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In this paper the effect of a summer Mistral event on the Ligurian and Tyrrhenian Seas in the north-
western Mediterranean is discussed, using a coupled numerical model and satellite and in situ observa-
tions. The focus is on the spatial and temporal distribution of the ocean mixed layer response to the
strong winds, and on how this is affected by atmosphere-ocean coupling. The model used is the Coupled
Ocean-Atmosphere Mesoscale Prediction System (COAMPS®?), developed at the Naval Research Labora-
tory. This system includes an atmospheric sigma coordinate, non-hydrostatic model, coupled to a hydro-
static sigma-z level ocean model (Naval Coastal Ocean Model), using the Earth System Modeling
Framework (ESMF). The model is run at high (km scale) resolution to capture the fine structure of wind jets
and surface cooling.

Two non-assimilating numerical experiments, coupled and uncoupled, are run for a 3-day period of a
Mistral event, to examine more closely the impact of coupling on the surface flux and sea surface tem-
perature (SST) fields. The cooling of SST up to 3 °C over 72 h in the coupled run significantly reduced
the surface momentum and heat fluxes, relative to the uncoupled simulation, where the SST was kept
fixed at the initial value. Mixed layer depths increase by as much as 30 m during the event. A heat budget
analysis for the ocean is carried out to further explain and investigate the SST evolution. Shear-induced
mixing in inertial waves is found to be important to the surface cooling. Effects of coupling on the atmo-
spheric boundary layer are found to be significant, but overall the effect of coupling on the synoptic low
pressure system is small.
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1. Introduction and they blow over sea surface temperatures of about 13 °C. The
resulting surface turbulent sensible and latent heat fluxes can com-

The north-west Mediterranean Sea is subject to frequently bine to reach over 400 Wm~2, cooling the ocean and leading to

occurring wind events associated with cyclogenesis in the lee of
the Alps (Buzzi and Speranza, 1983; Pettre, 1982). The typical sit-
uation has a low centered in the Gulf of Genoa, with synoptic
northerly flow impinging on the mountain ranges, and being fun-
neled by gaps in the topography. This leads to strong topographic
jets: the northerly Mistral flowing between the Alps and Massif
Central and down the Rhone valley: and the north-westerly Tra-
montane between the Massif Central and the Pyrenees.

Mistral and Tramontane events are associated with large air-
sea fluxes (Flamant, 2003) and a significant ocean response
(Estournel et al., 2003). In winter the surface winds can have
speeds greater than 20 m s~', with air temperatures below 5 °C,
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deep convection in the Gulf of Lions (Schott et al., 1996). Mistral
and Tramontane events also occur in summer (Drobinski et al.,
2005), with the low pressure systems typically occurring about
10 times (Millot, 1979), approximately half as many times as in
winter (Buzzi and Speranza, 1983).

In early summer the increase in solar insolation and a reduction
in the frequency of strong winds leads to a restratification of the
upper ocean in the north-west Mediterranean Sea. For example,
by the middle of June in the Gulf of Genoa, the surface temperature
is around 22 °C, the mixed layer is just 10 m deep, and there can be
a 6-8 °C difference between the surface temperature and the tem-
perature near 50 m depth (see Fig. 1, and Allard et al., 2010).

The primary aim of this study is to examine the response of the
Ligurian and Tyrrhenian Seas to a summer Mistral event using a
coupled mesoscale ocean-atmosphere model. Because the mixed
layer is quite shallow, there is a potential to significantly reduce
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Fig. 1. Initial ocean stratification. (a) Potential temperature and (b) potential density vs. depth from 5 CTD profiles taken during the LASIEO7 experiment on the early morning
of 26th June 2007 (green), their mean (red), and initial state from the coupled model at a nearby location (black). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

the SST during strong winds in summer, through upwelling and
entrainment of thermocline water into the mixed layer. In addition
the wind jets can affect the ocean restratification process by poten-
tially deepening the mixed layer. The SST response can provide
feedback to the surface stress and heat flux forcing. We examine
this effect by comparing the fully interactive ocean-atmosphere
model with a simulation with feedback from ocean to atmosphere
(via SST) switched off.

To the best of our knowledge the Mistral has not been analysed
before in detail using a high resolution fully coupled model for a
summer case. Although Mediterranean Sea ocean modeling has
had a long history (see e.g. Malanotte-Rizoli and Robinson, 1994;
Pinardi and Masetti, 2000; Pinardi et al., 2003; Barth et al., 2005),
only recently have coupled models been used to study basin scale
effects (Somot et al., 2008; Artale et al., 2010). In a related paper to
this study, Lebaupin-Brossier and Drobinski (2009) investigated
the air-sea interaction during winter Mistral events using the
atmospheric Weather Research and Forecasting (WRF) model cou-
pled to a mixed layer ocean model. In their case the maximum sur-
face cooling observed was around 1 °C in the Gulf of Lions in a
November event. In our summertime event, the cooling is larger
(2-3°C) and interactive coupling has the potential to be more
important.

This paper is a companion to Small et al. (2011) which per-
formed and validated a month long simulation of the coupled mod-
el against in situ data from the Ligurian Sea Air-Sea Interaction
Experiment (LASIEO7, Sempreviva et al., 2010). The paper is struc-
tured as follows. Section 2 introduces the model, the satellite and
in situ observations, and describes the model experiments. Section
3 summarizes the Mistral case study, focusing on the near surface
winds, wind stress, and Ekman pumping. Section 4 describes the
surface ocean response in terms of temperature and currents. Then
Section 5 shows the distribution of air-sea fluxes and discusses the
sensitivity of SST evolution to air-sea coupling. Section 6 examines
the ocean sub-surface response, including a heat budget and
description of inertial wave effects. Section 7 is a brief discussion
of the atmospheric response to full coupling. This is followed by
a Conclusions section.

