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Many background error correlation (BEC) models in data assimilation are for-
mulated in terms of a positive-definite smoothing operator B which simulates
the action of correlation matrix on a vector in state space. To estimate the ef-
ficiency of such approach, numerical experiments with the Gaussian and spline
models

B = exp(∇ν∇); Bm =

(

I−
∇ν∇

m

)

−m

have been conducted. Here I is the identity operator and ν is the diffusion
tensor, whose spatial variability is derived from the forecast field and m is the
spline approximation order.

Performance of these BEC representations are compared in the frame-
work of numerical experiments with real 3dVar data assimilation into the Navy
Coastal Ocean model (NCOM) in the Western Tropical Pacific. It is shown that
both BEC models have similar forecast skills over a two-month time period,
whereas the second-order spline model is several times more efficient compu-
tationally if the cost function is minimized in the state space.
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1. Introduction

In recent years, heuristic BEC modelling has become an area of active

research in data assimilation (DA). This interest has been fueled by de-

velopment of the ensemble DA techniques and rapid increase of the data
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streams, driven by remotely sensed observations from satellites and intro-

duction of new autonomous observational platforms in oceanography. Tra-

ditional BEC models based on the explicit definition of the error covariances

by the families of parameterized correlation functions1,2 tend to loose com-

putational efficiency with the growth of the number of observations and

with the necessity to introduce more complex observation operators into

the DA algorithms. Because of that, there is a growing tendency to esti-

mate error correlations directly in the model space (MS) or in its subspaces

spanned by the appropriately selected basis functions.3–5.

Of particular interest are the MS correlation models based on positive

functions of the diffusion operator D = ∇ν∇, such as the exponent or

the inverse of its binomial approximation6,7. Both types of models were

extensively used in many applications8–11 because of their convenience and

ease of numerical implementation. Another advantage is their flexibility in

approximation of inhomogeneous and anisotropic covariance functions12,13.

Numerically, these models are implemented by integrating the diffusion

equation (DE) using either explicit or implicit scheme.

The computational cost of the DE integration by explicit methods in-

creases substantially when the local decorrelation scale, ρc, becomes larger

than the model grid step δx. This is because the minimum number of mul-

tiplications by D, is proportional to (ρc/δx)
2 – a constraint imposed by

numerical stability of the integration. In such situations it may be advanta-

geous to employ implicit integration schemes11,14, which tend to converge

fast enough to deliver considerable computational gain. Additional gain can

be obtained if the implicit approximation is implemented within the model

space (MS) formulation. In this case, the iterative solution of the system in

data space (DS) which embeds an iterative cycle of the implicit scheme, is

no longer needed.

This study compares the forecast skill and computational cost of two

BEC models: The first model (C∞) is described by the propagator of the DE

and implemented numerically by its explicit integration; the second BEC

model (Cm) is defined by the inverse of a mth-order binomial of D, that ap-

proximates C∞ and can be interpreted as a result of m-step DE integration

with the implicit scheme. Assimilation experiments were performed using

both DS and MS formulations of Cm and a realistic regional ocean model

with real data. It is shown that in certain situations it is computationally

advantageous to employ the second (spline) model combined with the MS

solution to the normal equation.
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2. Covariance modelling in MS

2.1. MS and DS approaches in 3dVar

In its basic formulation, the 3dVar analysis determines the optimal model

state increment x that minimizes the following cost function,

J(x) =
1

2

[

xTB−1x+ (Hx− d)TR−1(Hx− d)
]

→ min
x

. (1)

Here B is the BE covariance matrix and d is the innovation vector

d = y −Hxb

where y denotes observations, xb is the background model state, H is the

observation operator (linearized) in the vicinity of xb, and R is the covari-

ance matrix of observation errors. To simplify the notation, the variables in

both model and data spaces are non-dimensionalized by x ← C−1/2x and

d ← R−1/2d; where C is the (diagonal) background error variance matrix.

In order to keep J invariant, the matrices B, and H are non-dimensionalized

by B← C−1/2BC−1/2; H← R−1/2HC1/2.

