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Abstract We compared the estimates of surface drifter
trajectories from 1 to 7 days in the equatorial Atlantic
over an 18-month period with five eddying ocean gen-
eral circulation model (OGCM) reanalyses and one
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observational product. The cumulative distribution of
trajectory error was estimated using over 7,000 days
of drifter trajectories. The observational product had
smaller errors than any of the individual OGCM re-
analyses. Three strategies for improving trajectory es-
timates using the ensemble of five operational ocean
analysis and forecasting products were explored: two
methods using a multi-model ensemble estimate and
also spatial low-pass filtering. The results were insen-
sitive to the method used to create the ensemble esti-
mates, and by most measures, the results were better
than the observational product. Comparison of rela-
tive skill of the various OGCM reanalyses suggested
promising avenues for exploration for further improve-
ments: forcing with higher frequency wind stress and
quality control of input data. One of the lowest hori-
zontal resolution OGCMs, with 1/4◦ longitude horizon-
tal resolution, made the best trajectory estimates. The
individual OGCMs were dominated by errors at spatial
scales smaller than about 100 to 200 km, i.e., less than
the local deformation radius. But buried in those errors
were valuable signals that could be retrieved by com-
bining all the OGCM velocity fields to produce a multi-
model ensemble-based estimate. This estimate had skill
down to spatial scales about 75 km. Results from this
study are consistent with previous work showing that
ensemble-mean forecast skill is superior to individual
forecasts.

Keywords Ocean prediction · Surface drifters ·
Data assimilation · Eddying OGCM ·
Model intercomparison · Model–data comparison ·
Multi-model ensemble prediction
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1 Introduction

The problem of predicting or estimating trajectories of
objects floating near the sea surface arises in impor-
tant applications, such as search and rescue missions
when something or someone is lost at sea at a known
place and time, or when debris from an accident is
found and one wishes to find the accident location by
integrating back in time the trajectories of the debris.
These problems require knowledge of the near surface
ocean currents and, to an extent depending upon the
floating object, the direct effect of the winds. Here we
focus on the first requirement of accurate near surface
currents by assessing the predictability of the trajec-
tories of Atlantic Oceanographic and Meteorological
Laboratory (AOML) surface drifters drogued at 15 m
depth. We focus on the equatorial Atlantic since this
is an especially challenging area due to the presence
of strong currents having a large space and time vari-
ability. This region also corresponds to the area where
AF447 flight crashed (close to 3◦ N, 31◦ W) 1st June
2009. Several research laboratories and private compa-
nies were solicited at that time to provide estimates of
the crash position given the location of the recovered
debris. Using ocean currents estimates, the backward
trajectory hindcast of these floating objects would be
a way to estimate the crash location (Drévillon et al.,
this issue). This was a good motivation to study surface
drifter trajectories in that region.

In the last few years, operational oceanography cen-
tres have developed global forecast, nowcast and hind-
cast systems providing high spatial resolution ocean
currents at daily or higher frequency. These data are
used for search and rescue and object drift applica-
tions (Davidson et al. 2009) as well as marine oil pol-
lution prediction (Hackett et al. 2009). Only opera-
tional ocean analysis and forecasting systems are able
to predict with some skill the ocean surface currents,
especially when the ocean dynamics is dominated by
eddy variability. So it has become an important issue
to assess not only surface current Eulerian statistics but
also to validate the Lagrangian properties of the ocean
circulation in ocean models. The capability of a model
to forecast a drifter trajectory is related to the statistics
of the distance separating two particles initially close
to each other. One expects that with increasing time,
this distance will increase according to the dynamics
of the ocean circulation. The study of the separation
distance between two particles was first addressed by
Richardson (1926). In his pioneering study, Richardson
proposed that the mean squared separation distance

< d2 > between two particles is proportional to t3

(t is the time). This behaviour persists until d ex-
ceeds the size of the largest eddies and then the
separation evolves like a random walk process and
< d2 > becomes proportional to time. Thanks to qua-
sigeostrophic turbulence and surface quasigeostrophic
turbulence theories, it has been possible to predict the
relative dispersion laws as a function of the slope of the
kinetic energy wave number spectrum (Sawford 2001;
LaCasce 2008). Numerous studies have tried to ver-
ify these theories against observations, i.e. balloon (in
the atmosphere) or drifter (in the ocean) trajectories.
LaCasce (2010) reviews the theoretical probability den-
sity functions (PDFs) used to characterize pair sepa-
rations and tries to assess their validity against PDFs
deduced from observations. However, pair separation
PDFs are difficult to validate against observations as
the samples considered are often small. Results also
seem to be sensitive to the region studied as noted
by LaCasce (2008) and Lumpkin and Elipot (2010).
This is due to the spatial variability of the velocity
wave number spectrum. Lagrangian trajectories are in
most cases isotropic. However, in some areas, particle
separation may be affected by large-scale mean shear.
In the case of a zonal front, the meridional separation
distance will be different from the zonal one (LaCasce
2008). Particles can also be affected by ocean topogra-
phy (LaCasce 2008) with trajectories tending to follow
f/H contours, with f the Coriolis parameter and H
the ocean depth. Modelling studies have investigated
the sensitivity of trajectory forecasts to several para-
meters. Özgökmen et al. (2000) have shown that given
sufficient surface drifter coverage, RMS forecast errors
of less than 50 km can be obtained for periods up to
3 months in the gyre interior region but only about
1 week in western boundary current and midlatitude jet
regions. Their study also shows that the forecast error
is very sensitive to the number of observations avail-
able to constrain the ocean state during the analysis.
In an idealized modelling study, Griffa et al. (2004)
revealed that the spatial smoothing of Eulerian fields
can reduce the trajectory forecast skill. Thanks to the
availability of ocean operational forecasting systems,
studies have tried to estimate float trajectory forecast
skill in a realistic framework. For example, Barron
et al. (2007) assessed surface drifter trajectory estimates
in many regions with the global Navy Coastal Ocean
Model (NCOM) model. More recently, Huntley et al.
(2011) considered trajectory predictions with the US
Navy East Asian Sea (EAS16) model and a unique
set of 30 surface drifters. It allowed them to show
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Table 1 Models analysed in this study

Quantity GLORYS PSY3 PSY2 NCOM HYCOM SURCOUF

Eqns PE PE PE PE PE G, Ek
Mixing TKE TKE TKE MY2 KPP
Vert. co. Z Z Z Z , σ ρ, Z , σ n/a
Nz 50 50 50 40 (32) 1
dz (m) 2.25 2.25 2.25 3.4 2.4 n/a
dx (deg) 1/4 1/4 1/12 1/6 1/12.5 1/3
Wind EC24 EC24 EC24 NG3 NG3 ERA
Output Daily mean Daily mean Daily mean 6-hourly snapshot Daily snapshot 6-hourly mean

TKE is Blanke and Delecluse’s (1993) mixed layer scheme; MY2 is Mellor and Yamada’s (1974) mixed layer scheme; KPP is the mixed
layer scheme of Large et al. (1994)
PE primitive equations, G geostrophy, Ek Ekman, Nz total number of levels (layers), dz vertical resolution at 15 m, dx horizontal
resolution in degree longitude, EC24 daily ECMWF stress, ERA six-hourly ERA Interim stress, NG3 three-hourly NOGAPS

that predictive skill depended more upon deployment
location than time of deployment. See Huntley et al.
(2011, and references therein) for a summary of several
other related studies.

Several questions arise in using operational ocean
forecasting systems to estimate drifter trajectories in
the real ocean. How reliable are trajectory forecasts
made in a realistic framework? Are the forecasts very
sensitive to the choice of the operational surface cur-
rents used? Do all forecasts have the same skill or are
there differences due to model resolution, data assimi-
lation schemes used or observations assimilated? Given
an ensemble ocean operational forecasting system,
what is the best strategy to perform the most accurate

trajectory forecast? In seeking the best estimate, should
one use only the most accurate model? Or is the opti-
mal estimate obtained by combining the estimates from
some or all of the models? How should one combine the
model estimates: by combining their velocity fields and
performing the integration with the compromise veloc-
ity, or by performing each model integration separately
and combining their estimated trajectory end points?
We addressed these questions rigorously by assessing
drifter trajectory estimate success using products sum-
marized in Table 1 and described in more detail in the
“Appendix” and in Tables 2 and 3.