2. Models, observations and methods
2.1. COAMPS numerical model

Numerical simulations are performed with the Coupled Ocean-
Atmosphere Mesoscale Prediction System (COAMPS®), developed
at the Naval Research Laboratory. The atmospheric component is
a terrain-following sigma coordinate, non-hydrostatic model
(Hodur, 1997; Chen et al., 2003). The ocean component is the hydro-
static Navy Coastal Ocean Model (NCOM), which uses a combination

of terrain following sigma and z-level coordinates (Martin, 2000;
Martin et al., 2006). The model is based on the Princeton Ocean
Model (Blumberg and Mellor, 1987) and also includes a free surface.
The model domains and resolutions are identical to those used in
(Small et al., 2011, see Fig. 3 of that paper). The atmosphere has
three nests of horizontal spacing 36 km, 12 km and 4 km respec-
tively, each nest having 40 vertical layers. The ocean model was
set up with an outer and inner nest with 6 km and 2 km grid spacing
respectively, with a total of 50 vertical levels in each. Full details of
the COAMPS version used in this study, including technical details of
the coupling and the physical schemes employed, can be found in
Chen et al. (2010), Jensen et al. (2011), and Small et al. (2011).

2.2. Satellite and in situ data

Equivalent neutral wind vectors at 10 m (Wentz and Smith,
1999) are derived from the SeaWinds QuikSCAT scatterometer,
and obtained from the Remote Sensing Systems web site
(www.remss.com). The twice-daily (approximately 0600 and
1800 local time) data is mapped onto a regular Cartesian 1/4 degree
grid.

We use an optimal interpolation of infrared satellite SST pro-
vided by the GOS group at Institute of Atmospheric Sciences and
Climate, Consiglio Nazionale delle Richerche (CNR-ISAC) in Rome
(Marullo et al., 2007). This product utilizes Advanced Very High
Resolution Radiometer (AVHRR) and other infrared satellite data
gathered during nighttime, when the expected differences with
in situ bulk SST are expected to be at a minimum.

Near surface wind and ocean temperature data is obtained from
the Ligurian Sea Air-Sea Interaction Experiment (LASIEQ7, Teixeira,
2007; Sempreviva et al., 2010; Carniel et al., 2010; Small et al,,
2011), in particular from the Ocean Data Acquisition System
(ODAS), located at 9°9.8E, 43°47.36N, and from conductivity-tem-
perature-depth (CTD) profiles gathered from the Research Vessel
Planet.

2.3. Model experiments

A short pair of simulations was performed, covering the 3 day
period of 26th June 2007 to the 28th June, a period of Mistral winds
in the Ligurian Sea. The first simulation is a fully coupled run, re-
ferred to as Run C, in which atmospheric and oceanic fields are up-
dated every 12 min for the surface flux calculations. The second
simulation is uncoupled (Run U). In this uncoupled case, the sur-
face fluxes are computed using the initial, unchanging SST (“persis-
tence”). The reason for this uncoupled configuration is that it
mimics a more traditional 72 h operational atmospheric forecast
using a fixed SST field (e.g. using a single analysed SST field
from the Navy Coupled Ocean Data Assimilation system (NCODA,
Cummings, 2005)).
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Fig. 2. Near-surface winds and sea level pressure during the Mistral. (a-c) 10 m neutral winds from QuikSCAT swaths at (a) 25th June, 2007, 1700Z, (b) 26th June 0500Z, and
(c) 26th June 1700Z. Here colors show the wind speed and the velocity vectors are referenced to the 10 m s~! scale at top left. The brown contours over land are land
topography at 500 m intervals. (d) Sea level pressure field (hPa) from nest 2 of the atmospheric model at 1800Z, 26th June 2007. Contour interval is 1 hPa. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Mistral winds and ocean response during LASIEO7. (a and c¢) 10 m wind speed (color) and vectors, average 26 June to 28 June 2007 during Mistral winds. (b and d) SST
change (color), 29thJune 0000Z minus 26th June 0000Z. The top panels (a and b) show observations, from QuikSCAT scatterometer, and from an optimally interpolated
AVHRR composite (from CNR ISAC data) respectively. The bottom panels (c and d) show results from the COAMPS coupled model. The labels L, B, C and S at bottom right refer
to Ligurian Sea, Strait of Bonifacio, Corsica and Sardinia respectively.
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Identical initial conditions for SST are used in both simulations,
and no data assimilation is employed. Hence, differences that arise
between the two experiments are due solely to the coupling that
occurs during the run, and not due to initial differences in the
SST field, or due to the influence of data assimilation. We refer to
the atmospheric portion of the U run (which includes the surface
flux computation) as the uncoupled atmosphere (UA), and likewise
the ocean part of the U run as uncoupled ocean (UO).

Lateral boundary conditions for the atmospheric model come
from the operational NOGAPS 1 degree model, 6 hourly output,
whilst those for the ocean model also come 6 hourly from the glo-
bal version of the NCOM, 1/8 degree model (Barron et al., 2006).

The initial conditions for these experiments come from these
same global ocean and atmosphere models. To investigate the sen-
sitivity of the results to the initial state, we compared the results of
this study with two experiments having longer spin-up. The first
was a preliminary experiment of the same nature as that described
here, but using 3 day atmospheric spin-up (COAMPS atmospheric
model with analysed SST at the surface) and a 10 day ocean spin
up (NCOM forced by NOGAPS). The second was a month long cou-
pled simulation detailed in Small et al. (2011), which began 16 days
before the event studied here. The response of the ocean in these
cases was qualitatively similar to that in the experiment discussed
in this paper. In particular, the spatial scale and magnitude of the
wind jets and of the SST cooling, and the occurrence of strong iner-
tial waves, were comparable in all three experiments. Hence the
conclusions of this paper are not sensitive to the spin-up.