The cost function (1) is minimized by solving the normal equation which

sets the gradient of J equal to zero:

(B−1 +HTH)x = HTd, (2)

so that the solution to the normal equation is:

x = (B−1 +HTH)−1HTd (3)

Solving equation (2) for the model state increment x is the basic tool of

3dVar analysis. If B−1 has full rank, the solution (3) is unique and can be

rewritten in the dual form15:

x = BHT(HBHT + I)−1d (4)

which is often called the DS solution to the variational problem (1). Note

that if B−1 does not have full rank, defining B as its generalized inverse

does not guarantee that solution (4) will coincide with the solution (3) of

the original minimization problem. This is because the DS solution (4) is

always orthogonal to the null space of B, whereas in general, the minimizer

(2) of (1) is not constrained by this condition.

It should also be noted that the majority of the BEC models are based

on direct computation of the matrix elements of B from experimental data,
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and therefore, require 3dVar solutions in the forms, involving B. These are

the DS solution (4), or the MS solution, preconditioned by B̃ =
√
B 16,17:

x = B̃(I + B̃
T

HTHB̃)−1B̃HTd (5)

Therefore, the basic MS solution (3) has been used in practice more rarely

for two reasons: a) it requires solving the linear system in MS, which has

many more dimensions than the DS; and b) estimation of B from the data

is more straightforward than estimation of B−1.

2.2. The Gaussian and spline BEC models

The two types of BEC models considered here are based on the polynomials

of D. The major idea is to model the resulting action of the BEC operator

B on a vector x by integrating the corresponding diffusion equation

∂x

∂t
= Dx ≡ 1

2
∇ν∇x (6)

for a certain ”time period” T , thus setting B = expTD.

The diffusion tensor ν is represented by 3×3 positive-definite matrices

whose entries depend on the coordinates x in physical space. The eigen-

values λ2
i , i = 1, ..., 3 of νT are all positive, have the dimension of length

squared, and in the homogeneous case (ν = const) they are naturally inter-

preted as the squares of the decorrelation scales ρi in the directions of the

respective eigenvectors of ν. In the inhomogeneous case, the decorrelation

scales are defined locally in a similar manner, whereas the integration time

T plays the role of a global scaling parameter for the distribution of ρ2i (x ).

Therefore, setting the value of T is equivalent to specifying the square of

the mean decorrelation scale ρ for a given distribution of ν(x ). Throughout

the remainder of this paper, we keep in mind this equivalence and replace

T with ρ2 where appropriate.

Numerically, the action of the Gaussian BEC operator exp(TD) is usu-

ally represented by integrating (6) with an explicit time-stepping scheme,

xt+δt = xt + δtDxt, such that the result of multiplication of a vector x0 by

B is

xT ≡ Bx0 =

[

I+
TD

n

]n

x0 ≈ exp[ρ2D]x0 (7)

where n = T/δt is the total number of time steps. Expression (7) shows that

numerically, the Gaussian BEC model is a high-order polynomial in D. In

data assimilation problems the n-step ”time integration” (7) is embedded
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in the iterative loop that solves linear equations, whose system matrices are

under the inversion signs in either (4) or (5). Therefore, reducing n (increas-

ing δt) provides major computational savings. The minimum value for n is

limited, however, by the stability condition which constrains eigenvalues of

the operator I+ ρ2D/n in (7) not to exceed 1 in magnitude:

n ≥ 1

2
ρ2λ (8)

where λ is the absolute value of the largest eigenvalue of D. Numerically,

the minimum value of n in 3d is proportional to the square of the largest

ratio ρ̃ between decorrellation scale and the local grid step taken over the

entire grid. In realistic applications, ρ̃ may easily exceed 10, substantially

increasing the cost of computing the action of B on a vector.

For ρ̃ > 10 the computational burden can be reduced by considering a

spline BEC model

Bm =

[

I− ρ2D

m

]

−m

' exp[ρ2D], (9)

which specifies the inverse BEC as a polynomial in the powers of −D and

converges to the Gaussian model as m→∞ (Fig. 1).
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Fig. 1. Normalized spectra of the Gaussian (m = ∞) and spline BEC operators with
different approximation order m (a) and the corresponding correlation functions (b).
Horizontal axis is normalized by the correlation radius. The dashed line shows correlation
function used in the experiments with NCODA Cd model (see Section 3.2).