Most of the models are based upon primitive equa-
tion, global or basin scale, ocean general circulation

Table 2 Data assimilated

Data GLORYS PSY3 PSY2 NCOM HYCOM

Altimetry
Jason-1 DM/NRT NRT NRT NRT NRT
ENVISAT DM/NRT NRT NRT NRT NRT
GFO DM/NRT NRT NRT NRT NRT

SST
Satellite NCEP NCEP NCEP NCODA NCODA

RTG 0.5◦ RTG 0.5◦ RTG 0.5◦ SST SST
AOML No No No Yes Yes

drifters
Subsurface

T, S
ARGO DM wQC NRT wQC NRT wQC NRT wQC NRT wQC
Moored PIRATA, PIRATA, PIRATA, PIRATA, PIRATA,
buoys wQC wQC wQC wQC wQC
other XBT, XBT, XBT, XBT, XBT,

CTD, CTD, CTD, CTD, CTD,
MBATHY, MBATHY, MBATHY, MBATHY, MBATHY,
etc wQC etc wQC etc wQC etc wQC etc wQC

NRT near real time, DM delayed mode, DM/NRT before Jan 23, 2008 DM and NRT thereafter, wQC with quality control, GFO
Geosat Follow-on, NCODA SST see Gentemann et al. (2009)
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Table 3 Data assimilation methods

Method GLORYS PSY3 PSY2 NCOM HYCOM

IAU Yes, 7-days No No Yes, 1-day Yes, 1-day
Scheme Reduced Reduced Reduced NCODA NCODA

order order order MVOI MVOI
Kalman Kalman Kalman
filter filter filter

Velocity A B B C C
initialisation

A statistical by-product of the analysis (progressive equatorial cutoff between 7◦ N/7◦ S), B physical balance operator, C NCODA
MVOI, geostrophically balanced increments reduced to zero at 2◦ N/2◦ S

models that assimilate observational data. The excep-
tion is SURCOUF, which uses satellite altimeter data
to obtain the geostrophic velocity and wind stress to
obtain the empirically determined Ekman velocity. We
will refer to all these velocity products as “models”
although SURCOUF is more of an observational data
product. While the reliability of model estimates over
various integration time periods is an important test
of model skill, our ranking of model skill was only
applicable to the problem at hand; for example, the
models with higher-frequency output have an advan-
tage for this application that may not carry over to other
applications that do not require high-frequency output
(for a comparison of metrics, see, e.g. Metzger et al.
2010).

This paper is organized as follows: In Section 2, we
delineate the study area and in Section 3, we describe
the methodology used to estimate surface drifter tra-
jectories. Then in Section 4, we present the trajectory
estimate skill statistics of the six different models. In
Section 5, we consider how to improve upon the esti-
mates of the single OGCMs by combining them in an
optimal way. We also describe the results of applying a
spatial filter to the OGCM velocity fields, which both
improved the estimates and allowed us to interpret the
range of scales for which the models had useful skill.
We conclude with a summary of the key results and
their implications for further study in Section 6.

2 Study region

The comparison of various surface current estimates in
the tropical Atlantic was first motivated by the need to
perform drift computations in the context of the search
of the wreck of the AF447 flight from Rio to Paris. The
airplane disappeared on June 1st 2009 near 3◦ N and
31◦ W, and a large international effort was organized to
try to find the wreckage. The contribution of oceanog-
raphers is described in (Ollitrault 2010) and part of it in
Drévillon et al. (2012). This region is very challenging

for ocean models because of tropical waves and es-
pecially for SURCOUF because of the breakdown in
geostrophic balance at the equator.1 Here we might
expect the dynamics inherent in the OGCMs to provide
complementary information to the observational data.

The choice of the size of the study region was a
subjective compromise between choosing a larger area
that included more surface drifters and therefore would
provide better statistics and choosing a smaller area
that was more homogeneous. We restricted calculations
to drifters within the main study region: 10◦ S to 10◦ N,
60◦ W to 0◦ E, outlined in Fig. 1a. We studied the
18-month period from July 2007 to December 2008,
the period when the models in Table 1 had a data
assimilation scheme that remained unchanged.

In contrast to the midlatitudes, this region has mean
flows that are comparable in strength to that of the
time-varying flows. Figure 1a shows the kinetic energy
(KE) of the 18-month mean flow (MKE) and the KE
of anomalies relative to this mean (eddy kinetic energy,
EKE) for the SURCOUF product. Interestingly, the
mean currents reveal more sharply defined features
associated with the narrow, zonally aligned current
systems of the equatorial region. For example, note the
MKE minimum from about 35◦ W to 0◦ at about 2
to 5◦ N, revealing the boundary between the eastward
flowing north equatorial counter current (NECC) to
the north and the westward flowing south equatorial
current (SEC) to the south. We also represented in
Fig. 1b the MKE and EKE fields for the ensemble
multi-model product V5 described in Section 5. The V5
product is a combination of the surface velocity fields
from the five OGCMs used in this study. We can notice
that the MKE of V5 (Fig. 1b) is much smoother and less
intense than in SURCOUF (Fig. 1a). The EKE field of

1More properly, the meridional velocity becomes ageostrophic
while the zonal geostrophic velocity becomes balanced with
the vertical pressure gradient (Cushman-Roisin and Beckers
2010), which cannot be diagnosed from sea surface height
measurements.
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Fig. 1 a Upper panel kinetic energy of the 18-month mean flow
from the SURCOUF product. Colour bar units are log10(m

2/s2).
Lower panel corresponding kinetic energy of the current anom-
alies. Large rectangle outlined with thin straight lines indicates
the main study region. Bold polygon outlines the equatorial
subregion. b Like in panel (a) but for the five-model ensemble
V5 product

SURCOUF and V5 looks also quite different. V5 has a
stronger EKE along the equator. This may be related
to the fact that OGCMs have daily outputs (NCOM
outputs are even six-hourly snapshots) whereas SUR-
COUF surface currents comes from a linear interpola-
tion between 7-day consecutive altimetry derived cur-
rents maps. We, however, can see that close to the
Amazon river mouth, SURCOUF has a larger EKE
than V5, which is most likely due to tide residuals in the
SLA. One anticipates that it will be important for mod-
els to produce both accurate time variable and longer-
term mean flows for accurate trajectory estimates.

As we will see later, there was a qualitative difference
between the sharpness of the mean flow in the SUR-
COUF product and all of the OGCM mean flows.

In contrast to the sharply defined mean flows, the
EKE was much more diffuse (cf. lower panel of Fig. 1a
and b). This is due to the equatorial wave guide where
linear waves (Rossby waves and equatorial Kelvin
waves) (Chelton et al. 2007; Tulloch et al. 2009) travel
along the equator. A relevant feature of the study
region is the occurrence of tropical instability waves
(TIWs) from late spring through to January (Weisberg
and Weingartner 1988, Fig. 6). TIWs are surface-
intensified structures of 600 to 1,200 km wavelength
with phase speeds 20 to 50 cm/s and current speeds
that often exceed 50 cm/s. The wave periods are typ-
ically 25 to 30 days (Weisberg et al. 1987; Cox 1980).
TIWs are confined to the equatorial region, with EKE
falling off very rapidly north of 4◦ N (see Jochum et al.
2004, Fig. 7). Despite the more linear dynamics of the
tropics and wave periods of about a month, TIWs can
evolve into highly nonlinear tropical instability vortices
(TIVs), of about 500 km diameter with currents reach-
ing over 1 m/s (Foltz et al. 2004). TIVs have been ob-
served in both the Pacific (Kennan and Flament 2000)
and the tropical Atlantic (Menkes et al. 2002; Foltz
et al. 2004). OGCMs resolving the equatorial Rossby
radius are generally able to simulate the observed struc-
tures (Dutrieux et al. 2008). The interannual variability
of the TIWs is difficult to capture in a free-running (no
data assimilation) numerical model forced with realistic
forcing (von Schuckmann et al. 2008).

