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1. Introduction

Oceanic and atmospheric processes are characterized by
motions of different scales which often manifest themselves
by distinct maxima in the spectral density of a background
model state and in the spectra of background error
covariance (BEC) matrices. Numerical modelling of the
multi-scale BEC structures in variational data assimilation
is a challenging task which has recently drawn a significant
attention due continuous growth of computer power. In
particular, it is desirable to formulate the scale-dependent
BEC operators (Dance, 2004), which can account for
smaller-scale components present in very high-resolution
models. The term ‘multi-scale correlation function’ is also
used in the theory of turbulence and reflects covariances of
multifractal nature characterized by the power-law decay of
correlations (e.g. Mandelbrot, 1997).

A straightforward way to construct multi-scale BEC
operators is to use suitable superpositions of the single-
scale correlation functions for modelling the BEC matrix
elements (e.g. Hristopulos, 2003; Gaspari et al., 2006). In
this approach, the resulting spectrum is difficult to control
directly by the free parameters of the correlation functions
and care should be taken to maintain positive definiteness
of the correlation matrix.

A promising approach is to introduce scale separation
in the BEC models by splitting the covariance matrix into
several additive single-scale components (e.g. Wu et al.,

2002; Purser et al., 2003) and perform assimilation on a
sequence of grids with increasingly fine resolution (Li et al.,
pers. comm. 2012).

A multi-scale BEC operator can also be constructed
using a polynomial of the discretized diffusion operator
for representing the inverse covariance. This approach has
been studied by many authors (e.g. Sasaki, 1970; Wahba
and Wendelberger, 1980; Purser, 1986; McIntosh, 1990; Xu,
2005). Its attractive features are the flexibility in controlling
the BEC spectrum and the low cost of computing the action
of the inverse BEC matrix on a state vector. In practice,
however, applications of this approach were limited to
BEC operators with Gaussian-shaped correlation functions
and their approximations (e.g. Weaver et al., 2003; Di
Lorenzo et al., 2007). Among the reasons for that limited
applicability is poor conditioning of the BEC operators
generated by high-degree polynomials and the necessity
to link polynomial coefficients with the shape of the BEC
spectrum. In the recent studies of Hristopulos and Elogne
(2007, 2009) and Yaremchuk and Smith (2011), correlation
functions associated with an arbitrary quadratic polynomial
of the homogeneous diffusion operator were obtained and
relationships between the polynomial coefficients and the
magnitude/length scale of the corresponding spectral peak
have been provided.

In this note the result of Yaremchuk and Smith (2011) is
extended for the case of an arbitrary polynomial, generating
a multiple-peak BEC spectrum. Besides, it is shown that
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the action of the BEC operator can be reduced to a
sequence of inversions of the quadratic functions of the
diffusion operator, thereby relaxing the above-mentioned
conditioning problem.

2. Homogeneous multi-scale correlation functions

This note deals with covariance modelling in R
n, although

the results can be extended to an arbitrary differentiable
manifold of constant curvature.

A general form of the inverse BEC operator built as a
polynomial of the homogeneous diffusion operator � is

B−1 = I +
L∑

l=1

αl�
l. (1)

Here I is the identity operator and αi are real numbers,
constrained by the positive definiteness requirement of
B−1, which can be taken into account explicitly by
diagonalizing B−1 via the Fourier transform. In the
Fourier representation the inverse BEC operator acts
as multiplication by the polynomial in k2 ≡ |k|2 (k is
the wavenumber), and the positive-definiteness property
translates into the requirement for the spectral polynomial

B−1(k2) = 1 +
L∑

l=1

αl(−k2)l (2)

to be positive for all k2 > 0. This constraint is equivalent to
the statement that the right-hand side of Eq. (2) must not
have real positive roots. A particular form of the even-order
polynomial satisfying this requirement is

B−1(k2) = 1

Z

M∏
m=1

(k2 + z2
m)(k2 + z̄2

m), (3)

where M = L/2,

Z =
∏

m

|z2
m|2, (4)

where overline in Eq. (3) denotes complex conjugate
and zm = am + ibm are arbitrary complex numbers with
ambm �= 0. In its general form, the polynomial (3) is
additionally multiplied by the product over the arbitrary
number of real negative roots. To simplify the formulas, we
consider this case in the Appendix, and focus on the analysis
of Eq. (3) omitting the product (summation) limits over
m and assuming there are no real negative and multiple
roots. The latter requirement is not restrictive for practical
purposes, because location of the roots is never known
exactly, and the BEC spectrum can be well approximated by
Eq. (3) (see Appendix).