3. Coupled simulation of a summer Mistral event

We first describe the time evolution of the Mistral event from
observations and model results. The first observed signs of the
wind event appear on the evening of the 25th June, when winds
of over 15 m s~! emanate from the Gulf of Lions in QuikSCAT data
(Fig. 2a, a swath at 1800 Local Time or 1700Zulu (Z), 25th June),
suggestive of an initial Tramontane or mixed Tramontane/Mistral
event. On the morning of the 26th June, QuikSCAT data shows wind
speeds of 10-15ms~! over most of the Ligurian Sea (Fig 2b). By
the evening of the 26th June (Fig. 2c and d) and throughout the
27th June (not shown) a low pressure cell is simulated just west
of the Gulf of Genoa on the coast with strong pressure gradients
and winds up to 18 m s~ ! north and west of Corsica and near the
Strait of Bonifacio,® and weaker winds in the Gulf of Lions. By the
28th June the winds have considerably weakened in both model
and observations.

The complete event of 26th-28th June is summarized in Fig. 3.
The 3-day average wind speed and velocity at 10 m from QuikSCAT
reveals the winds up to 12-13 m s~! over the Ligurian Sea associ-
ated with the Mistral (Fig. 3a). The wind directions and spatial dis-
tribution of wind speed extrema shown in Fig. 3a are very close to
those seen in climatologies for the summer (see e.g. Fig. 3 of Pinar-
di and Masetti, 2000), demonstrating the dominance of this synop-
tic feature. The wind field in the COAMPS C run reproduces the
main features of the flow (Fig. 3c), in particular the locations of
strongest winds in the central Ligurian Sea, north-east of Corsica,
and east of the Strait of Bonifacio. However the model winds are
weaker overall by 1-2 ms~! compared to observations and are
particularly weak in coastal regions such as the Gulf of Genoa,
the head of the Gulf of Lions and the eastern Tyrrhenian Sea. This
bias will be discussed later with respect to the ocean response.

The 3-day average of observed and modeled Ekman pumping
(EP) velocities are shown in Fig. 4a and b, respectively. (Here the
EP is multiplied by (—1) so that positive values denote anticyclonic

2 This narrow strait separates Corsica and Sardinia.
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Fig. 4. As for Fig. 3a and c, but showing negated Ekman pumping velocity (m h™!,
positive downwards convention such that red areas denote downwelling) (a) from
QuikSCAT, (b) from the coupled model.

curl and downwelling in the ocean.) Despite the different resolu-
tions in QuikSCAT and the model atmospheric grid, it is still possi-
ble to make comparisons between the fields. Both observations and
model show the cyclonic curl, inducing upwelling, in the Ligurian
basin. A north-south cyclonic-anticyclonic dipole occurs just east
of the Strait of Bonifacio (the nodal line of this dipole appears fur-
ther south in the model). Anticyclonic curl south and west of the
Gulf of Lions is seen between 2°E and 4°E, just visible on the edge
of the model domain, and there is a hint that the satellite data
shows a thin ‘filament’ of anticyclonic curl offshore of the Gulf of
Lions, which is more clearly seen in the model field (Fig. 4a and
b). This latter feature, which corresponds to the boundary between
the Mistral and Tramontane jets, is possibly related to potential
vorticity banners (Aebischer and Schar, 1998). The model EP also
shows anticyclonic curl east of the north-eastern tip of Corsica,
in a region unfortunately obscured by the QuikSCAT land mask.
The significance of these structures in the Ekman pumping field
will be discussed in more detail in Section 6.1.

4. Response of the upper ocean
4.1. Sea surface temperature

The initial SST condition for the northern part of the outer mod-
el domain is shown in Fig. 5a. It is characterized by temperatures of
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21-24 °C over much of the north-west Mediterranean Sea, but with
cooler temperatures, down to 18 °C, in the Gulf of Lions, as a result
of previous Mistral and/or Tramontane events. Reanalysis data
from the CNR-ISAC SST satellite product compiled for the 25th June
shows a similar spatial SST distribution, but is warmer than the
model by over 1°C in the Gulf of Lions and west of Corsica and
Sardinia (Fig. 5b).

The ocean response to the winds is first illustrated by the
change in SST between 0000Z 26th June and 0000Z 29th June, from
the analysed infrared satellite SST data (Fig. 3b). The ocean cools by
over 1°C over 72 h in most of the Ligurian Sea and northern Tyr-
rhenian Sea, with the strongest cooling, between 2 °C and 3 °C, to
the north and west of Corsica, and east of the Strait of Bonifacio
(referenced locations are shown in Fig. 3d). In general the ocean
cools more in the regions of strongest winds, as one might expect
from a simple one-dimensional mixed layer response, with the
exception of the western Gulf of Lions where there is some weak
warming despite reasonably strong winds. The coupled simulation
reproduces these broad spatial patterns and magnitude of the SST
response to the strong winds (Fig. 3d): some localized differences
are discussed next.

There are patches of intensified cooling along the east and
south-east coast of the Gulf of Lions in observations (Fig. 3b): here
the wind velocities are parallel to the coast (Fig. 3a), giving rise to
offshore Ekman transport and consequent coastal upwelling. Both
the observations and the model (Fig. 3d) show greatest upwelling
along the coast of the eastern Gulf (seen also in the study of sum-
mer upwelling by Millot (1979) and Millot and Wald (1981)), while
the model upwelling extends further east than observed (coastal
winds in the model east of the Gulf of Lions are more parallel to
the coast than seen in QuikSCAT). Upwelling at the head of the Gulf
is also more prominent in observations, which may relate to the
weak model winds in that location as discussed above. In addition,
Millot and Wald (1981) noted downwelling in the south-west part
of the Gulf, roughly where Fig. 3b and d show very weak cooling
and some warming.