Another notable feature of the study region is
the North Brazil Current (NBC) along the Brazilian
coast. This current retroflects from May or June to
December and feeds the North Equatorial Counter
Current (e.g. Richardson and Reverdin 1987). The
NBC retroflection releases NBC rings that travel along
the Brazilian coast towards the Lesser Antilles (Goni
and Johns 2001; Barnier et al. 2001).

The large TIV interannual variability and the NBC
rings make the central and western tropical Atlantic a
region where currents can change quickly. Consider for
example the historical time series at 3◦ N and 28◦ W
from the SEQUAL mooring array deployed from 1983
to 1985, see Fig. 2. Around day 201 of 1984, the current
jumped from weakly zonal to suddenly very strongly
meridional within one day, see closeup in the lower
panel of Fig. 2. These sudden jumps reveal a highly
unstable current system characterized by strong inter-
mittent currents reaching over 100 cm/s. For that par-
ticular event, it corresponds to a very intense westward
propagating TIW reaching the SEQUAL surface moor-
ing and changing abruptly the surface current intensity
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Fig. 2 Northward (black) and eastward (red) currents from the
SEQUAL surface mooring near 28◦ W 3◦ N. Note the strong,
chaotic, highly turbulent currents characteristic of this barotrop-
ically unstable region. The vertical dashed lines bracket a 20-day
period with a particular strong meridional velocity pulse. Lower
panel shows a close-up of these 20 days starting on day 190 of
1984 (mid-July)

(Weisberg and Weingartner 1988). This can be seen on
a sequence of NOAA 1/4◦ SST maps (Reynolds et al.
2007, not shown).

Others have noted that trajectory estimate skill
strongly depends on RMS current speed (Özgökmen
et al. 2001; Barron et al. 2007). Thus, we anticipated
that trajectory estimate skill for drifters in the strong
current off the northwest corner of Brazil might be rela-
tively low, while skill for drifters in regions with weaker
currents (poleward of 7◦ N and 4◦ S) might be relatively
high. Furthermore, SURCOUF velocities were com-
puted using a different scheme near the equator (5◦ S
to 5◦ N). For these reasons, we defined an equatorial
analysis subregion (see Fig. 1a). Results from the main
study region and the equatorial subregion will be con-
trasted in Section 4.2. Results in Sections 4.1, 4.3 and 5
were for the main study region only.

3 Forward trajectory methodology

We used the observed trajectories of satellite-tracked
Surface Velocity Program (SVP) drifters of the Global
Drifter Program (http://www.aoml.noaa.gov/phod/dac/
gdp.html) from the AOML Drifter Data Assembly
Center (www.aoml.noaa.gov/phod/dac/dacdata.html).
The SVP drifters were drogued to follow the currents
near 15 m depth, with the ratio of the drogue drag area
to remaining drag area of at least 40. The wind-induced
slippage of such drifters should be less than 1 cm/s in
10 m/s winds according to Niiler et al. (1995).

Since 2005, the drifters have been tracked with five
or six satellites, with time between fixes usually be-
tween 1 and 2 h (Ellipot and Lumpkin 2008). We

used the quality-controlled drifters interpolated to six-
hourly positions (Lumpkin and Pazos 2007).

For computational convenience, we divided the
study period into three 6-month periods from July 1,
2007 through December 31, 2008. All the drifter tra-
jectories for the first 6-month period are plotted in
Fig. 3. For each drifter in the study region and for each
forecast length n ∈ {1, 3, 7} days, we simulated a set of
trajectories using the following steps:

1. Start at its earliest location, check if the location is
known n days later.

2. If so, estimate this later location using second-
order Runge–Kutta (Heun’s method) integration
of model 15 m velocity fields, bilinearly interpo-
lated in space and time and using the model out-
put time step. Trajectory error is defined as the
distance (in kilometres) between the observed and
estimated locations.

3. Check that each model simulated trajectory did
not run aground. If this occurs, none of the model
forecast is taken into account in order to have the
same number of forecasts for each model.

4. Starting from the end time of the last forecast,
repeat the above procedure (so forecasted trajec-
tories do not overlap and can be treated as indepen-
dent). If the start and end location of a drifter are
not know, reject this time period and try 6 h later
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Fig. 3 Drifter tracks for the 6-month period of the study Jul
1, 2007 to Dec 31, 2007. Red symbols are the drifters outside
the equatorial subregion. Cyan symbols are drifters within the
equatorial subregion, which is also outlined by the bold polygon
(roughly three times as many drifters were used for all the results
of this study)
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(i.e. no interpolation was done of the six-hourly
data).

The skill of each model is then estimated by comput-
ing the median, RMS and 80th percentile of the trajec-
tory forecast error over the ensemble of forecasts per-
formed (see next section). We indicated the confidence
of each statistic provided by a bootstrap method (Efron
1979). We also computed trajectories backward in time.
The results for error statistics were the same as for
the forward trajectories to within statistical uncertainty
provided by the bootstrap method so we have only
presented forward trajectories herein.

4 Single-model trajectory estimate skill results

Here, trajectory estimate skill statistics for 1-, 3- and 7-
day trajectories are described for the six models shown
in Table 1. Results are shown for the main study region
(Section 4.1) and for the equatorial subregion (Sec-
tion 4.2). In Section 4.3, we discuss the importance of
the mean flow field.

4.1 Main study region

The skill of each model is summarized in the cumula-
tive density plot of trajectory error in Fig. 4 and the
corresponding statistics in Table 4. The 80th percentile
of trajectory error can be interpreted as the radius of
the circles about the estimated forward trajectory end
point that contained 80% of the actual drifter loca-
tions. We could have shown PDFs, but we preferred
to present the results with cumulative density functions
(CDFs) because it is easier to read the median and
80th percentile on the figure. Furthermore, a CDF is
inherently less noisy than the corresponding PDF. It is
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Fig. 4 Cumulative density functions of trajectory error for the
main analysis region. The three clusters of lines from left to right
are for 1-, 3- and 7-day estimates. Solid lines are for the six
models, labeled by their f irst letter or two, e.g. HYCOM, shown
in green, is labeled “H”, PSY2 is labeled “P2”. The comparison
is made with exactly the same set of drifter trajectories, i.e. if
an estimated trajectory ran aground or otherwise left the study
region for one model, it was not counted for any of the models.
Corresponding values tabulated in Table 4. The cyan dashed line,
labeled L5, is the five-model ensemble of OGCMs (i.e. without
SURCOUF ) combined as in Eq. 1. The red dashed line, labeled
V5, is the five-model ensemble of OGCMs combined as in Eq. 2

worth noting that the forecast error PDFs (not shown)
are not Gaussian. They resemble the separation PDFs
reviewed by LaCasce (2010) and are strongly asym-
metrical. The PDF peak decreases and shifts towards
larger separation distances with increasing trajectory
time. We did not investigate further the properties of
these PDFs as it is beyond the scope of this study.