The BEC operator in (9) can be implemented numerically in two ways,

distinguished by the order of the operations of inversion and raising to

the mth power. The first method requires m inversions of I− ρ2D/m, and

this approach can be interpreted as integration of the DE by an implicit

scheme18 with the ”time step” δt = ρ2/m. The second method involves

only one inversion of the matrix whose condition number is cm, where

c = cond(I− ρ2D/m).
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Numerically, each iteration of the first inversion process is approximately

equivalent to a one-step integration with the explicit scheme (7) as the

corresponding matrices I+ρ2D/n and I−ρ2D/m differ only by the numerical

factor before the diffusion operator. The second method of computing the

action of Bm is more expensive than the first one, because the total number

of iterations grows exponentially with m, unless an efficient preconditioner

is available.

On the other hand, the possibility to directly compute the action of

B−1
m = (I −D/m)m is advantageous in solving the MS 3dVar problem (2),

as it requires only one MS iterative cycle to invert (I−D/m)m +HTH. In

contrast, the DS solution (4) and the B̃m-preconditioned MS solution (5)

involve the product of two cycles: each iteration of the respective DS/MS

system solvers contains an MS iterative cycle required for computing the

action of B (or B̃) on a vector.

Spectral properties of the low-order spline models differ considerably

from the Gaussian one: their spectra exhibit more gentle slopes and weaker

damping of the short (near-grid) scales (Fig. 1a) and the correlation func-

tions decay faster than the Gaussian at small distances (Fig. 1b). The differ-

ence may affect the forecast skill of the assimilation system and not worth

the computational gain when applied to real data. This and other related

issues have been examined by means of numerical experimentation.

3. Numerical experiments setup

Experiments were performed with the Relocatable Navy Coastal Ocean

Model system (RNCOM) consisting of two primary components: The

NCOM provides forecasts of the ocean state, and the Navy Coupled Ocean

Data Assimilation (NCODA) uses a 3dVar algorithm to assimilate obser-

vations into the model forecast state19.

3.1. Numerical model and observations

NCOM has a free-surface and is based on the primitive equations under the

hydrostatic, Boussinesq, and incompressible approximations. The Mellor

Yamada Level 2/2.5 turbulence models are used to parameterize vertical

mixing. Most terms are treated explicitly in time, except for the propagation

of surface waves and vertical diffusion, which are treated implicitly. For the

present study the model was configured on two grids with homogeneous

grid spacing of 3 and 10 km in the horizontal. In the vertical there were

respectively 46 and 50 layers having grid steps varying between 1 m and
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Fig. 2. The model domain and sea surface temperature increments at 10 m on Spetem-

ber 2, 2007 for the Cd (a) and C∗

2
covariance models (b) (see Section 3.2). Contour interval

is 0.1◦.

400 m. The number of grid points representing a 3d scalar field was M =

10, 766, 576 and M = 862, 992 respectively. All the runs were conducted on

the Dell R610 server equipped with 16 Xeon 5500 processors running at

2.8GHz.

Assimilation experiments were performed in the Okinawa Trough region

(Fig. 2) in the time period from September 1 to October 31 2007. The region

and time period were selected to include extensive Navy observations from

an air-deployed bathythermograph survey, a shipboard hydrographic sur-

vey, and eight gliders. Observations from this Navy exercise are an addition

to the standard operational data stream used by NCODA, which consists

of sea surface temperature (SST) and sea surface height anomalies obtained

from satellites, and temperature/salinity profiles acquired by buoys, floats,

CTDs, and XBTs. The total number of observations processed during the

2-month assimilation period was 1,050,429, or approximately N̄=17,507

points per 24-hour assimilation cycle.

3.2. Assimilation system

NCODA uses a DS 3dVar data assimilation scheme with the analysis equa-

tion (4). The vector of analysis variables x contains temperature, salinity,

geopotential (dynamic height) and velocity fields, but in contrast to the

DE approach, the BEC operator is defined by the explicit specification of

its matrix elements via correlations in 3d using the correlation function

shown by the dashed line in Fig. 1b. In the following, we will denote this
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BEC model by Cd, the Gaussian model and its mth-order spline approx-

imations will be labeled by C∞ and Cm, and the asterisk will denote MS

implementation (3) of the spline model (C∗m).

