynamically coherent
structures compared to purely random fields. However, the TLM test with purely
random fields did not yield different results (not shown).
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15.3.2 Adjoint Derivation

Once the linear perturbation model was obtained, the adjoint model was derived by
transposition of the perturbation model as follows for both sigma layers and z-levels:

�� D �nC1
u

�nC1
u D 0

�nC1
�zu D �nC1

�zu � ��
h
.�zu/nC1

i2

�
.�zu/n�1 un�1 C 2�t

�xu�yu
Gn

�

�n
G D �n

G C 1

.�zu/nC1

2�t

�xu�yu
�� (15.6)
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�zu C un�1
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u C .�zu/n�1

.�zu/nC1
��

and

�� D �nC1
u

�nC1
u D 0

�n
G D �n

G C 2�t

�xu�yu�zu
��

�n�1
u D �n�1

u C �� (15.7)

where �i
a denotes the adjoint variable associated with the state variable a at the

time level i , and �� is a temporary variable. In (15.6) and (15.7) it is assumed
that the adjoint variables have been initialized at a prior time level. In practice, the
model is usually computer programmed by subroutines, with individual terms of
the model equations computed in separate subroutines. Similarly, the linearization
and the adjoint derivation were carried out one subroutine at a time, and care was
taken to ensure that symmetry between the linearized subroutine and its adjoint
was preserved. The entire linearized model was obtained once every subroutine was
linearized, and the entire adjoint was obtained with individual adjoint subroutines
appearing in reverse order as compared to the linearized model.

In practice, both the linearized and adjoint models were obtained with the help of
the Parametric Fortran compiler (PFC). Parametric Fortran is an extension of Fortran
that supports defining Fortran program templates by allowing the parameterization
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of arbitrary Fortran constructs. A Fortran program template can be translated into
a regular Fortran program guided by values for the parameters. The Parametric
Fortran compiler is written in Haskell (Peyton Jones 2003), and the parameter values
are represented as Haskell values so they can be used by the Parametric Fortran
compiler directly. Parametric Fortran is particularly useful in scientific computing.
The applications include defining generic functions, removing duplicated code, and
automatic differentiation. Parametric Fortran thus has broader and more general
uses than previous tools in the likes of TAMC (Giering and Kaminski 1998),
TAPENADE (Hascoet and Pascual 2004) or ADIFOR (Bischof et al. 1992),
developed just for the purpose of automatic differentiation. The differentiation is
based on the chain rule, with special treatment for non-differentiable functions.

15.3.3 How PFC Works for TL and Adjoint Generation

The Parametric Fortran compiler is publicly available from http://web.engr.
oregonstate.edu/�erwig/pf/. It is a command line program in which the
differentiation operation has been parameterized by “Diff”. Assuming it has been
installed on a user’s computer, it can be used to generate tangent linear and adjoint
of Fortran subroutines or programs in the following manner:

1. The user creates a parameter text file, say “param file”, in the format:

Diff D TL [var1, var2, var3 : : :]

where var1, var2, var3 . . . , form a list of all active variables and all
variables that depend or operate on active variables (including temporary
variables), “TL” will indicate to the compiler that the tangent linear model
is being created, and “Diff” is the differentiation parameter for Parametric
Fortran.

2. For a subroutine “test.f” to be differentiated the user also creates a file
“test.pf” that contains the subroutine in the form

fDiff:
Subroutine test(var1,var2. . . )
Body of subroutine
end
g

3. Finally, the compiler is invoked by typing the following from the command
line: pfc -p param file test.pf test TL.f

The output of the compiler will be the tangent linearized subroutine
“test TL.f”.

4. The procedure for generating the adjoint is the same except that in steps
1 and 3 “TL” is replaced with “AD”.

http://web.engr.oregonstate.edu/~erwig/pf/
http://web.engr.oregonstate.edu/~erwig/pf/
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For generic state variables x and y and a subroutine computing a quantity Ax, the
symmetry between the linearized subroutine and its adjoint is evaluated by

hAx; yi D ˝
x; ATy

˛
(15.8)

where h: ; :i denotes an inner product. This equality should hold to machine precision
(regardless of computer architecture) not only for individual subroutines, but also
for the entire linearized model and its adjoint. For randomly generated x and y
as initial and final conditions for the linearized and adjoint models respectively,
equality (15.8) was tested for integration periods of 1 and 5 days with an absolute
difference in the order of 10�14 between the left and right hand side of (15.8), the
computations being done in double precision.