The main result was that for 1-, 3- and 7-day tra-
jectories, SURCOUF was at least as good and often

Table 4 Single model forward-trajectory error and 95% confidence limits for the main study region, Jul 1, 2007 to Dec 31, 2008

Qntity GLORYS PSY3 PSY2 NCOM HYCOM SURCF

1-day N = 7,360
median 16 ± 0.3 20 ± 0.4 18 ± 0.4 20 ± 0.4 20 ± 0.4 16 ± 0.3
RMS 24 ± 0.5 28 ± 0.6 27 ± 0.6 29 ± 0.6 28 ± 0.5 23 ± 0.5
80% 28 ± 1 32 ± 1 31 ± 1 34 ± 1 34 ± 1 27 ± 1
3-day N = 2,365
median 44 ± 2 50 ± 2 48 ± 2 53 ± 2 52 ± 2 38 ± 1
RMS 66 ± 3 75 ± 3 72 ± 3 82 ± 3 77 ± 3 60 ± 2
80% 77 ± 3 86 ± 3 82 ± 3 93 ± 4 92 ± 4 70 ± 3
7-day N = 933
median 93 ± 6 104 ± 6 98 ± 6 114 ± 6 111 ± 8 80 ± 4
RMS 147 ± 10 160 ± 11 149 ± 9 175 ± 10 166 ± 10 128 ± 7
80% 164 ± 10 183 ± 12 167 ± 10 205 ± 12 196 ± 12 145 ± 10

80% means 80th percentile. Results shown graphically in Fig. 4
N the number of estimates
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much better than the much more expensive OGCMs
that all assimilated altimeter data. Of the OGCMs,
Global Ocean Reanalysis and Simulations (GLORYS)
made the best estimates, and NCOM made the worst
estimates. Prototype Système 2 (PSY2) and Prototype
Système 3 (PSY3) had similar skill though PSY2 was
often slightly better. It seems that the quality of obser-
vations and the method used to assimilate them may
be more important, since the GLORYS trajectories
were the best among all OGCMs despite the fact that
the GLORYS (and PSY3) grid also had the coarsest
resolution. This highlights the importance of the data
quality as GLORYS is a reanalysis using reprocessed
and quality checked datasets whereas PSY2 and PSY3
operational outputs come from the real-time operation
of the systems. The mode of data assimilation also has
an impact as a smooth initialisation with incremental
analysis update is used in GLORYS instead of sequen-
tial correction in (higher resolution) PSY2.

The forecast skill of a simple random walk model
was also tested to see if the trajectory forecast in the
models used would be similar to a diffusive process. To
do this, we used the approach described in LaCasce
(2008) (see their Eq. 23). The random walk model
parameters are the local time average and root mean
square of the velocity. In our case, we used the velocity
fields from GLORYS. The results (not shown) indicate
that the forecast skill of the random walk model is
significantly worse than GLORYS. This shows that at
the scales considered (1-, 3- and 7-day forecasts), the
model currents are not a simple noise.

4.2 Equatorial subregion

Cumulative density plots of trajectory error for the
equatorial subregion are shown in Fig. 5, with the
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Fig. 5 As in Fig. 4 but for the equatorial subregion. Correspond-
ing single-model values tabulated in Table 5

corresponding statistics summarized in Table 5. Results
for this subregion are very similar to those for the main
analysis region. In fact the trajectory errors are often
slightly smaller for the equatorial subregion, though
the differences are not significant at the 95% level.
With only about 1/2 as many estimates (because of the
smaller region), the statistical uncertainty was larger.
In general, the model trajectory errors were similar.
Note especially that SURCOUF consistently made the
best estimates in the subregion as well, with the minor
exception of the extreme tails of the distributions, cf.
Fig. 5.

The similar, or perhaps slightly better, trajectory es-
timates in the equatorial subregion are both surprising
and informative. Recall the elevated EKE associated
with TIWs fell off quickly northward of 4◦ N and south-
ward of 1◦ S (Jochum et al. 2004, Fig. 7), and TIVs form

Table 5 Like Table 4 but for the equatorial subregion outlined in Fig. 1a

Quantity GLORYS PSY3 PSY2 NCOM HYCOM SURCF

1-day N = 3,864
median 17 ± 0 21 ± 0 19 ± 0 20 ± 0 22 ± 1 16 ± 0
RMS 23 ± 1 27 ± 1 26 ± 1 27 ± 1 28 ± 1 22 ± 0
80% 28 ± 1 32 ± 1 31 ± 1 34 ± 1 35 ± 1 27 ± 1
3-day N = 1,226
median 48 ± 2 55 ± 3 52 ± 2 57 ± 3 58 ± 2 41 ± 2
RMS 64 ± 3 72 ± 3 70 ± 3 76 ± 3 79 ± 3 58 ± 2
80% 78 ± 3 86 ± 3 84 ± 4 94 ± 4 97 ± 5 72 ± 4
7-day N = 477
median 99 ± 9 110 ± 9 104 ± 7 121 ± 9 121 ± 9 85 ± 7
RMS 140 ± 13 151 ± 14 150 ± 13 163 ± 9 170 ± 10 124 ± 8
80% 167 ± 11 175 ± 10 176 ± 12 205 ± 15 209 ± 19 144 ± 12

The statistical uncertainty is greater because of the smaller numbers of estimates
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along the high lateral shear zone between the NECC
and SEC and are mostly found between the equator
and about 5◦ N (Foltz et al. 2004, Fig. 5a). Thus, these
challenging features are mostly within our equatorial
subregion, and thus cannot be the sole reason limiting
the performance of the OGCM trajectory estimates nor
the sole reason for poor OGCM performance relative
to the SURCOUF data product. This uniform perfor-
mance of SURCOUF was surprising since geostrophic
balance “breaks down” in the equatorial region, and
close to the equator, only the zonal velocity component
of the velocity is deduced from SLA.

4.3 18-month mean flow

Given the relatively strong mean flows in the tropical
Atlantic, a natural question is whether the 18-month
mean flow of SURCOUF was perhaps superior to
that of the OGCMs. In Figs. 6 and 7, we plot the
mean zonal and meridional velocity fields, respectively,
for several of the models. All three Mercator-Océan
OGCM (i.e. GLORYS, PSY3, PSY2) mean fields were
so similar that they were difficult to distinguish visually
and thus only GLORYS is presented. While there are
slight differences between GLORYS and Hybrid Co-
ordinate Ocean Model (HYCOM) in both fields, the
most unique field is the zonal velocity of SURCOUF,
with sharply defined structures such as the SEC. To test
whether both the mean and the eddy fields of SUR-
COUF had more skill than the corresponding OGCM
fields, we performed in the main region several ex-
periments in which we replaced the SURCOUF mean

Fig. 6 Eighteen-month mean zonal velocity field for a SUR-
COUF, b GLORYS and c HYCOM

Fig. 7 As in Fig. 6 but for the meridional velocity

fields with those from other models. In all cases, the
trajectory errors increased although not always enough
to be statistically significant at the 95% level. This was
true even for the V5 ensemble (defined in Section 5).
This confirmed that the fine structures in Fig. 6a were
an improvement over the more diffuse mean zonal
velocities of the OGCMs.

One can also ask whether the mean field of SUR-
COUF was the most important factor? That is, perhaps
the eddy field of SURCOUF was actually inferior to the
OGCMs, but the deficiency was compensated for by the
superior mean field? We confirmed that this was not the
case. We replaced the GLORYS mean field with that
of SURCOUF and found that, while this improved the
trajectory estimates over that of GLORYS alone, the
estimates were still inferior to SURCOUF alone. That
is, the eddies of SURCOUF were also superior to the
eddies of GLORYS. However, as we will see in the next
section, the ensemble average of all the OGCMs, V5,
made better trajectory estimates than SURCOUF. This
occurred despite the fact that its mean field was inferior
to that of SURCOUF. Thus, the V5 ensemble seems
to have superior eddies than SURCOUF, although this
could not be explicitly verified.