East of the Strait of Bonifacio, the cooling in observations and
model is reminiscent of the filaments identified by Salusti (1998)
and Perilli et al. (1995) as a response to Mistral winds accelerated
through the Strait (see Section 6 for more details). This is related to
the ‘Tyrrhenian Eddy’, a cyclonic, cold-cored eddy that lies east of
the Strait of Bonifacio (Schiano et al., 1993; Artale et al., 1994;
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Perilli et al., 1995; Salusti, 1998; Bignami et al., 2008). These
authors suggest that this is the dominant part of a north/south cy-
clonic/anticyclonic gyre couplet, driven by the strong winds
through the Strait of Bonifacio and the consequent Ekman pump-
ing dipole (see Fig. 4). The model SST response is stronger than ob-
served by about 1 °C, and extends further to the west and through
the Bonifacio Strait (Fig. 3b and d). The lack of a strong response
seen in the Strait in observations could relate to land-masking of
satellite data in that narrow (11 km) channel.

Close inspection of Fig. 3b and d) reveals that offshore of the
Gulf of Genoa, COAMPS underestimates the reduction in SST over
3 days relative to the AVHRR observations (0-1 °C in model com-
pared to 1-2 °C in observations). The time evolution of the sea sur-
face temperature at the ODAS mooring showed that the
temperature at 1 m dropped from 21.3 °C in the evening of the
25th June to 19.9 °C early on the 27th June (Fig. 6a, black line with
symbols), consistent with the satellite data. In contrast both the
coupled C and uncoupled (UO) model show a more gradual decline
at this location, dropping by about 0.6 °C over the same time period
(Fig. 6a, blue and red lines). The fact that the coupled and uncou-
pled ocean runs are almost indistinguishable at this location will
be discussed further below.

The model underestimation of the SST response at ODAS was
discussed in Small et al. (2011): mixed layer model experiments
showed that two factors made significant contributions to the dif-
ference: (i) winds that were too weak in COAMPS (compare Fig. 3a
and c in the Gulf of Genoa), and (ii) an underestimate of the mixing
by NCOM. Another possible reason for the model SST bias at ODAS,
not discussed in Small et al. (2011), is differences in the initial
ocean stratification. Fig. 1 shows the temperature and density
structure from five conductivity-temperature-depth profiles taken
early on the 26th June close to the ODAS mooring during the LA-
SIEQ7 experiment. Their mean is shown in red and, for comparison,
the initial condition for the model in the same location is shown in
black. The model profile has a deeper mixed layer and weaker ver-
tical gradient in the upper thermocline than the observations (the
LASIEQ7 observations were not assimilated into the global NCOM
model which provided initial conditions). In the model the
19.9 °C water is located 5 m deeper than in the mean CTD profile
(see Fig. 1a), which may partly explain why the model does not
bring such cold water to the surface.

In the central Ligurian Sea, cooling reaches 2-3 °C in both obser-
vations and model (Fig. 3b and d), although the spatial patterns are
somewhat different: the strongest response in observations is west
of Corsica whereas in the model it is north of Corsica. This may re-
late to differences in the wind field, with a stronger southward off-
shore extension of the wind jet in the observations (Fig. 3a)
compared to COAMPS (Fig. 3c) which has a jet more attached to
the Provence coast. A time series at 8°E, 43°N, where a cooling of
about 2 °C is seen in observations over 3 days (Fig. 3b), reveals that
most of the model cooling occurs in the first 24 h, about 2 °C
(Fig. 6b), when wind speeds increase from 10 to 16 m s~ !, and sur-
face stress reaches 0.5 Nm~2 (not shown), reasonably consistent
with QuikSCAT (Fig. 2a-c) and the UO run cools more (by about
0.5 °C) over the 3 day period (Figs. 6b and 9d).

4.2. Surface current response

The circulation in the Ligurian Sea (locations are marked on
Fig. 5a) is closely tied to the influence of the Mistral. Crépon
et al. (1989) hypothesise that a geostrophic adjustment to deep
water formation in winter gives rise to a basin scale cyclonic gyre,
which is present year round. Herbaut et al. (1997) find that
cyclonic wind stress curl, east of the Mistral jet axis, helps to main-
tain the cyclonic circulation. Strong currents associated with the
cyclonic gyre flow around the edge of the basin, such as the
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Liguro-Provencal or Northern Current, and west Corsican current
(Poulain et al., submitted for publication; Carniel et al., 2002; Sch-
roeder et al., 2011).

The strong winds during the Mistral case study drive a signifi-
cant surface current response. The surface ocean currents averaged
over the 3 days of simulation are shown in Fig. 7a. For reference,
the corresponding currents from a full month simulation of the
COAMPS model (identical to the model used here excepting that
it was initialized 16 days earlier, and incorporated data assimila-
tion in the atmosphere, as described in Small et al. (2011)), is
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difference in 10 m wind speed.

shown in Fig. 7b. Comparing the two, we see that in response to the
Mistral winds, flow is more offshore in the Gulf of Lions and the
northern coast of the Ligurian Sea. A tight eddy-like cyclonic gyre
is formed to the north of Corsica during the Mistral (Fig. 7a), in con-
trast to the broad Ligurian Sea gyre seen in the 1 month simulation,
with weak flow on its western and southern flank (Fig. 7b). The
Northern or Liguro-Provencal current is much less apparent during
the Mistral events. Strong flow is also seen through the Strait of
Bonifacio (Fig. 7a) in response to the jet-like winds (Fig. 3a and c).