Alternatively, this symmetry is also assessed by the symmetry of the representer
matrix (Bennett 1992, 2002). For a given number M of observation locations (in the
space-time domain), regardless of which model variable is observed, representer
functions are computed, one per observation location. A representer function
associated with a given observation location is obtained by integrating the adjoint
model forced by a Dirac delta function centered at the chosen observation location,
then using the adjoint solution (in space and time) as forcing for the perturbation
model. A column of the representer matrix is computed by evaluating a representer
function at all observation locations. If the adjoint model is consistently derived
from the perturbation model, the representer matrix should be symmetric to the
machine precision which is the case for our model and its adjoint.

15.3.4 The Cost Function

For sake of clarity, the model equations are rewritten in a simpler form

(
@X
@t

D F .X/ C f; 0 � t � T

X .t D 0/ D I .x/ C i.x/
(15.9)

where X stands for all the dependent model state variables: two dimensional sea
surface height and barotropic velocities, and three dimensional temperature, salinity
and baroclinic velocities, F is the model tendency terms in the right hand side of
(15.14, 15.15, 15.16, 15.17 and 15.18) and (15.23, 15.24 and 15.25), f is the model
error, a function of the independent variables (x and t) of the space-time domain �

with covariance Cf , I.x/ is the prior initial condition, i.x/ is the initial condition
error with covariance Ci . Given a vector Y of M observations of the model state
in the space-time domain, with the associated vector of observation errors © (with
covariance C©),

ym D HmX C "m; 1 � m � M (15.10)
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where Hm is the observation operator associated with the mth observation, one can
define a weighted cost function

J D
TZ

0

Z

˝

TZ

0

Z

˝

f .x; t/Wf .x; t; x0; t 0/f .x0; t 0/dx0dt0dxdt

C
Z

˝

Z

˝

i.x/Wi.x; x0/i.x0/dx0dx C ©T W©© (15.11)

where � denotes the model domain, the weights Wf and Wi are defined as inverses
of Cf and Ci in a convolution sense, and W© is the matrix inverse of C©. The latter
is usually considered a diagonal matrix, from the assumption that observation errors
are uncorrelated. Boundary condition errors are omitted from (15.9) to (15.11) only
for the sake of clarity. The model error covariance is assumed to take the form

Cf

�
x; t; x0; t 0� D v .x/1=2 v.x0/1=2 exp

 
�jx � x0j2

2L2

!
exp

�
�jt � t 0j

£

	
(15.12)

where v.x/ is the error variance and L and £ are the length and time scales
respectively. The initial error covariance Ci assumes the form of (15.12) with the
exception of the time correlation term and different (higher) variance. Horizontal
correlations in (15.12) are obtained by solving a diffusion equation (Derber and
Rosati 1989; Egbert et al. 1994; Weaver and Courtier 2001), while the time
correlation is obtained by solving a pair of coupled Langevin equations (Chua
and Bennett 2001; Bennett 2002; Ngodock 2005). Correlations in (15.12) are
univariate and are implemented layer by layer for each model state variable. The
cross correlations are provided by the model dynamics through the integration of the
adjoint and the tangent linear models. Note that although the cost function is written
with the inverse of the covariance functions, the actual inverses are not needed in
practice, when the solution of the Euler-Lagrange equations associated with the
minimization of (15.11) is sought through the representer method (Bennett 1992,
2002).