It is instructive to note that expression (3) can also be
rewritten in the form

B−1 = 1

Z

∏
m

[a2
m + (k − bm)2][a2

m + (k + bm)2]. (5)

Compared to the spectral representation (Eq. (2)),
representation (5) has the advantage that its free parameters
are not constrained by the positive-definiteness requirement

and can be interpreted as the scales (b−1
m ) and magnitudes

(a−1
m ) of the modes forming the spectrum.
Since the reciprocal of B−1(k) provides the spectral

representation of the BEC operator, the matrix elements
B(r) of B (covariance functions) depend only on the distance
r from the diagonal and can be obtained in the form of a
single integral over k:

Bn(r)= Zr−s

(2π)
n
2

∞∫
0

ks+1Js(kr)dk∏
m

(k2 + z2
m)(k2 + z̄2

m)
. (6)

Here J denotes the Bessel function of the first kind, n is the
dimension of the physical space and s = n/2 − 1. Equation
(6) is obtained by substitution of the reciprocal of Eq.
(3) into the integral of the inverse Fourier transform and
integrating over the solid angle in the wavenumber space
(e.g. Yaremchuk and Smith, 2011). The integral (Eq. (6))
can be taken by decomposing

B(k) = Z∏
m

(k2 + z2
m)(k2 + z̄2

m)
(7)

into elementary fractions:

B(k) =
∑

m

[
qm

k2 + z2
m

+ q̄m

k2 + z̄2
m

]
, (8)

where

qm = Z

(z̄2
m − z2

m)
∏

j �=m
(z2

m − z2
j )(z2

m − z̄2
j )

. (9)

By replacing Eq. (7) in Eq. (6) with the sum (8) the
integral is reduced to the sum of Hankel–Nicholson type
integrals (e.g. Abramowitz and Stegun, 1972, eq. 11.4.44)
and can be taken explicitly. The cited integral is valid if the
following constraints are satisfied: (a) −1 < s < 3/2 and (b)
the real part of zm is positive. The first condition is met in the
practical cases of 0 < n < 5. Furthermore, in view of Eq. (5)
both am and bm can be assumed to be positive without loss
of generality and thus the second constraint is also satisfied.
The resulting expression for B(r) is

Bn(r)= 2r2−n

(2π)
n
2

∑
m

〈qmρs
mKs(ρm)〉, (10)

where ρm = zmr, K stands for the modified Bessel function
of the second kind, and angle brackets denote taking the real
part.

The corresponding correlation functions Cn(r) are
obtained through normalizing Eq. (10) by Bn(0). For n < 4
the BEC function values at r = 0 are

B1(0) =
∑

m

〈qmz̄m〉|zm|−2, (11)

B2(0) = − 1

π

∑
m

〈qm log zm〉, (12)

B3(0) = − 1

2π

∑
m

〈qmzm〉. (13)
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In one- and three-dimensional cases the correlation
functions can also be expressed in terms of the exponents:

C1(r)=
∑〈qmz̄me−ρm〉/|zm|2∑〈qmz̄m〉/|zm|2 , (14)

C3(r)= 1

2πr

∑〈qme−ρm〉∑〈qmzm〉 . (15)

Relationships (10)–(13) provide analytical expressions
for the multi-scale homogeneous BEC functions and the
corresponding CFs. In many applications, it is often
important to know the value N of the convolution of B with
the δ-function at r = 0 (the normalization factor) which is
used for constructing the BEC operator numerically. The
factor can be found by integrating Cn(r) over R

n:

Nn = 2

Bn(0)

∑
m

〈qmz̄2
m〉

|zm|4 . (16)

3. Practical issues

In applications, a BEC model is often constructed by
fitting spectral (7) or correlation (10) functions to those
derived from experimental data. The random fields under
consideration are characterized by 2m parameters, which
give enough freedom for approximating complex spectra.
The approximation procedure can be formulated as a least
squares problem in 2m dimensions, which may be rather
complicated due to nonlinearity of B with respect to the
fitting parameters am and bm. Therefore it is useful to
have guidance on how the magnitudes and locations of the
model peaks are related to the scales and amplitudes of the
physical modes contributing to the experimental spectrum
(Figure 1).