The modeled currents are reasonably consistent with those de-
rived from an analysis of drifter data by Poulain et al. (submitted
for publication). In that paper, multiple drifter deployments,
mostly starting in June 2007 but lasting for a number of months
afterwards, revealed the near-surface circulation in the Ligurian
Sea. These authors classified the data into periods of Mistral
winds and other periods (Fig. 7c). According to the authors, the

recirculation or ‘short-cutting’ segment of the circulation, namely
the offshore drift occurring somewhere between the French/Italian
border and the Gulf of Lions, occurs only during Mistral periods.
This is consistent with a strong offshore component of the currents
in the Mistral model simulation (Fig 7a) in contrast to the strong
alongshore flow (extending right across the Gulf of Lion), and weak
recirculation in the whole-month-average (Fig. 7b). Millot and
Wald (1980) also showed that the westward extent of the Northern
Current was greater when Mistral winds were not blowing.

5. Air-sea fluxes and the importance of coupling
The uncoupled atmosphere (UA) does not see the temporal

change in SST discussed in Section 4.1, so we may expect a large
difference in the fluxes between the two experiments. In particular,
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in the regions of cooling SST in the coupled run (see Fig. 8a for a
close-up), a lower value of sea-air temperature difference is likely,
because of the reduction of SST (although some compensation will
occur as the air temperature adjusts to the SST). Indeed, plots of
the sea-air temperature difference AT = Ts-T,, where Ts is the SST
and T, is the near-surface air temperature (Fig. 8b and c), indicate
that ATwas lower by up to 1 °Cin the coupled run compared against
the uncoupled run, in the regions of strongest SST cooling (as shown
in the difference map Fig. 8d).

The surface latent heat flux averaged over the 3 day C run
reaches over 200 Wm~?2 (Fig. 9a) where the winds are strong
(Fig. 8e). In this C run, the latent heat flux is less than that in the
UA run, by 50-100 Wm~2 (Fig. 9c, contours), or 25-50%, in the re-
gions of strongest SST cooling. The sensible heat fluxes show sim-
ilar spatial patterns of the differences which reach up to 30 Wm2,
a 100% change (not shown), with again the UA run fluxing more
heat out of the ocean. The surface stress reaches up to 0.25 Nm—
in the C run (Fig. 9b), about 0.025-0.05 Nm? less than in the UA
run (Fig. 9¢, colors), or about a 10-20% reduction.

The differences in heat fluxes are due to a combination of the
change in stability between the experiments, as well as differences
in wind speeds. A change in AT of 1 °C between the experiments is
comparable to the typical magnitude of AT in the individual exper-
iments: thus leading to the 100% changes in sensible heat flux. Fur-
ther, cooler SST in the coupled C run would mean a smaller
saturation specific humidity at that value of SST (qsq(Ts)), so the dif-
ference Aq = qsa(Ts)-qu(T,), Where q, is air humidity, is likely to de-
crease, contributing to lower latent heat flux in the coupled run. A
simple example can quantify this: for an SST of 23 °C, a relative
humidity of 80%, and air temperature of 22 °C, Aq ~ 4.3 gkg L. If
the SST is reduced by 2 °C to 21 °C and all else remains the same,
Aq ~ 2.3 gkg '. If we take into account adjustment of air tempera-
ture towards the SST, and assume T, drops by 1 °C to 21 °C, then
Aq ~3.0gkg™'. In other words, Aq will be reduced by a factor of
about 1.5-2 as a result of the SST reduction, and this could lead to
a corresponding difference in latent heat flux, which is consistent
with the 25-50% latent heat flux reduction quoted above.
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The time-averaged 10-m wind speed differences between the
runs reaches up to #0.5ms~!, or about 5% of the average wind
speed (Fig. 8f). While these changes in wind speed are much less
important to the modifications in heat fluxes than the change in
SST, Aq and AT, they do have a greater effect on stress. At wind
speeds of 10 m s~ !, a wind speed change of 0.5 m s~ would create
about a 10% change in stress. By comparison the effect of a 1 °C
change of AT on drag coefficient at these wind speeds is less than
10% (e.g. Liu et al., 1979, their Fig. 12).

When the reduced fluxes (heat flux and stress) in the coupled C
run act on and interact with the ocean model, the resultant cooling
of SST is diminished, relative to the uncoupled ocean simulation
UO where the fluxes are not modified by changes in SST. The sur-
face temperature difference due to coupling, 67T, is shown in Fig. 9d
and approaches 1 °C in the wind jet locations. This may be com-
pared against an estimate for an idealized case of a slab mixed
layer. In that case the mixed layer temperature change due to cou-
pling, 6Ty, is given by 6T, = 6Q-At/pc,H, where 6Q is the change in
net surface heat flux due to coupling, p the water density, c, the
specific heat capacity of water, At the time duration of interest
(3 days here), and H the mixed layer depth. For the 100 Wm?
reduction in latent heat flux east of Bonifacio due to coupling
(Fig. 9¢), and for a typical value of H=10 m, this would result in
a temperature change of 6T, ~ 0.65 °C, with the coupled model
being warmer, quite consistent with Fig. 9d.

In the Gulf of Genoa, and specifically at the ODAS location, the
SST difference between the C and UO simulations is small
(6T<0.25 °C) (Figs. 6a and 9d). The reason for this is as follows.
Firstly, the winds in the COAMPS model are too weak (Fig. 3a
and c), so that the SST response in the coupled model is small
(<1°C, Figs. 6a and 8a). As a consequence, the differences in AT
and in surface fluxes at this location between the C run and the
UA run are also small (Figs. 8d and 9c). This in turn leads to the
small difference between C and UO SST (i.e. 6T). Note that even
in regions with larger wind speeds and SST response in the model
the 6T value can be small. For example, along the meridional sec-
tion at 9°E from the north Corsica coast to 43.5°N, just south of
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Fig. 11. Subsurface temperature structure in the coupled simulation at (a) ODAS, (b) North-east of Bonifacio and (c) South-east of Bonifacio. (d-f) are as (a-c) but showing the
difference in temperature between the coupled run and the uncoupled run. Axes show time from start of simulation and depth. Note change of color-scale from upper panels
to lower panels, and different depth range in (c and f). The thick black line is the mixed layer depth in the coupled case.
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ODAS, mean wind speeds in the model vary from 12ms~! to
8 ms~' (Fig. 8e) whilst the SST response ranges from 1 °C to 2 °C
(Fig. 8a). However oT is less than 0.25 °C all along this section
(Fig. 9d). This would suggest that the model bias does not necessar-
ily influence the conclusion that coupling has a minimal effect at
ODAS. Instead, close inspection of Figs. 8d and 9c and d show that
coupling is important to SST only when the air-sea temperature
difference AT is reduced by at least 0.5 °C.