15.3.5 Error Standard Deviations: v.x/1=2

Assigning model errors and prescribing their covariances is the most difficult task
in data assimilation, as acknowledged by most assimilation experts: Daley (1992),
Talagrand (1999), Bennett (2002), Wunsch (2006). Not only are there many error
sources (external forcing, initial and boundary conditions, bad parameterization,
empirical formulation, unresolved processes), but also the errors cannot be mea-
sured. Therefore one can only make assumptions about them. Since NCOM includes
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all resolvable processes and sub-gridscale parameterization, errors are attributed to
the initial conditions and external forcing for all the dynamical equations, and the
derivation of their estimates is given below. Note that there is no external forcing
applied to the continuity equation, and thus it is not assigned a model error either,
as in Jacobs and Ngodock (2003).

Consider the momentum equation (15.14) in its non-discretized form

@u

@t
C : : : D : : : C ��1F (15.13)

where F represents the wind stress atmospheric forcing (in Nm�2), the volume
flux source and the tidal potential, and � is the water density. The model error
at the surface consists of errors in the wind stress. For the subsurface, errors are
assumed to arise from the volume flux and the tidal potential terms. We consider
errors to be high in magnitude at the surface and decreasing with depth. Although
the wind stress varies in space and time, its associated error is assumed uniform
in the horizontal directions. The error magnitude is considered to be 50 % of the
actual wind stress at the surface and decreasing with depth in order to mimic the
decreasing impact of wind stress with depth. Two terms contribute to the forcing
for the temperature equation: the net longwave, latent and sensible heat flux on one
hand, and the solar radiation on the other hand. Both are assumed to be 30 % in error
and the sum of their errors constitutes the forcing error in the temperature equation,
with a spatial distribution similar to the one used for the errors in the momentum
equation. A similar approach is taken for the errors in the salinity equation, where
the forcing consists of the river inflow and evaporation minus precipitation. Forcing
terms here are also considered to be 30 % in error. Finally the standard deviations
for the initial condition errors are 1 m for the surface elevation, 0:5 ms�1 for both
components of the velocity field, 2 K for temperature and 0.5PSU for salinity. These
rather high errors indicate the lack of confidence in the forcing fields and initial
conditions. Spatial and temporal correlation scales in (15.12) are set to 10 km and
30 h. The errors and scales above are obviously arguable, and it is not our intention
to defend their choice. Rather, they are selected in this preliminary assimilation
setup to demonstrate the functionality of the NCOM 4D-Var system. Smaller errors
will be adopted when the system is used with real observations.

15.3.6 The Minimization

The solution of the assimilation problem is found by solving the Euler-Lagrange
(EL) system of equations associated with the minimization of the cost function
(15.11). The EL system is a linear yet coupled system between the adjoint and
state variables. The representer methods uncouples the system by expanding the
solution as the sum of a first guess and a finite linear combination of representer
functions, with the representer coefficients computed by solving a linear system in
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data space involving the representer matrix, the data error covariance matrix and
the innovation vector. The entire representer matrix need not be computed since the
linear system can be solved using an iterative algorithm (e.g. the conjugate gradient),
by taking advantage of the symmetry of each matrix involved. The representer
coefficients constitute the right hand side of the adjoint equation in the EL system.
Once the representer coefficients are computed, they are substituted in the adjoint
equation which is then solved and substituted in the forward linear equation for
the final solution. A background solution around which the model is linearized is
needed. Usually it is the solution of the nonlinear model. For the first guess solution,
one may consider either the background or the tangent linear solution around
the background. Also, the new optimal solution may replace the background for
another minimization process (i.e. outer loops) until formal convergence (Bennett
et al. 1996, 1998, 2002; Ngodock et al. 2000, 2007, 2009).

15.4 Experiment Setup and Results

Assimilation experiments are carried out with two different data sets, and the results
shown below are primarily aimed at evaluating the 4D-Var system’s ability to fit
both the assimilated and the non-assimilated observations.

15.4.1 MODAS Data

MODAS generates synthetic vertical profiles of temperature and salinity in the two
following steps: first, a subsurface temperature is computed at a given depth using a
regression from sea surface temperature and the steric component of the sea surface
height anomaly. Once the subsurface temperature is computed, a corresponding
subsurface salinity is computed using a climatology-based temperature/salinity
relationship, Fox et al. (2002). MODAS data are thus a combination of real sea
surface data (SSH and SST) and simulated sub-surface data derived from the real
surface data using regression and historical relationships.