5 Improving model trajectory estimates

We might expect that somehow combining models
might improve the trajectory estimates. The benefits
from ensemble forecasts on predictability has been no-
ticed first by Leith (1974), more than three decades ago.
The idea behind ensemble forecasting is that an ensem-
ble of analyses or forecasts will better sample the true
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state than a single member (deterministic forecast).
By averaging the ensemble members, one gets an im-
proved true-state estimation than with a single member.
A comprehensive description of the ensemble forecast-
ing concept is given by Murphy (1988). More recently,
the “super ensemble” approach of optimally combining
several different model estimates has been successfully
used in ocean forecasting (Rixen and Ferreira-Coelho
2007; Rixen et al. 2008, 2009). However, for the ap-
plication explored herein, the best method to combine
models is not a priori obvious. On the one hand, one
could first use each model to make an estimate and
then combine those estimates. The advantage with such
as method is that each model is internally dynamically
consistent. On the other hand, one could combine the
model velocity fields and make estimates with these
compromise velocity fields. The apparent advantage
of such a method is that trajectory errors accumulate
during the trajectory integration so it might be best to
reduce errors in the velocity fields before using them
for integration. Furthermore, the compromise velocity
fields should be smoother, reducing the noise we expect
to dominate at small scales. Below we describe the
results from employing these two strategies. We also
address the possibility of improving the single-model
estimates by applying a low-pass spatial filter to the
velocity fields. This analysis allowed us to identify the
range of length scales with useful skill for both the
individual OGCMs and the five-model compromise.

5.1 Four- vs. five-model ensembles

We computed compromise forecasts from an ensem-
ble of four or five models. Consider the “model

compromiseforecast”, as the weighted average of the
estimated locations:

xens = ∑M
m=1 wm xm

yens = ∑M
m=1 wm ym (1)

where xm and ym are the estimated longitude and lat-
itude of the forward trajectory integrations for model
m. For weights we used, wm = V−1

m /
∑M

n=1 V−1
n , where

Vm was the mean square error for model m for the cor-
responding forecast length. For the ensemble of all five
OGCM models, the sum is over m ∈ {1, 2, . . . 5 = M}.

Statistics for the trajectory errors corresponding to
the five-model ensemble are presented in the seventh
column of Table 6, labeled “ALL”. We also considered
removing one model from the ensemble. The results for
these four-model ensembles are also presented in Ta-
ble 6 in columns 2 through 6. The column label indicates
the model withheld from the ensemble. Note that none
of the columns has trajectory error consistently lower
than the seventh column. This indicates that none of the
models consistently degraded the five-model ensemble
estimate. All models “contributed” in the sense that
including them in the five-model ensemble made for a
better estimate or at least not a worse estimate.

We expect the improvement from the multi-model
ensemble to arise from the cancellation of random
model trajectory errors. Ideally all the models would
provide independent estimates, so their errors would be
unrelated and tend on average to cancel. The cumula-
tive density function for the five-model OGCM ensem-
ble, composed of GLORYS, PSY3, PSY2, NCOM and
HYCOM combined as in Eq. 1, was plotted in Fig. 4.
This compromise estimate composed of only OGCM

Table 6 OGCM model ensemble forward trajectory error and 95% confidence limits for the main study region for time period July 1,
2007 to Dec 31, 2008

Qntity GLORYS PSY3 PSY2 NCOM HYCOM ALL

1-day N = 7,360
median 16 ± 0.3 15 ± 0.3 15 ± 0.3 15 ± 0.3 15 ± 0.3 15 ± 0.3
RMS 23 ± 0.4 22 ± 0.4 22 ± 0.4 21 ± 0.4 22 ± 0.4 21 ± 0.4
80% 27 ± 0.5 26 ± 0.5 26 ± 0.5 26 ± 0.4 26 ± 0.5 26 ± 0.4
3-day N = 2,365
median 41 ± 1 39 ± 2 40 ± 1 39 ± 1 40 ± 1 39 ± 1
RMS 60 ± 2 58 ± 2 58 ± 2 57 ± 2 59 ± 2 57 ± 2
80% 71 ± 3 68 ± 2 69 ± 2 68 ± 2 69 ± 2 68 ± 2
7-day N = 933
median 88 ± 4 84 ± 5 84 ± 4 84 ± 3 85 ± 5 82 ± 5
RMS 127 ± 7 125 ± 8 124 ± 6 122 ± 7 126 ± 7 122 ± 7
80% 149 ± 8 145 ± 9 149 ± 7 142 ± 9 149 ± 8 143 ± 7

The seventh column “ALL” is for the weighted average of all five OGCM models. The remaining columns, second through sixth, are for
the average of four models. So the second column is for all but the GLORYS model. The higher trajectory error for the second column
indicates that removing GLORYS from the ensemble worsens the ensemble estimate. None of the models were found to consistently
worsen the estimates
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results was clearly as good as or sometimes better than
the data product SURCOUF and all the individual
model estimates. This result further supports the idea
of partial cancellation between model trajectory errors.

5.2 Combining model velocity fields

Another strategy for combining model estimates is to
average the velocity fields from an ensemble of models
and make a single integration with the ensemble veloc-
ity field. Consider the “model compromise velocity”, as
the weighted average of the velocity from the individual
models:

uens = ∑M
m=1 wm um

vens = ∑M
m=1 wm vm (2)

where um and vm are the zonal and meridional ve-
locities for the 15-m currents for model m, linearly
interpolated onto a common grid. For weights we used,
wm = V−1

m /
∑M

n=1 V−1
n , where Vm was the mean square

error for model m for the 7-day trajectory forecasts.
For the common grid, we used that of the GLORYS
model. Note that this effectively coarsened the spatial
resolution of all models except PSY3 and coarsened the
temporal resolution of NCOM. We expect the spatial
coarsening had negligible effect based upon the results
of our smoothing experiments reported in the next
subsection. We confirmed that the temporal smooth-
ing had negligible effect by repeating the experiment
using the NCOM temporal resolution (six hourly) and
found agreement well within statistical uncertainty.
Hereinafter we will refer to these fields as “V5”.

The empirical cumulative density function of trajec-
tory error corresponding to V5 ensemble was plotted in
Fig. 4 with a dashed red line. Interestingly, both strate-
gies for combining the model estimates gave similar
results (both red and cyan dashed lines are similar).
And regardless of the strategy to combine the model
estimates, the five-model OGCM ensembles (super en-
sembles) both worked better than all the individual
OGCMs and had similar skill and sometimes better skill
than the data product SURCOUF.

5.3 Smoothing velocity fields

One might speculate that combining the velocity fields
as in Eq. 2 led to smoother velocity fields. Pessimisti-
cally one might conjecture that the improved estimates
occurred only because of the smoothing (Wunsch 2010,
personal communication), a position we will call the
null hypothesis. More generally, it seems plausible that
the errors in the OGCM velocity fields were a strong

function of spatial scale with larger errors at smaller
scales. This raises the question as to what length scales
have useful skill and what scales are too small to be cap-
tured by the OGCMs. To address this question, we have
applied a low-pass filter to the OGCM velocity fields
prior to Runge–Kutta trajectory integration. The low-
pass filter was accomplished by convolving the original
OGCM velocity fields at each time step and each grid
point (x0, y0) with a Gaussian filter,

G(x, y; x0, y0)= A exp{−[(x − x0)
2 + (y − y0)

2]/(2R2)},
with Gaussian radius R, over a square region centred
at (x0, y0) and of width 2R, with A chosen so that
the sum of weights was unity. For each OGCM, many
experiments were performed with R ranging from a
few tens of kilometres to hundreds of kilometres, each
experiment using only one application of a given filter
to the original velocity fields.