In the assimilation experiments, the Cd model was replaced by the tested

BEC models. Several assimilation runs with Cd and other BEC models

were also performed over the 2-month assimilation period for comparison

purposes. In these runs, the horizontal decorrelation scale was set to 45 km,

while vertical scale varied in z in proportion with the vertical model grid

step.

Since the major goal of the present study is to compare computational

efficiencies of the BEC models that are quite different, their forecast skill

was monitored with respect to the operation of the NCODA system with the

Cd BEC model whose forecast skill was used as a benchmark. This was done

to ensure that the computational cost of the analysis was not reduced at the

expense of reduction in assimilation quality q. The latter was estimated as

the DS distance between the 24-hour model temperature/salinity forecast

at observation points Tf , Sf and the observed values To, So:

qT (t) = 〈(Tf − To)
Tσ−2

T (Tf − To)〉1/2, (10)

qS(t) = 〈(Sf − So)
Tσ−2

S (Sf − So)〉1/2, (11)

where σT,S are the observation errors and the angular brackets denote aver-

aging over the observational locations. These DS distances were normalized

to measure the forecast skill s of the tested models relative to the skill of

the benchmark model Cd.

s(t) =
qT (C) + qS(C)
qT (Cd) + qS(Cd)

(12)

4. Results

4.1. Comparison of the forecast skills

As it has been noted in Section 2, spline models are characterized by broader

spectra and provide less attenuation at high spatial frequencies (Fig. 1)

than the Gaussian model. This property causes a certain difference in the

analyses increments (Fig. 2), which may result in substantial decrease of the

overall forecast skill. The forecast skills for the 10 km and 3 km resolution

configurations are shown in Figure 3. It is seen that the forecast skill of

both C∞ and C2 BEC models does not depend on the minor changes in the

shape of the correlation function: The 2-month mean values shown in Fig.

3 do not differ significantly from 1. This result indicates that the analyses
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Fig. 3. Forecast skill of the C2 (black) and C∞ (gray) BEC models implemented on
coarse (10 km, above) and fine (3km, below) resolution grids. The time-averaged skills s
are shown in the low right corners.

from the C∞ and C2 models are at least not degrading the benchmark

forecast generated by the operational NCODA system, while both models

demonstrate similar forecast skills.

It is also remarkable that the forecast skill of the fine-resolution models

appeared to be 13-15% below the skill of the respective coarse-resolution

configurations. To some extent this phenomenon can be explained by the

presence of small-scale motions in the 3 km configuration that are barely

constrained by the available observations: On average, an observation sup-

plies information for 610 grid points in the fine-resolution case against 110

grid points per observation for the coarse-resolution configuration.

4.2. Comparison of the CPU times

The dependence of CPU time was explored on both the ratio ρ of the back-

ground decorrelation scale to the grid step and on the degree of anisotropy

of the correlations. A series of experiments were performed with differ-

ent strengths of the anisotropy and different values of ρ for the selected

date September 2, 2007 (23,970 observation points). In these experiments,

the diffusion tensor was specified as follows. The background decorrelation

scales ρi at every location were defined as a product of the local grid steps
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Fig. 4. Composite maps of four columns (filled contours) of the temperature correlation
operator for (a) isotropic (λ = 12) and (b) anisotropic (λ = 165) cases of the C∞ BEC
model at 20 m. Thin contours show the SSH field. Contour interval is 10 cm.

and the universal scaling parameter ρ. The smaller principal axis in the

horizontal direction (corresponding to λ2) was set to be orthogonal to the

local velocity vector v . The length of the larger axis λ1 was set to be equal

to λ2 ·max(1,
√

|v |/v), where v is a prescribed threshold value of |v |. A
structure like this simulates enhanced diffusive transport of model errors

in the regions of strong currents on the background of isotropic error dif-

fusion (Fig. 4). The strength of anisotropy was controlled by changing the

value of v: v=10 m/s corresponds to locally isotropic diffusion (λ=12, Fig.

4a), v = 0.2 m/s imposed moderately anisotropic covariances (λ = 50) in

regions of strong currents, and v = 0.07 m/s corresponds to the strongly

anisotropic case (λ = 165, Fig. 4b).