MODAS synthetics are saved and utilized in the 4D-Var analysis at intervals of
6 h. There are approximately fifty-six uniformly distributed profiles of temperature
and salinity across the model domain. Each profile is represented on a vertical grid
of 46 layers that do not coincide with the model’s vertical grid of 41 layers, but the
observation operator H in (15.10) handles the projection from the model grid to the
data grid. Temperature (salinity) observation errors are set to 0:2ıC (0.1 psu), and
held constant through the entire assimilation window. These observation errors are
purposefully set low, not because MODAS data are very accurate, but to test the
assimilation’s ability to reduce large discrepancies with the model, i.e. to drive the
model with large errors to fit observations with small errors.
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Fig. 15.2 The model domain
with bathymetry contours and
the profile locations,
including the numbered
profiles (in red) where the
assimilated solution is
evaluated

15.4.2 Results with MODAS Data

Starting from an initial condition on August 02, the model was integrated and
the assimilation performed for 5 days at a time, with the analysis at the end of
the 5 days becoming the initial condition for the following 5-day assimilation, the
overall assimilation experiment interval being 30 days.

In order to assess how well the assimilation fits the observations, the analysis
is examined at 5 locations in the model domain shown on Fig. 15.2. These
locations are selected according to their geographic position with respect to the bay:
offshore (location 1), slightly outside of the bay mouth (location 2), inside the bay
(location 3), and south and north of the bay (locations 4 and 5). Results at locations
2 and 4 are similar to those at location 5, and therefore are not shown.

Examining the solution in the top 500 m at the offshore location 1, it can be seen
that the assimilation is able to correct large and small discrepancies between the
first guess and the observations for both the temperature and salinity fields, as seen
in Fig. 15.3. In the first 5 days temperature discrepancies range between 2 K in the
upper 50 m, and about 1 K from 100 m and below. Likewise salinity discrepancies
range from 0.15psu in the upper 200 m to 0.05psu below. These discrepancies are
gradually corrected in the analysis (bottom panels of Fig. 15.3) and by the end
of the first 5-day assimilation window, they have vanished. For the subsequent
5-day assimilation windows, the model temperature and salinity appear to be well
constrained below 100 m with minimal to no discrepancies between the first guess
and the data. Discrepancies are confined to the upper 100 m. They are small at the
beginning of each 5-day window and grow with time. This is to be expected since
the first guess is initialized with the previous 5-day analysis at the final time, and
because the NOGAPS forcing fields are not necessarily compatible with MODAS
data. That the discrepancies are confined to the upper ocean also suggests that the
model error is driven by erroneous surface fluxes, although the simulation of the
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Fig. 15.4 Same as Fig. 15.3, except for location 3

mixed layer could also be incompatible with MODAS data. Yet both the data and
the forcing fields are purposefully chosen in order to test the assimilation’s ability
to efficiently reduce these discrepancies while estimating a reasonable (magnitude-
wise) correction to the surface fluxes. The assimilation effectively reduces all the
discrepancies to within the data standard deviation for both temperature and salinity.

The maximum depth at location 3 inside the bay is 28 m. Results at this location,
shown in Fig. 15.4, indicate that high salinity discrepancies sometimes exceeding
.25psu are distributed through the water column during the first 5-day assimilation
period. Some large salinity discrepancies also appear between days 18–20. Temper-
ature discrepancies on the other hand are more prevalent, distributed over space and
time. It appears that the initialization of the model using the previous 5-day analysis
has less influence on the current 5-day first-guess. This may be due to the fact that in
this shallow location, temporal variability of the solution is mostly governed by the
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Fig. 15.5 Same as Fig. 15.3, except for location 5

local external/surface forcing coupled with strong mixing, and not by the short-lived
initial conditions. Nevertheless, the assimilation still significantly reduces these
discrepancies (bottom panels of Fig. 15.4) through the depth-time domain except
for some isolated places. Assimilation results at location 4 (south of the mouth of
the bay) are very similar to those at location 2, and therefore are not shown here.