There appeared to be an optimal smoothing radius
in the range 100 � R � 200 km that produced the best
estimates. This is shown with the 80th percentile of the
7-day trajectory error plotted in Fig. 8 versus smoothing
radius R. The corresponding plot for the RMS error
is shown in Fig. 9. The y-intercept, corresponding to
R = 0, corresponds to the result with no smoothing at
all, for which values can also be read from the final two
rows of Table 4, though agreement is not exact since
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Fig. 8 Eightieth percentile of 7-day trajectory error (kilometres)
vs. smoothing radius (kilometres) for each OGCM. Analysis
performed in main study region. Line labelling described in Fig. 4
caption. Error bars represent the formal error 95% confidence
limits. Discrepancies between the Y-intercept values and the final
row of Table 4 arise because different trajectories were used.
Here near coastal trajectories were eliminated when the velocity
fields were smoothed
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Fig. 9 As in Fig. 8 but for the RMS error. Discrepancies between
the Y-intercept values and the penultimate row of Table 4 arise
because different trajectories were used. Here near coastal tra-
jectories were eliminated when the velocity fields were smoothed

trajectories near the coasts were necessarily omitted
from Figs. 8 and 9, due to the smoothing. In fact the
discrepancies underline the importance of always mak-
ing comparisons with the same set of drifter trajectories
because of the long tails in the PDFs. Error bars rep-
resent the 95% confidence interval obtained with boot
strapping with 1,000 subsamples. Because of the large
statistical uncertainty, it is necessary to consult both
Figs. 8 and 9 to confirm the trends. The local minimum
in trajectory error was qualitatively reproduced in both
statistics, with the exception of the 80th percentile for
PSY2.

The interesting exception to the optimal smoothing
radius was the model constructed from all five OGCMs
as per Eq. 2, labeled V5 in Figs. 8 and 9, which showed
little or no improvement for small-scale smoothing,
and errors worsened noticeably for R � 75 km. The
errors continued to grow monotonically and rapidly
through to the largest filter radius considered, R ≈
450 km. That is, the optimal smoothing radius was
indistinguishable from zero (no smoothing) and was at
most about 75 km. Unfortunately it was difficult to be
more precise because the 95% confidence limits were
fairly large. Accounting for the statistical uncertainty,
one can say the V5 results in Figs. 8 and 9 show with
95% confidence that the trajectories with about 150 km
or larger smoothing were worse than those with no
smoothing. This implies that there is at least some
skill in length scales less than 150 km. However, the
smoothness of the curves and the consistency of the
80th percentile of the 7-day trajectory error and RMS

error suggests these are conservative confidence limits.
The smaller optimal smoothing radius, between 0 and
75 km, for V5 compared to 100 to 200 km for any of the
individual OGCMs suggests that V5 had skill at smaller
scales. Our interpretation is that buried in the noise
at small scales, the individual OGCMs had some skill
down to about 75 km or smaller. Combining the veloc-
ity fields to produce the compromise model V5 allowed
us to reduce the small-scale noise and exploit that skill.
This result is consistent with the results obtained by
Murphy (1988). Based on both numerical results and
simple theoretical estimates, Murphy (1988) showed
that an “ensemble-mean forecast is more skilful than an
individual forecast”. Spatial smoothing should also im-
prove the skill of both an individual and an ensemble-
mean forecast, but the ensemble mean forecast remains
superior. The explanation is that an ensemble-mean
forecast provides a better estimate of the true ocean
circulation than a single one. However, because of
the statistical uncertainty, these conclusions are not
definitive.

From a practical point of view, one would like to
choose the best model to make forecasts. Compar-
ing the 80th percentile and RMS trajectory errors in
Figs. 8 and 9, it appears that V5 with no smoothing
and GLORYS are the two best and the differences
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Fig. 10 CDF of trajectory error as in Fig. 4 but comparing the
optimally smoothed GLORYS model, red line (smoothed with
Gaussian radius of about 167 km) and V5 model, black line
(not smoothed). The comparison is made with exactly the same
set of drifter trajectories. Because the compromise V5 model
is consistently better than the best of the OGCMs for 1-, 3-
and 7-day trajectory estimates, we have grounds to reject the
null hypothesis that forming the compromise model improves
estimates only because it has smoother velocity fields
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between them are not statistically significant at the 95%
confidence. The 80th percentile and RMS represent
only two statistics derived from the full distribution. It
is informative to compare the full distribution by com-
paring the CDFs. Figure 10 shows the CDF of trajectory
error for GLORYS optimally smoothed (R = 160 km)
and V5 with no smoothing. V5 is consistently better
but because the improvement is only slight, it is not
statistically significant at the 95% level. This provides
evidence against the null hypothesis that the ensemble
was better only because it was smoother. Unfortunately
with the limited data available, we cannot reject the
null hypothesis with 95% confidence. One factor to
bear in mind is that the weights used in the optimal
model combination done using Eqs. 1 and 2 could be
a function of the filter radius used in the smoothing,
yet the weights for V5 where chosen from the RMS
error with no smoothing. The change of the individual
model skill with the spatial smoothing rather supports
this hypothesis.

6 Summary and discussion

Ocean state estimation with data assimilation in
OGCMs with sufficient resolution to produce an ener-
getic mesoscale eddy field that dominates the advection
of surface drifters is a very young science. Adding qual-
ity to the observational data is clearly a great challenge.
Evidence of the great challenge was presented herein,
where the data product, SURCOUF, revealed more
skill than the five individual data-assimilative OGCMs
in estimating the trajectories of surface drifters. The
OGCMs all assimilated the altimeter data upon which
the SURCOUF data product was based. Furthermore,
our results were for the equatorial Atlantic where
SURCOUF faced the additional challenge that the
geostrophic balance breaks down within about 5◦ of the
equator. In this version of SURCOUF, the calibration
of the velocity anomalies was completely independent
of the AOML drifters from our study period. However,
recall the mean currents in SURCOUF were dependent
on the AOML drifters used herein, but the dependence
was barely significant at the 95% level, see discussion in
the “Appendix”. Another important fact is that SUR-
COUF, as a data product, is inherently limited to esti-
mates of past events, while in principle the OGCMs run
in an operational configuration can make predictions of
the future, although we did not assess future predictions
herein.

We found median 1-day trajectory errors between
about 15 and 20 km. This is consistent with re-
sults found with the US Navy EAS16 model in the

East China Sea (Huntley et al. 2011). Barron et al.
(2007) found that trajectory estimation accuracy was
regionally dependent. Although their NCOM Equato-
rial Atlantic results (16 to 18 km) fall within the range
we found for all models, they found better results with
NCOM than we did, presumably because their region
extended to ±15◦ and thus included more quiescent
regions. Trajectory error of course increased with time
and by 7 days we found median errors between about 80
and 115 km, also broadly consistent with Barron et al.
(2007).

In practice, controlled experiments with eddying
OGCMs with data assimilation are extremely costly
in terms of both researcher time and computational
resources and need to be well justified. Much can be
learned from the inter-comparison of existing runs, and
the results described herein motivate further study.
Our results of accuracy of estimated drifter trajectories
begs the question why SURCOUF had more skill than
the OGCMs especially since all the OGCMs assimi-
late the altimeter data used to construct SURCOUF.
While the two NRL OGCMs both used Navy Oper-
ational Global Atmospheric Prediction System (NO-
GAPS) winds, the three Mercator-Océan OGCMs all
used ECMWF winds, as did SURCOUF. This raises
questions as to whether the temporal resolution of the
winds is an important factor since SURCOUF used
the six-hourly Interim winds from ECMWF while the
Mercator-Océan OGCMs were forced with daily aver-
aged operational ECMWF winds.

We speculate that some benefit could be obtained
by forcing the OGCMs with the six-hourly winds rather
than daily averages. Indeed, inertial ocean motions are
forced by moving storms when the wind vector rotates
at a frequency close to the local inertial frequency f
(e.g. Price 1981, 1983). The inertial period 2π/ f is about
2.9 days near 10◦ N, and therefore, the rotation of the
wind stress is poorly described with a daily forcing.
Finally, we speculate that using a six-hourly solar forc-
ing may have stronger consequences than using a six-
hourly wind forcing (as compared to daily forcings), as
found by B. Barnier (personal communication) in the
Mediterranean Sea.

None of the models included tidal forcing, which in
the deep ocean leads to errors similar to that due to
slippage in strong winds, about 1 cm/s. However, this
is unlikely to be a dominant factor, contributing only
about a kilometre per day to the error.