6. Ocean subsurface response
6.1. Ocean mixed layer depth and stratification

In the regions of strongest winds shown in Fig. 3a and c, the ini-
tial mixed layer depth in the model is shallow (15 m or less,
Fig. 10a), a situation conducive to cooling by entrainment and/or
upwelling. Hence the upper ocean stratification changes signifi-
cantly during the wind event.

After the 3-day period of strong winds, the mixed layer depth
increases up to 30 m or more in some regions in the C run
(Fig. 10b). The change in mixed layer depth is a combination of
two factors: high wind stress (Fig. 10c) leading to entrainment
and mixed layer deepening, and the Ekman pumping (EP) effect
due to curl of the wind stress (a close up of Fig 4b is shown in
Fig. 10d). This combination of factors leads to the mixed layer
depth increase being largest east and south of the Strait of Bonifa-
cio, and around the north-east tip of Corsica (Fig. 10b®). The mag-
nitude of the Ekman pumping velocities south and east of
Bonifacio and north-east of Corsica (up to 0.3 mh™! (Fig. 10d), or
about 21 m over 3 days) is consistent with the total mixed layer
depth change of 20-30 m (Fig. 10b) over 3 days.

The changes in stratification are further illustrated by the time
evolution of temperature structure in the C run at three locations
marked by circled crosses in Fig. 8a: (i) the ODAS mooring, (ii) a site
north-east of the Strait of Bonifacio (referred to by NE here), and (iii)
a site south-east of the Strait in shallow water (referred to by SE). At
ODAS (Fig. 11a) there are oscillations of the mixed layer depth and
of the thermocline, but no overall trend of upwelling or downwel-
ling. At NE, the thermocline steadily upwells although the mixed
layer initially deepens before later shoaling (Fig. 11b). However at
SE, the mixed layer rapidly deepens from 5 m depth towards the
bottom depth of 30 m before undergoing oscillations (Fig. 11c).
Hence the subsurface temperature structure is consistent with
upwelling north and east of the Strait of Bonifacio, downwelling
to its south and east, and little overall vertical motion at ODAS.

Differences in the subsurface structure between the C and UO
simulations are most evident at NE, where the SST cooling is strong.
Here the coupled model is warmer than the uncoupled run by over
0.5 °C throughout the mixed layer and to depths of up to 50 m
(Fig. 11e). In contrast the temperature differences at ODAS are pat-
chy and mostly below the mixed layer (Fig. 11d) and at SE they are
confined to near the bottom (Fig. 11f). A spatial map of mixed layer
depths at the end of the C and UO simulations reveal that they differ
by less than 3 m over the region of interest (not shown).

6.2. Ocean heat budget

In order to more fully understand the near-surface ocean tem-
perature response, a heat budget was performed at the three loca-
tions marked in Fig. 8a (ODAS, NE, and SE). The heat budget
analysis was performed over the first 69 h of the run, for the outer,

3 We use the Kara et al. (2000) algorithm to detect mixed layer depth, beginning at
7 m depth to avoid diurnal effects. Thus the inferred reductions in mixed layer depth
will necessarily be small in many regions where the initial mixed layer depth is
around 10 m or less.
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temperature change from all budget terms: Total-P is the temperature change
computed from model output temperature profiles.

6 km ocean nest of the C run (note there are small differences in
the magnitude of SST cooling compared to the inner nest cooling
shown in Fig. 8a). At these locations, the heat budget is performed
at each depth, then a depth average is made to the base of the
mixed layer.

The major terms of the heat budget are the contributions due to
surface heat flux, vertical mixing, horizontal advection and vertical
advection. The sum of the temperature change due to these terms
and the much smaller horizontal mixing term is shown as the solid
black lines in Fig. 12. This may be compared to the temperature
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Fig. 13. Sub-surface currents at ODAS, showing time vs. depth sections. (a) East-west (u) component in the coupled run. (b) North-south (v) component in the coupled run.
(c) Richardson number in the top 20 m (color), and vertical shear squared (white contours, interval 2, units 10~ s~2), and (d) the current magnitude difference between the
coupled run and the uncoupled ocean run. Time is plotted as a function of inertial periods from the beginning of the run. The thick black line is the mixed layer depth in the
coupled run computed from T, S profiles every 3 h. Note that regions of large Richardson number above the mixed layer depth are due to diurnal warming effects: the mixed
layer depth algorithm is set to start searching below 7 m and so ignores the stable diurnal warming layer.

change computed directly from the model output temperature
fields, shown as a thin black line in Fig. 12. Differences between
these two methods of computing temperature change are due to
the fact that the budget terms are computed on the model sigma
grid, whereas the full temperature fields were output after interpo-
lation onto a set of fixed z levels: this introduces differences when
integrating to the mixed layer depth, most pronounced in shallow
water (location SE, Fig. 12b).