The contribution of the mth mode to the spectrum can
be assessed by integrating the right-hand side of Eq. (8):

Em=
∞∫

0

[
qm

k2 + z2
m

+ q̄m

k2 + z̄2
m

]
dk= π〈qmz̄m〉

|zm|2 . (17)

In the limit when distances |bl − bm| between the spectral
peaks of B are much larger than their half-widths am (i.e.
am/bm � 0 in particular), Eq. (17) can be simplified using
the asymptotic approximations

zm ≈ ibm; qm ≈ b3
m

4iam�m
; �m ≡

∏
j �=m

(1 − b2
m/b2

j )2,

so that

Em ≈ πb2
m

4am�m
. (18)

Asymptotic values of spectral density at the peaks are
respectively

B(bm) ≈ b2
m

4a2
m�m

= Em

πam
, (19)

i.e. the peak amplitudes are inversely proportional to a2
m

and to the square of the mode scale b−1
m . Expressions

(17)–(19) can be useful in generating the first-guess values

for zm to initialize an iterative procedure of approximating
experimental data.

After the model parameters are established, the action
of the inverse BEC operator can be computed recursively
by

B−1 =
∏

m

[
I − |z2

m|−2�(2〈z2
m〉I − �)

]
. (20)

The inverse BEC model (Eq. (20)) can then be employed
either to compute the action of B using an iterative inversion
scheme or to directly compute the gradient of a 3dVar cost
function involving the quadratic form xTB−1x, where x is
the state vector.

The considered multi-scale BEC operators can be
used in many oceanographic applications, where the
background errors have multi-scale spectra. For instance,
surface waves are often characterized by two-peak spectra
generated by the swell and locally forced wind waves.
Filtering such a wave-induced signal from observations is
important in many applications (e.g. vertical positioning
of the autonomous underwater vehicles, turbulence
microstructure measurements in shallow seas).

Figure 2(a) demonstrates typical velocity spectra,
derived from observations by an upward-looking bottom-
mounted acoustic Doppler current profiler (Korotenko
et al., 2012). Measurements were taken in the period of
well-developed wind waves with a dominant frequency
f ∼ 0.2 Hz superimposed on the swell (f ∼ 0.1 Hz)
propagating from the Bay of Biscay. Slight asymmetry
of the beam directions with respect to the vertical
prevents cancellation of the wave-induced orbital motions
in averaging over the beams and contaminates the
turbulence spectrum with a double-bump feature seen in
Figure 2(a).

Impact of the surface waves can be removed by
constructing a rational filter (e.g. Antoniou, 2000) F(k) =
B(k)B̃−1(k) using the polynomials (1) of the diffusion
operator � = ∂tt . The rational function F(k) can be obtained
by adjusting the filter parameters z, z̃ to the ratio between
the observed spectrum and its power-law approximation
(dashed line in Figure 2(a)) in the wave-contaminated
frequency band ω = [0.06 − 0.4] Hz. After the adjustment,
the matrix elements of B are computed using Eqs (10),
(14):

B(t)=
√

2

π

2∑
m=1

|qm|
|zm| e−amt cos[bmt + arg(qmz̄m)], (21)

whereas the action of B̃−1 is given by Eq.
(20):

B̃−1 =
2∏

m=1

[
1 − |z̃2

m|−2∂tt(2〈z̃2
m〉 − ∂tt)

]
. (22)

The filter is implemented by differentiating the series
with Eq. (22) and then smoothing it with the kernel
(Eq. (21)).

Figure 2(b) demonstrates the result of fitting the filter
parameters zm, z̃m to the wave-induced part of the spectrum
shown in Figure 2(a). The fit has a relative error of 7% within
the target band of 0.06–0.4 Hz. In the same frequency band,
the filtered series spectrum has similar (6%) deviation from
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Figure 1. An example of the normalized spectrum B(k) (Eq. (7), left panel) and the respective correlation function B(r)/B(0) (Eqs (10, 12), right panel)
for M = n = 2, z1 = .5 + 3i; z2 = .2 + 6i.
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Figure 2. (a) Power spectrum of the cross-shore velocities near Boulogne-sur-Mer on 15 June 2009 (black line) measured at 1 s resolution. Contamination
by surface waves is seen as a pronounced double peak. Grey line shows the spectrum of filtered series. (b) Solid black line is the ratio between the observed
spectrum and its power-law interpolation (dashed line in left panel) within the wave-contaminated band ω. This ratio was used for constructing the filter
F, whose spectrum is shown in grey.

the power law when normalized by deviation of the observed
spectrum from that law. Proximity of the filtered spectrum
to the power law can be further improved by increasing the
order M of the polynomials B−1(k) and B̃−1(k).