It is instructive and perhaps surprising that one of
the lowest resolution OGCMs, GLORYS, had the best
skill of all the OGCMs. The fact that the higher-
resolution PSY2 was marginally better than its lower-
resolution counterpart PSY3 suggests that resolution is
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by no means a hinderance and perhaps improves the
estimates marginally. Recall from Tables 2 and 3 that
GLORYS had two clear advantages over its counter-
parts at Mercator-Océan: The Jason-1 and ENVISAT
altimeter data and ARGO and other T&S data were
used in delayed mode instead of near real time. De-
layed mode allows for quality control with removal of
outliers and other suspect data. Furthermore, GLO-
RYS integrated the incremental analysis update (IAU)
scheme in the data assimilation method (Bloom et al.
1996; Benkiran and Greiner 2008), which is believed
to be an improvement. The results described herein
strongly motivate controlled experiments to decisively
determine the relative importance of data quality and
data assimilation scheme in producing the enhanced
skill of GLORYS over PSY3 and PSY2.

Evidence that the OGCMs can add value to the
data was obtained from the result that compromise
estimates employing all the OGCMs had skill as good
or better than SURCOUF. Two strategies for combin-
ing the OGCM results to produce compromise esti-
mates were explored. We tried averaging the latitude
and longitude of the estimated trajectory from each
model, weighted by its mean squared error. And we
tried averaging the OGCM velocity fields to produce a
single, compromise velocity field that was used to make
trajectory estimates. The results were very similar for
both ensemble methods and always better than the best
single model, GLORYS; compare the “ALL” column
of Table 6 and “GLORYS” column of Table 4. The en-
semble trajectory estimates were almost always better
than the SURCOUF estimates, though not always sta-
tistically significantly so; compare the “ALL” column of
Table 6 and “SURCF” column of Table 4. The fact that
a multi-model ensemble better fits the observational
signal and improves the skill is consistent with the
results from Murphy (1988) where the superiority of
an ensemble-mean forecast over an individual forecast
was shown both with numerical ensemble forecasts and
simple theoretical considerations. The result from the
present study points to interesting prospects for the
users of operational oceanography forecasts.

We also noted that most OGCMs had an “optimal
low-pass filter radius”, i.e. removing scales smaller than
roughly 150 km or so improved the estimates. The in-
terpretation is that the OGCM’s surface velocity fields
contain errors that increase in importance with smaller
scales. Below about 150 km, the errors are more im-
portant than the signal (importance assessed by impact
on Lagrangian particle trajectories). These errors can
be attributed to various sources. Models suffer from
shortcomings like their lack of resolution, errors in the

forcing fields or bulk parameterisations used which all
contribute to the forecast errors. And at the scales con-
sidered (spatial scales less than the Rossby radius and
time scales less than 7 days), the nonlinearities of the
advection terms in the momentum equations are more
important than at larger scales and are able to strongly
amplify small initial errors. Furthermore, all numerical
models include data assimilation where the model state
is corrected sequentially. The analysis may introduce
some shocks when the increments are applied, i.e. the
thermodynamics may be slightly unbalanced, especially
at the equator where geostrophic balance does not
hold. This may introduce some noise in the surface
currents, especially when incremental analysis update
is not used (Ourmieres et al. 2006). Lastly, the obser-
vational network is certainly not sufficient to correctly
constrain the full dynamics. All these factors contribute
to small-scale errors. By filtering the small scales, one
removes those errors and one obtains an ocean state
estimation closer to the true ocean. As a consequence,
the trajectory forecast skill is improved. This result is
also in agreement with Murphy (1988) who showed that
spatial filtering improves both ensemble-mean and in-
dividual forecasts. Our result is also partially consistent
with the results of Huntley et al. (2011) who found
that coarsening the US Navy EAS16 model velocity
fields in space (or in time) by up to a factor of 8 via
subsampling did not degrade the trajectory estimates.
However, buried in those errors, there appeared to be
some useful signal. This was suggested by the fact that
the optimal filter for the compromise velocity field that
averaged the five models as in Eq. 2 was between 0 and
about 75 km and thus smaller than the 100- to 200-km
optimal filter of the individual OGCMs. The ensemble
velocity fields may have had skill on smaller scales.
Furthermore, ensemble velocity fields had greater skill
than even the best single model optimally smoothed,
see the CDF of trajectory error in Fig. 10. But because
the improvement is only slight, it is not statistically
significant at the 95% level.
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Appendix: Models

Description of PSY2 model runs

Mercator-Océan PSY2 is an operational ocean analy-
sis and forecasting system based on the NATL12
ocean configuration and a reduced order Kalman
filter data assimilation scheme. The NATL12 ocean
model configuration is a regional implementation of the
ocean/sea-ice NEMO numerical framework (Madec
2008) carried out by Mercator-Océan and the Euro-
pean DRAKKAR collaboration (DRAKKAR Group
2007). The configuration is similar in many points to the
one used by Barnier et al. (2006) except that the resolu-
tion is 1/12◦ (Mercator grid) and that the geographical
domain is limited to the North Atlantic (20◦ S–70◦ N)
and the Mediterranean Sea. The model has 50 layers
in the vertical (Z coordinate), with a layer thickness of
1 m near the surface, increasing with depth (10 m at
50 m depth) up to 450 m at 5,500 m depth. It uses a
partial step representation of the bottom topography
and a momentum advection scheme that both yielded
significant improvements (Penduff et al. 2007). Parame-
terisations include a Laplacian mixing of temperature
and salinity along isopycnals, a horizontal biharmonic
viscosity and a turbulence closure scheme (TKE) for
vertical mixing. The turbulent surface fluxes are com-
puted using the CLIO bulk formulation (Goosse et al.
2001) forced by ECMWF operational analyses (1-day
averages). The surface wind stress is the one provided
by ECMWF analyses (i.e. it is not computed using the
CLIO formulation). The ocean model includes the river
runoff climatology of Dai and Trenberth (2002).

The data assimilation scheme is based on the singular
evolutive extended Kalman filter formulation proposed
by Pham et al. (1998). This approach has been used for
several years at Mercator-Océan and was implemented
in different ocean (re)analysis systems like PSY2, PSY3
(http://bulletin.mercator-ocean.fr/html/welcome_en.jsp)
or GLORYS (see below). Details about the implement-
ation of the data assimilation scheme are described by
Tranchant et al. (2008). A key aspect of the method
is the use of a large number of model anomalies (a
few hundred) to model explicitly the background
model error covariance. In PSY2, the control vector
consists of the barotropic height and the temperature
and salinity fields. In order to produce a balanced,
analysed ocean state the velocity is deduced from the
barotropic sea surface height and mass field increments
using appropriate physical balance operators. Among
them, a linear equation of baroclinic motion is used
to build the baroclinic velocity increments near the

equator (see Benkiran and Greiner (2008)). The length
of the assimilation cycle is 7 days, and the increment
is applied directly to the model state at the analysis
time. The assimilated data is sea level anomaly (in
conjunction with the mean dynamic topography of Rio
and Hernandez (2004)), SST and in situ profiles (see
Table 2).

Description of PSY3 model runs

Mercator-Océan PSY3 is very similar to PSY2 (see
above) except for the following principal differences.
The spatial resolution was coarser (1/4◦ Mercator
grid). Furthermore, the error covariance statistics were
different since they were computed from a reference
experiment with no data assimilation for each model
configuration. Finally, the SST observation operator
was slightly different, with less smoothing of the model
equivalent for PSY3, and slightly different weights
applied.