At ODAS the temperature reduction of about 0.7 °C after 69 h is
mainly due to vertical mixing and horizontal advection (Fig. 12a).
Here the time-averaged surface currents are from the south and
west (Fig. 7a), advecting relatively cool water towards this location
(as seen in Fig. 5, SST cools towards the center of the Ligurian Sea).
In addition to this are oscillations due to inertial currents, dis-
cussed below. The mixed layer depth here stays between 10 m
and 12 m throughout most of the run (Fig. 11a).

At location SE, in shallow water close to the east coast of Sardi-
nia, horizontal advection and surface cooling are the main contrib-
utors to a temperature change of 0.6 °C after 69 h (Fig. 12b). The
mean surface currents here are southward (Fig. 7a) which would
advect cool temperatures east of the Strait towards SE. The contri-
bution of vertical mixing here is a weak cooling whilst vertical
advection applies warming® (Fig. 12b): here the mixed layer deep-
ens during the first 40 h of the run (Fig. 11c) due to the Ekman

4 Note the effect of vertical advection within a completely uniform isothermal
mixed layer should be zero: the small non-zero values result from the interpolation
between model and regular vertical grid as discussed above, as well as the existence
of any shallow diurnal warm layer.

pumping effect (Fig. 10d). The vertically-averaged vertical mixing
term is small here because of relatively weak winds at this location
(Fig. 8e) and the large mixed layer depth and consequent difficulty to
entrain thermocline water into the mixed layer.

At location NE, the largest cooling is seen, and it is mainly due to
vertical mixing with a smaller contribution from surface fluxes.
Temperature drops almost 3 °C by 48 h before warming slightly,
and is eventually 2 °C cooler than the initial value after 69 h
(Fig. 12c¢). Vertical profiles of the vertical mixing term (not shown)
confirm that there is significant entrainment from below the mixed
layer base along with a coincident warming of the layer just below
the mixed layer by up to 2 °C. Here the wind stress is strongest of
the three locations (Fig. 10c): however, the mixed layer depth does
not significantly deepen, (Fig. 11b), due to the Ekman pumping, a
favorable situation for entrainment.

Finally, from Fig. 3b and d, it was seen that the western Gulf of
Lions had weak cooling or even warmed, in contrast to the majority
of the Ligurian Sea, despite reasonably strong winds. In this region
there is some downwelling (Fig. 4b) as also discussed by Millot and
Wald (1981). In this circumstance it is less likely to cool at the sur-
face through vertical mixing, and a heat budget in this region (not
shown) suggested that other processes such as horizontal advec-
tion and surface heat fluxes can dominate and in some circum-
stances cause warming.

6.3. Inertial waves

As a result of the strong Mistral wind bursts, inertial waves are
generated, which can be seen in the zonal and meridional velocities
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Fig. 14. As Fig. 13 but for the location north-east of Bonifacio.

at ODAS (Fig. 13a and b) and at NE (Fig. 14a and b). The velocity sec-
tions are plotted as a function of inertial period, 17.3 h at ODAS and
18.0 h at NE. The modeled current oscillations have periods similar
to the theoretical inertial periods, and rotate in a clockwise fashion
with time.

At the base of the mixed layer there is very strong vertical shear
as the currents drop from around 0.3 m s~! to 0.5 m s~ ! to near zero
over a few meters depth. A well known necessary condition for
shear instability is that the Richardson number Ri = N?/S? must drop
below a critical value Ri. ~ 0.25 (Miles, 1961). Here S is the vertical
shear of the horizontal velocity so that S = (9u/dz)? + (8v/dz)?, and
N is the buoyancy frequency. At ODAS, and more prominently at NE,
the shear-squared at and just below the base of the mixed layer can
be larger than 2 * 103 s72, enough to lead to patches of Ri < Ri. be-
low the mixed layer depth (Figs. 13c and 14c). The results suggest
that shear instability at the base of the mixed layer and the result-
ing entrainment of colder water masses below into the mixed layer
(e.g. Nagai et al., 2005) is a dominant process for surface cooling at
ODAS and NE. The high shear is due to the combination of the back-
ground currents and the inertial waves (L. Kantha, per. comm.,
2012). Due to the shortness of the record it has proved difficult to
separate these effects robustly using filters. However, visual inspec-
tion of Figs. 13a and b, and 14a and b suggests that inertial waves
are contributing much of the shear, with the shear changing sign
approximately every half inertial period.

Comparison of the subsurface velocity structure in the C run vs.
that in the UO run reveals slightly weaker inertial currents in the
former (as seen from the reductions in current speed displayed
in Figs. 13d and 14d). This could be a factor in the weaker SST cool-
ing observed in the coupled run, particularly at NE, in addition to
the effect of heat flux modification (Section 5).

Inertial waves have been frequently observed in the north-west
Mediterranean Sea, for instance by Millot and Crépon (1981) in the

Gulf of Lions, Van Haren and Millot (2003) in the Ligurian Basin,
and by Picco et al. (2010) at the ODAS mooring in previous years
to this study. These papers note how important inertial and
near-inertial waves are to the regional internal wave field, due to
the relative absence of tidally generated internal waves. The results
of our current work show that inertial waves are not just major
components of the regional internal wave spectrum but are also
important to regional air-sea interaction via shear-induced mixing
and SST cooling.

7. Discussion

This study focuses on the ocean response to the Mistral and
how that is affected by coupling, but has not addressed the feed-
back onto the synoptic system. The effect of coupling on synoptic
atmospheric events has been addressed in some previous studies:
the modification of surface stress and heat fluxes that arises either
from rapidly changing SST (studied here; Perrie et al., 2004; Pullen
et al,, 2007; Chen et al., 2010; Sanford et al., 2011) or from rapidly
changing surface wind-wave fields (Doyle, 1995; Janssen and
Viterbo, 1996) will modify the synoptic system to some extent.
As well as the classical damping effect of surface friction on synop-
tic storms via Ekman spindown (Holton, 2004), more recent stud-
ies have suggested that surface stress can influence interior
potential vorticity and thus storm growth (Adamson et al., 2006),
and surface heat fluxes also play an important role (e.g. Businger
et al., 2005).