In a series of experiments, NCODA observations on Spetember 2, 2007

were analyzed using the C∞ and C1,2,3 BEC models in both state- and

data-space formulations and the required CPU times for these analyses

were compared. Results of the 10 km grid size experiments are assembled

in Table 1 where larger anisotropy corresponds to the larger maximum

eigenvalues λ of the diffusion operator (column 2). Respectively, the tested

values of ρ correspond to the decorrelation scales of 30, 45 and 70 km.

As can be seen from Table 1, the numbers indicate improved computa-

tional efficiency of the low-order (m < 3) MS implementation of the spline

model. For higher-order models, the MS solution appears to be less efficient

due to exponential growth of the condition number of the system matrix.
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Table 1. CPU times τ∞ for the Gaussian covariance model and the relative
CPU times of the mth-order spline models implemented in DS (τm) and in
MS (τ∗m). The accuracy of system solutions (defined as the ratio between the
norms of the residual and the rhs vectors) is ε = 10−6. The fastest cases for
a given m are boldfaced.

ρ λ τ∞, min τm/τ∞ τ∗m/τ∞
C∞ m=1 m=2 m=3 m=1 m=2 m=3

12 3.47 0.83 2.00 2.66 0.06 0.31 1.36
3.0 50 14.9 0.38 0.85 1.10 0.02 0.21 1.82

165 54.0 0.16 0.32 0.40 0.01 0.15 1.78

12 8.72 0.54 1.25 1.54 0.04 0.23 1.58
4.5 50 36.4 0.19 0.41 0.74 0.01 0.15 1.62

165 156 0.09 0.21 0.29 0.00 0.09 1.83

12 24.0 0.24 0.62 1.06 0.02 0.16 1.42
7.0 50 129 0.08 0.19 0.27 0.00 0.07 0.84

165 418 0.04 0.11 0.16 0.00 0.06 6.68

Additional experiments were made on a longer time scale, with the

NCODA system using the generic correlation Cd model as well as the tested

models with 24-hour analysis cycle (λ = 12, ρ = 4.5). These experiments

have shown that the C∗2 model is 3 times faster than C2 and 3.5 times faster

than C∞ for the 10 km configuration. Similarly, for the 3 km configuration,

the C∗2 model was 3.3/4.2 times faster. CPU times of the C∗2 and Cd models

are compared in Fig. 5. On average, the C∗2 model requires 30-50% more

CPU time than the generic Cd model. However, when the number of ob-

servations exceeds 1.5-1.7·104, the C∗2 model appears to be more efficient.

Similar computations for 3 km resolution show that this critical number of

observations increases only slightly to 1.8-2·104 despite a 12-fold increase

in the dimension of the model space.

5. Conclusions

The forecast skill and computational efficiency of the Gaussian and spline

covariance models were examined in the framework of 3dVar assimilation

of real data into an operational ocean model. It is shown that the MS for-

mulation of the second-order spline model has similar 24-hour forecast skill

and 3–5 times better computational efficiency than the DS implementation

of the Gaussian and spline models. At m < 3, the computational efficiency

of the C∗m solutions is based on the low-cost computation of the action of

the inverse BEC operator B−1 = (I − ρ2D/m)m which contributes to the

system matrix of the normal equation (2). On the contrary, multiplication

by I−ρ2D/m (or by I+ρ2D/n) has to be performed many times in the DS

formulation to iteratively model the action of B, which in turn is immersed
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into the iterative loop required to find the solution (4) to the normal system

in the DS formulation.

It is also shown, that the difference in the BEC models has a negligible

impact on the forecast skill of the 3dVar assimilation system. Comparison

with the benchmark NCODA 3dVar algorithm has shown that the forecast

skill remains virtually the same (Fig. 3), whereas the C∗2 model appears to

be more efficient computationally than the operational BEC model when

the number of observations exceeds 15-12·103. Numerical experiments have

also shown that spline models become especially advantageous when the

background decorrelation scale is well resolved by the model grid (ρ > 3)

and the diffusion operator is strongly anisotropic/inhomogeneous (Table 1).

The results of this work suggest that studying the applicability of the

anisotropic higher-order spline BEC models to 3dVar assimilation is worth

consideration for at least three reasons: 1) they are computationally efficient

in processing large number of observations, 2) they are flexible enough to

accommodate covariance information from the structure of the background

flow, and 3) they can be easily extended to include model-generated covari-

ances extracted from model statistics.
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