Description of the GLORYS model runs

GLORYS is a project with objective to produce a
series of realistic (i.e. close to the existing observations
and consistent with the physical ocean) eddy resolving
global ocean reanalyses. The version 1 of stream 1
(called GLORYS1V1) covering the Argo years (2002–
2008) is used in this study. The ocean reanalysis system
used in GLORYS is similar in many points to PSY2.
However, some important differences exist that we
review in the following. The OGCM used in GLO-
RYS1V1 is also based on the ocean/sea-ice NEMO nu-
merical framework (Madec 2008). The main differences
with PSY2 are: (a) the configuration is global (−77S
to the North Pole) and (b) the horizontal resolution is
coarser (1/4◦ Mercator grid). GLORYS1V1 shares the
same vertical grid as PSY2. The physical parameterisa-
tions used are basically the same, except that GLORYS
has an additional harmonic diffusion operator in the
tropical band (5.5◦ N/5.5◦ S) to improve the tropical
instability wave physics at 1/4◦ horizontal resolution.
The data assimilation scheme is close to PSY2, except
that the control vector includes two more variables:
the zonal and meridional velocity components. This
allows producing a velocity increment consistent with
the analysed mass field and model physics. Because
there is no simple relationship between the mass field
and the circulation near the equator (e.g. Benkiran and
Greiner 2008), the analysed velocity near the equator
is only partially applied. The velocity increments are
set to zero at the equator and increase smoothly with

http://bulletin.mercator-ocean.fr/html/welcome_en.jsp
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latitude to become maximal at 7◦. The last important
difference with PSY2 is the use of an IAU initialisation
procedure (Bloom et al. 1996) to apply the increment
to produce a time continuous ocean analysis.

Description of NCOM model runs

The 2007–2008 NCOM results are from the global
ocean forecast system (GOFS) version 2.6 running op-
erationally at the Naval Oceanographic Office. Global
NCOM (Barron et al. 2006) uses a rotated bipolar
curvilinear grid with spacing about 20 km at the equa-
tor, 14 km (1/8◦) at midlatitudes and 5 km in the Arctic.
It employs an implicit-free surface and hybrid vertical
grid with 19 terrain-following sigma levels above 21
fixed-level z coordinates below 141 m, chosen to be
near the depth of a typical shelf break. The layers are
logarithmically stretched below a 1-m-thick uppermost
layer. In GOFS 2.6, data assimilation (Barron et al.
2007) relaxes to a background of Modular Ocean Data
Assimilation System (Fox et al. 2002) synthetic profiles
of temperature and salinity derived based on remote
observations of sea surface height and sea surface tem-
perature and modified by in situ observations through
the Navy Coupled Ocean Data Assimilation System
(NCODA; (Cummings 2005)). GOFS obtains wind
stress and surface heat flux forcing from the NOGAPS
(Rosmond et al. 2002). River inflow is derived from a
monthly climatology for 981 of the world’s largest rivers
(Barron and Smedstad 2002). Tides are not included in
the present global model and are optionally added in a
separate step when nesting a higher-resolution regional
model. Simulated drifter evaluations with earlier ver-
sions of global NCOM were performed by Barron et al.
(2007) and van Sebille et al. (2009).

Description of HYCOM model runs

HYCOM is widely used by the ocean community
(http://www.hycom.org) and is the backbone of the
global eddy-resolving (1/12◦ horizontal resolution) real-
time nowcast/forecast system at the Naval Oceano-
graphic Office. The model has nominal 1/12◦ Mercator
grid horizontal resolution (6.5-km grid at midlatitudes
with a bipolar patch north of 47◦ N, i.e., 3.5-km grid
spacing at the North Pole) and 32 hybrid layers in the
vertical (pressure coordinates are used in the mixed
layer, isopycnal coordinates are used in the ocean in-
terior and terrain-following coordinates are used in
shallow areas) (Bleck 2002; Chassignet et al. 2003, 2006,
2009).

The simulation used for the analysis here was
restarted from a spun-up state of a non-assimilative

global 1/12◦ HYCOM simulation with climatological
forcing. The assimilative hindcast began in May 2007
and integrated through the analysis period while be-
ing forced by the three-hourly NOGAPS (http://www.
nrlmry.navy.mil/nogaps_his.htm) wind stress, wind
speed, heat flux (using bulk formula) and precipitation.
Runoff from 986 rivers was included as virtual salinity
flux with no mass exchange. The 1/12◦ assimilative
global HYCOM system has been validated by Metzger
et al. (2008, 2010).

The data assimilation in HYCOM is performed using
the NCODA system. NCODA is a multivariate optimal
interpolation scheme that assimilates surface obser-
vations from satellites, including altimeter and multi-
channel sea surface temperature data, sea ice concen-
tration and also profile data such as XBTs, CTDs and
profiling floats (Cummings 2005).

Description of SURCOUF

The SURCOUF currents were computed globally at
a six-hourly temporal resolution using the following
methodology that combines estimates of geostrophic
current and the Ekman component of the ageostrophic
current. Daily geostrophic currents were obtained from
the gradient of the global multi-mission altimetric maps
distributed by AVISO. The mean dynamic topography
(MDT) used to reference the sea level anomalies was
the recent solution computed by Rio et al. (2011) using
the following three-step method (Rio and Hernandez
2004). First, a large-scale mean dynamic topography
was obtained from the CLS01 altimetric mean sea sur-
face (Rio and Hernandez 2004) and a geoid model
computed at Groupe de Researches de Géodésie Spa-
tiale, Toulouse from 4.5 years of GRACE data. Then,
in situ measurements (drifting buoy velocities from
1993 to 2008, CTD casts and ARGO profiles from
1993 to 2007) were combined with altimetric anomalies
to compute synthetic estimates of the MDT and the
corresponding mean currents. The synthetic estimates
were finally used to improve the large-scale solution
through a multivariate objective analysis.

Six-hourly ERA INTERIM wind stress fields
(Berrisford et al. 2009) were used to compute maps
of Ekman currents �uek through the use of a simple
statistical model:

�uek = β exp (iθ)�τ ,

where β and θ have been obtained analysing 15-m
drogued drifting buoy velocities that were collected in
the framework of the international Global Drifter Pro-
gram, quality-controlled and distributed by the AOML
center. To estimate �uek, absolute altimetric velocities

http://www.hycom.org
http://www.nrlmry.navy.mil/nogaps_his.htm
http://www.nrlmry.navy.mil/nogaps_his.htm
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Fig. 11 β (left) and θ (right)
parameters of the Ekman
model used in the
computation of the
SURCOUF currents.
Parameters are displayed by
month (from 1 Jan to 12 Dec)
and latitude (ranging between
10◦ S to 10◦ N). The units are
(metres per
second)/(Newtons per square
metre) and degrees,
respectively

were interpolated along the drifting buoy trajectories
and subtracted from the buoy velocities. The residual
ageostrophic current was further filtered using a 1.25-
to 20-day band pass filter to focus on the frequencies
where the coherency between the wind stress and the
Ekman currents is maximal (Rio and Hernandez 2003).
Then ERA INTERIM wind stress values were interpo-
lated along the drifting buoy trajectories and also band-
pass filtered. A least square fit was finally performed
between �uek and �τ so as to obtain the β and θ parame-
ters by latitudinal bands and by month. The resulting
parameters are plotted in Fig. 11. For this specific study,
the least square fit was performed on drifting buoy
velocities available for the year 2006 in order to be
independent from the analysis time period (2007–2008).
Then Ekman currents were estimated and added to
the geostrophic currents to obtain an estimate of the
total surface current. Note that removing the drifters
from our study period (July 2007 through December
2008) from the SURCOUF mean fields degraded the
trajectory estimates in all cases. But the increase in
trajectory error was similar to the half-width of the 95%
confidence limits. For example, the 80th percentile for
3-day trajectories changed from 70 ± 3 to 73 ± 3 km
in Table 4, while for 7-day trajectories changed from
145 ± 10 to 153 ± 10 km. In other words, the change
was barely significant at the 95% level. This was to be
expected because the AOML drifters from our study
period and main analysis region were not the dominant
determinant of the mean field there since less than 15%

of the 244,608 drifter velocity measurements within
the main analysis region fell within the July 2007 to
December 2008 time window.
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