At location 5 (north of the mouth of the bay) the maximum depth is 100 m. The
largest salinity discrepancies are in the upper 20 m during the first 5-day, as seen
in Fig. 15.5. There are also some moderate discrepancies in the lower layers around
day 24. Temperature discrepancies are initially moderate (less than 1.5 K during
the first 5-day period) and remain low until day 20, after which they start growing
again, reaching 2 K. For most of the assimilation period these discrepancies are
significantly reduced below 0.5 K, except for some isolated locations, e.g. around
40 m depth at days 21 and 22.

15.4.3 AOSN II Data

The dataset comprises SST from satellite and aircraft, a few SSH from satellite
altimetry (due to the limited area of the model domain), vertical profiles of
temperature and salinity from Slocum and Spray gliders and two moorings (M1 and
M2) and AXBTs. All the vertical profiles are projected on a static grid of 42 levels.

Slocum glider tracks covered a portion of the bay, the mouth of the bay and
the area to the northwest of the bay, i.e. the upwelling center around Año Nuevo.
Spray glider tracks originated from the nearshore and went offshore in transec-like
trajectories as seen in Fig. 15.6. To avoid redundancy some of the glider data are
withheld from the assimilation and used for validation of the analyses. Withholding
the data takes into account the model grid resolution and the prescribed horizontal
decorrelation scale of the model error. The observations are assigned a constant error
of 0.5 K and 0.3psu in temperature and salinity respectively.



15 A Weak Constraint 4D-Var Assimilation System for the Navy Coastal . . . 381

Ano Nuevo

Pt.Sur

37.4

37.2

37

36.8

36.6

36.4

36.2

36

35.8

35.6

La
tit

ud
e 

(d
eg

  N
)

Longitude (deg W)

−123.2   −123 −122.8 −122.6 −122.4 −122.2 −122 −121.8 −121.6 −121.4

Ano Nuevo

Pt.Sur

37.4

37.2

37

36.8

36.6

36.4

36.2

36

35.8

35.6

La
tit

ud
e 

(d
eg

 N
)

Longitude (deg W)

−123.2   −123 −122.8 −122.6 −122.4 −122.2 −122 −121.8 −121.6 −121.4

Pt.Sur

37.4

37.2

37

36.8

36.6

36.4

36.2

36

35.8

35.6

La
tit

ud
e 

(d
eg

 N
)

Longitude (deg W)

−123.2   −123 −122.8 −122.6 −122.4 −122.2 −122 −121.8 −121.6 −121.4

Ano Nuevo

Fig. 15.6 All glider and the two mooring positions (left), and assimilated Slocum (center) and
Spray (right) glider tracks during August, 2003. The red dots represent the location of the moored
buoys M1 (right) and M2 (left). The red box indicates the upwelling center near Año Nuevo

15.4.4 Results with AOSN II Data

The assimilation covers the time window of August 2 to August 27, 2003, and is
carried out in cycles of 5 days, with the analysis at the end of a cycle becoming the
initial condition for the following cycle. Although the observations are processed
and stored in 6-h intervals, the 4D-Var system assimilates all observations within
the 5-day cycle simultaneously. The performance of the assimilation system is
examined by computing the difference between the observations and three model
solutions: (1) the free running (non assimilative) model that is integrated from the
given initial conditions and forcing fields, (2) the first guess (also non assimilative)
for which the initial condition is updated from the assimilation in the previous
cycle, with the exception of the first cycle where both the first guess and the free
running model are equal, and (3) the analysis. The first guess is also the background
trajectory for the tangent linear model and the adjoint, i.e. the trajectory around
which the model is linearized. It is stored in intervals of 6 h. It is anticipated that
due to the re-initialization from assimilating in a previous cycle, the first guess
should have smaller discrepancies with the observations than the free running
model, and the analysis should have smaller discrepancies with the observations
than the first guess. This should be the case for discrepancies computed with the
assimilated and non-assimilated observations. It is expected of every assimilation
system to fit the assimilated observations within one observation standard deviation.
Unassimilated observations consist of withheld observations within the current
assimilation window and future observations, those in the next cycle before the
assimilation. The assimilation is expected to fit the former as a measure of the
system’s ability to propagate the information from the assimilated observations sites
through the model spate-time domain within the assimilation window. However,
there is no expectation to fit future observations, i.e. the innovations in the next
cycle are not expected to be smaller than the observation standard deviation. One
only hopes that having initialized the model from the previous cycle’s assimilation,
the model forecast will remain sufficiently accurate to maintain small innovations.
However, integrating the model from the initial conditions with uncorrected forcing
fields is prone to drive the model away from the observations.
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Fig. 15.7 Absolute model temperature (left) and salinity (right) discrepancies to assimilated
observations for the free run (top), first guess (middle) and analysis (bottom)