4. Summary and discussion

Analytical expressions for the matrix elements of homo-
geneous BEC operators generated by the polynomials
(Eq. (1)) of the diffusion operator are obtained. The
considered BEC operators can be used in geophysical
applications involving multi-scale phenomena whose con-
tribution to the spectrum can be modelled by adjusting
the free parameters (polynomial coefficients) of the BEC
model. Applicability of the technique to a simple two-
scale one-dimensional filtering problem has been demon-
strated.

A particular advantage of the considered type of BEC
operators is the fact that their inverses can be represented
by sparse matrices that can be efficiently implemented
on the grids of various complexity. Explicit partitioning
of the inverse operators (Eq. (3)) ensures their positive-
definiteness and provides a recursive algorithm (Eq. (20))
for computing the action of the BEC operator which has
reasonably conditioned matrices on each iteration.

Presented results are also valid in the homogeneous
anisotropic case, because the latter can be reduced to
isotropic form by the appropriate coordinate transformation
(e.g. Xu, 2005; Yaremchuk and Carrier, 2012). The
obtained analytical expressions for the correlation functions
(Eqs (10–15)) can be useful in finding the BEC model
parameters for the fields whose local decorrelation scales
ρ do not change significantly at distances of the order
of ρ.

In the more general inhomogeneous case analytical
formulas for the matrix elements of B cannot be obtained,
and inversion of the operator (Eq. (20)) has to be performed
numerically. For the BEC models with M > 2 such inversion
may encounter difficulties associated with the condition
number of B, which grows exponentially with the number of
model parameters. In view of the decomposition (Eq. (20)),
however, this inversion can be performed consecutively
by iterative solutions of M linear systems whose condition
numbers are limited from above by the maximum eigenvalue
of |z2

m|−2�2.
In higher dimensions (n > 1) the polynomial BEC

model can be further improved by introducing anisotropic
inhomogeneous diffusion operators separately for each
mode. The respective diffusion tensors can be adjusted using
prior knowledge of the impact of the background fields on
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Figure 3. An example of the normalized spectrum generated by adding
two negative roots p1 = 1 and p2 = 4 to the spectrum in Figure 1
(z1 = .5 + 3i; z2 = .2 + 6i). Grey spectrum is the approximation obtained
by replacing p1 and p2 with z3 = −1.46 + .01i. The approximation error is
5%.

the error characteristics described by the corresponding
spectral peak.

For the BEC spectra characterized by deep gaps between
the peaks, the multi-scale approach of Li et al. (pers.
comm. 2012) may prove to be more computationally
effective, as it does not take into the account scale
interactions, and adopts the additive BEC model. In the
case when a pair of closely spaced peaks (Figure 2(a))
exists, the technique of Li et al. (pers. comm. 2012) can
be generalized by introducing a two-parameter model
to account for the additive BEC component at the
corresponding scale.

Appendix

Real negative roots provide limited freedom to controlling
the shape of the BEC spectrum because in this case the poles
of Eq. (7) are located outside the range κ > 0. Therefore,
these poles just add a monotonously decaying function of k
which has the largest impact on the long-wave part of B(k).
Furthermore, spectral contribution of the negative roots can
always be well approximated by a pair of complex roots
ε2 − b2 ± 2ibε, where ε is a small number (Figure 3).

Taking N = L − 2M negative roots −pn (pn > 0) into
account supplements all the formulas with an extra
summation (product) over these roots. In the following,
the ‘negative-root generalizations’ of the key formulas are
listed. For clarity, we keep the numbering and abbreviate
sums/products from the main text by {�} and {�}
respectively:

B−1 = 1

Z
{
∏

}
∏

n

(k2 + pn), (A3)

Z = {
∏

}
L∏

n=2M+1

pn ≡ {
∏

}
∏

n

pn, (A4)

qm = Z

(z2
m − z̄2

m){∏} ∏
n

(z2
m + pn)

; 0 < m ≤ M,

qn = Z∏
m

|pn + z2
m|2∏

j �=n
(pn − pj)

; 2M <n≤L, (A8)

Bn(r)= 1

(2π)
n
2

[
2{

∑
} +

∑
n

qnρ
s
nKs(ρn)p−s

n

]
, (A9)

where ρn = p̃nr, and p̃n = √
pn:

B1(0) = 1

2

∑
n

qn/p̃n + {
∑

}, (A10)

B2(0) = 1

π

[
1

2

∑
n

qn log(p̃n) − {
∑

}
]

, (A11)

B3(0) = 1

2π

[
1

2

∑
n

qnp̃n − {
∑

}
]

, (A12)

En = πqn

2p̃n
, (A16)

B = {
∏

}
∏

n

(I + p−1
n �). (A19)
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