The difference between the observations and the model is computed for all
assimilated profiles of temperature and salinity and plotted in chronological order
in Fig. 15.7. It can be seen that the temperature differences are confined in the upper
100 m of the water column, with magnitudes sometimes reaching 3 K for both the
free run and the first guess. Salinity differences extend deeper in the water column,
to about 200 m, although the largest differences are confined to the upper 100 m. A
slight improvement can be noticed from the free run to the forecast solutions in the
temperature field, but not as much in the salinity field. However, the assimilation is
able to significantly reduce the forecast discrepancies in both the temperature and
salinity fields, with the exception of a few profiles at the beginning of each cycle.
The assimilation is able to reduce discrepancies as high as 3 K and 0.4psu to less
than 0.5 K and 0.1psu in temperature and salinity respectively.

The forecast solution is expected to have smaller discrepancies to the observa-
tions than the free run, because it is initialized with the analysis at the end of a
previous cycle. So, having only a marginal improvement from the free run to the
first guess is an indication that the gains from the assimilation are short-lived in the
forecast run as a consequence of inadequate forcing fields driving the model away
from future observations

15.4.5 Independent Observations

For verification and evaluation purposes, discrepancies are computed between the
withheld glider observations and the three model solutions: the free run, the first
guess and the analysis. Results in Fig. 15.8 show that all three solutions have similar
error levels with respect to the un-assimilated as to the assimilated observations.
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Fig. 15.8 Same as Fig. 15.7, except for non-assimilated glider observations

This result was expected because in most cases the withheld observations were
located in the vicinity of assimilated observations. There are still some large
temperature and salinity discrepancies in the analysis, usually around the beginning
of the assimilation cycle.

15.4.6 Qualitative Fitting of the Data

The assimilation system’s ability to fit the observations is further examined by
comparing the differences between the observations and the free running model, the
first guess and the analysis for all the observations and at all times, for both MODAS
and AOSN II data. The free running model is integrated from the initial conditions
and is never re-initialized, while the first guess for an assimilation cycle is initialized
by the analysis at the end of the previous cycle. Elements of these difference vectors
are binned by comparing their magnitude to the observations standard deviation.
For example, all elements that are smaller than a standard deviation in absolute
value are binned together, and so are all elements whose absolute value is between
one and two standard deviations, and so on. The number of elements in each bin is
then converted into a percentage of the number of assimilated observations. The
results plotted as a cumulative bar chart on Fig. 15.9 show that the assimilated
solution with MODAS data fits 80 % and 90 % of the observations to within one
and two standard deviations respectively, while the corresponding numbers for the
first guess are 60 % and 75 %, and 45 % and 63 % for the free running model. Some
posterior misfits, although only a small percentage, are larger than 7 observations
standard deviations, which obviously violate the Gaussian assumption on the errors
in general. Similarly, for the AOSN II data, assimilated solution fits 86 % and 95
% of the observations to within one and two standard deviations respectively, while
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Fig. 15.9 Cumulative bar chart showing the percentage of the number of observations that are
matched by the free running model (black), the first guess (grey) and the analysis (white) as a
function of the number of observation standard deviations. MODAS experiment is shown on the
left and AOSN II experiment on the right

the corresponding numbers for the first guess are 68 % and 80 %, and 64 % and 76
% for the free running model.

The large posterior misfits happened for some temperature observations with
prior misfits sometimes higher than 5ı, and the assimilation reduces these misfits
to about 1:5ı. They are larger than 7 standard deviations primarily because of very
low data errors and possibly high model errors. It is assumed that a better fit would
be achieved with larger observation errors and lower model errors. Such experiments
(not shown here) are carried in the context of real observations and are the subject
of another study.

15.5 Conclusion

A 4D-Var assimilation system for NCOM has been developed based on the indirect
representer method. The system produces analysis increments for all prognostic
variables (3D temperature, salinity, u- and v- components of velocity, and sea
surface elevation) from a time-window of observations in a weak-constraint envi-
ronment. The adjoint model has been checked against the linearized model using
well established methods, verifying that the system is symmetric to within machine
precision. Assimilation experiments were carried out with two different data sets.

The first experiment involved MODAS synthetic data (T , S , SSH) that were sam-
pled every 6 h and assimilated in a sequence of 5-day time windows. Starting from
an initial condition on August 02, the model was integrated and the assimilation
performed for 5 days at a time, with the analysis at the end of the 5 days becoming
the initial condition for the following 5-day assimilation. The results indicate that the
assimilation system is performing correctly, with the model-data misfit is reduced
substantially as examined at individual profiles.
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The second experiment used the observations collected during AOSN II. Starting
from a free run solution that completely misrepresented both the data and the
dynamics of the region during the selected time period, the assimilation was able
to accurately fit the assimilated data. Also, contrary to the free run and the first
guess, the upwelling and relaxation events that dominate the dynamics of the regions
were accurately described by the analysis which benefited from a good observation
coverage of the domain and a robust assimilation system.

To avoid redundancy, some glider profiles were withheld from the assimilation
and used for evaluation. The analysis fitted the withheld observations with the same
accuracy as the assimilated observations. This was due in part to the proximity of
the withheld observations with those that were assimilated.

The assimilated solution with MODAS data fits 80 % and 90 % of the
observations to within one and two standard deviations respectively, while the
corresponding numbers for the first guess are 60 % and 75 %, and 45 % and 63 % for
the free running model. Some posterior misfits, although only a small percentage,
are larger than 7 observations standard deviations, which obviously violate the
Gaussian assumption on the errors in general. Similarly, for the AOSN II data, the
assimilated solution fits 86 % and 95 % of the observations to within one and two
standard deviations respectively, while the corresponding numbers for the first guess
are 68 % and 80 %, and 64 % and 76 % for the free running model.

The largest discrepancies between the first guess and the observations were
mostly confined to the upper ocean. After the first 5-day assimilation the first guess
discrepancies grew quickly from their small initial values, confirming that the model
is being forced by surface fluxes that are not compatible with the observations.
This was purposefully set up in order to test the assimilation’s ability to efficiently
reduce these discrepancies while estimating what appears to be magnitude-wise a
reasonable correction to the surface fluxes.
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Appendix

The discretization of NCOM uses second-order interpolation and differentiation as
defined with the notations:
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and
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The NCOM equations are then discretized in flux conservative form as follows

�xu�yu

2�t
ı2t .�zuu/ D �x�y�z .f C Ccurv/ Nvy

x � �yu�zugıx.�� C �atm � �tp/

� �xu�zu 1

�0

ıx.pi /

� ıx

�
�yu�zuua

x Nux
�

� ıy

�
�xv�zvva

x Nuy
�

� ız

�
�x�yw

x Nuz
�

C �x�y�zQ
x
usor C F �

u

C �xu�yuız

0
B@ KM

x

�
�zwx

�nC1
ızu

nC1

1
CA (15.14)

�xv�yv

2�t
ı2t .�zvv/ D �x�y�z .f C Ccurv/ Nux

y � �xv�zvgıy

�
�� C �atm � �tp

�

� �xv�zv 1

�o

ıy .pi /

� ıx

�
�yu�zuua

y
vx
�

� ıy

�
�xv�zvva

x
vy
�

� ız

�
�x�yw

y
vz
�

C �x�y�zQ
y
vsor C F �

v

C �xv�yvız

0
B@ KM

y

�
�zwy

�nC1
ızv

nC1

1
CA (15.15)

�x�y

2�t
ı2t .�z/ D �ıx .�yu�zuua/ � ıy .�xv�zvva/ � ız .�x�yw/ (15.16)

�x�y

2�t
ı2t .�zT / D �ıx

�
�yu�zuuaT

x
�

� ıy

�
�xv�zvvaT

y
�

� ız

�
�x�ywT

z
�

C �x�y�zQTsor C ıx

�
�yu�zuAu

H

�xu
ıxT n�1

	



15 A Weak Constraint 4D-Var Assimilation System for the Navy Coastal . . . 387

C ıy

�
�yv�zvAv

H

�yv
ıyT n�1

	

C �x�yız

 
KH

.�zw/nC1
ızT

nC1/

!
C �x�yQrız� (15.17)

�x�y

2�t
ı2t .�zS/ D �ıx.�yu�zuuaS

x
/ � ıy.�xv�zvvaS

y
/ � ız.�x�ywS

z
/

C �x�y�zQSsor C ıx

�
�yu�zuAu

H

�xu
ıxSn�1

	

C ıy

�
�yv�zvAv

H

�yv
ıySn�1

	

C �x�yız

 
KH

.�zw/nC1
ızS

nC1

!
(15.18)

In (15.14, 15.15, 15.16, 15.17 and 15.18), Fu and Fv are the horizontal mixing terms,
�atm and �tp are the atmospheric surface pressure and tidal potential respectively,
and �� is the surface elevation term that can be distributed among any of the three
time levels, �� D ˛1�

nC1 C ˛2�n C ˛3�
n�1, according to the temporal weighting

terms ˛1, ˛2, or ˛3, which are specified by the user. AM and AH are the horizontal
mixing coefficients for the velocity and scalar fields (temperature and salinity)
respectively, likewise KM and KM for the vertical mixing, Q is a volume flux
source term (with Tsor, Ssor, usor, and vsor as the term source values), Qr is the
solar radiation, � is a function describing the solar extinction, �x, �y and �z
denote the grid-cell dimensions defined at the center of the grid cells, and the
superscripts u, v and w indicate the grid-cell dimensions computed at those velocity
locations on the staggered Arakawa C-grid. f is the Coriolis term, �0 and pi are
the reference density of seawater and the internal pressure, respectively, and the
horizontal advection velocity terms are given by ua and va. The term Ccurv is used
to correct the horizontal advection of momentum for the horizontal curvature of the
grid. It is calculated as

Ccurv D Nvy ı2x.�y/
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The horizontal mixing terms for the momentum equations are given by
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where the mixing coefficient is modeled according the Smagorinsky formula
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with the magnitude of the eddy coefficient being scaled by the constant Csmag. The
vertical mixing coefficients are computed using the turbulence closure by Mellor
and Yamada in either 2 or 2.5 version.

The computation for the free-surface mode is governed by the equations:
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where ˇ1, ˇ2 and ˇ3 are positive constants define by the user with ˇ1 Cˇ2 Cˇ3 D 1,
DuGu and DvGv are the vertical integrals of all the terms in the right hand side
of (15.14) and (15.15) respectively, with the exception of the surface elevation
gradient terms and the vertical mixing, and Du D NDx and Dv D NDy . The free-
surface mode (15.25) is solved by first substituting .Du Nu/nC1 and .Dv Nv/nC1 from
the time discretized (15.23) and (15.24) into (15.25), resulting in an elliptic equation
that is solved for the surface elevation at time level n C 1, which is then substituted
back in (15.23) and (15.24) for computing the barotropic transports Du Nu and DvNv
from which the barotropic velocities are obtained.

The vertical discretization uses a combination of sigma layers and z-levels in a
three-tiered distribution with (1) free sigma layers near the surface that expand and
contract with the free surface elevation, (2) fixed sigma layers that do not vary with
the free surface, and (3) fixed z levels that allow for partial bottom cells for a better
match of the bottom topography.
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