We limit our analysis here to showing the differences in se-
lected atmospheric variables between the C case and the uncou-
pled atmosphere (UA) case. First note that the difference in
atmospheric Ekman pumping between the runs (Fig. 15a) suggests
enhanced atmospheric downwelling (indicated in red and yellow)
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in the coupled run in many regions. In addition, the reduced heat
fluxes into the atmosphere in the C case (Fig. 9¢) will reduce the
amount of convection and also act to lower the planetary boundary
layer (PBL) height. Correspondingly the time-averaged PBL height
is reduced by up to 150 m (Fig. 15b), a significant proportion of
the mean height (less than 500 m in this region and in this model).
As a consequence of the reduction of sensible heat flux in the cou-
pled run, air temperature at 100 m is reduced by up to 0.5 °C
(Fig. 15c), whilst relative humidity is increased by up to 5% (not
shown), presumably as a result of the air cooling. These changes
again occur in strong wind regions in the central Ligurian Sea
and particularly east and north of the Strait of Bonifacio.

Despite these reasonably large changes to boundary layer prop-
erties, effects of coupling above the boundary layer are weak, and
the overall influence of coupling on the synoptic low pressure sys-
tem, as illustrated in Fig. 15d, is a small increase of time-averaged
sea level pressure (SLP) by less than 0.25 hPa. In other words, cou-
pling reduces the strength of the synoptic low, but only by a small
amount. This is despite the fact that the surface stress and friction,
and Ekman spindown (compare Fig. 15a and Fig. 10d) are overall
weaker in the coupled run compared to the uncoupled run. This
suggests that other mechanisms than Ekman spindown may be
at play, such as the effect of stress on potential vorticity, or the
influence of heat fluxes. For example, in studies of the atmospheric
boundary response to ocean fronts, reviewed by Small et al. (2008),
typical SLP responses were 0.1 hPa (—0.1 hPa) per °C of cooling
(warming) by an ocean front. This is consistent with the 0.1-
0.2 hPa SLP response (Fig. 15d) to the 1-2 °C SST cooling shown
in Fig. 8a. However, to address this issue in more detail would best
require an ensemble of simulations, or a much longer simulation
encompassing several events, not done for this study.

8. Conclusions

This study has analysed the role of air-sea interaction in the
evolution of a Mistral wind event and the consequent ocean re-
sponse. A 3-day case study was performed, for the summer, when
the seasonal thermocline is strong. Observations were compared to
coupled and uncoupled simulations performed using the high res-
olution, km scale, COAMPS-NCOM models. Both simulations start
with the same initial conditions, but for the uncoupled run the
SST used to calculate surface fluxes was kept fixed at the initial
value. The main findings are as follows:

1. In regions where the wind forcing was strongest, the SST chan-
ged significantly over the course of the simulation period (by 2-
3 °C over 72 h). Much of the change occurred in the first 24 h,
when wind speeds up to 18 ms~! and corresponding surface
stresses of 0.4-0.6 Nm 2 were observed. Although the broad
spatial pattern of the model SST response matched the observa-
tions well, pointwise analysis of the SST evolution revealed dif-
ferences, including an underestimation of the response at the
mooring site ODAS, related to weak wind forcing in the model.

2. Interactive coupling of the ocean to the atmosphere model led
to a significant reduction in surface stress (up to 20%) and latent
heat flux (up to 50%) relative to that found in an uncoupled
atmospheric model run using a SST fixed in time as surface
boundary condition.

3. Inturn, this led to a reduction of the magnitude of SST cooling (by
up to 1 °C, or about 25% to 33%), in the interactive coupled run
relative to an uncoupled ocean simulation. This was consistent
with a simple estimation of the response of a 10 m thick ocean
mixed layer to the surface heat flux changes induced by coupling.



RJ. Small et al./ Ocean Modelling 48 (2012) 30-44 43

4. Large amplitude inertial waves, with velocities of ~0.5m s,

and strong vertical shear, contributed significantly to the mixing
process and surface cooling in the model simulations. Hence the
mechanisms of SST response are similar to that found previously
in tropical cyclones and extratropical low pressure systems
(Chang and Anthes, 1978; Price, 1981; Large and Crawford,
1995; Dohan and Davis, 2011).

5. The summer Mistral briefly halts the restratification process in
most regions of the Ligurian/Tyrrhenian Sea. The mixed layer is
deepened and the surface is cooled. When active coupling is
introduced, the surface cooling is less, and there is less destabil-
izion of the profile compared to the uncoupled run.

Although the SST response reported in this paper is much less
than those found during some tropical cyclones (especially slow-
moving hurricanes which can lead to SST cooling up to 6°C
(Bender and Ginis, 2000; Perrie et al., 2004; Chen et al., 2010)), it
is comparable to that seen in the Northern Pacific during the
passage of extratropical low pressure systems (Large et al., 1986;
Large and Crawford, 1995; Dohan and Davis, 2011). Unlike tropical
cyclones, Mistral events occur in basically the same location each
time, and as up to ten Mistral events occur in a typical summer
(see Introduction), the total SST cooling caused by these events
in one season is significant.

To test these ideas further in the future, and to see the rectified
effect over longer time periods, it would be useful to conduct
numerical experiments over a whole season, or year, comparing
a model with frequent coupling (e.g. 12 min) against a weakly cou-
pled model with feedback from the ocean only every 3 days (as
done for this short test case). Validation data should be gathered
in regions of reasonably strong winds where possible, such as in
the central Ligurian Sea and east of the Strait of Bonifacio, instru-
mented in a similar way to ODAS in the LASIEO7 experiment
(Sempreviva et al.,, 2010; Small et al., 2011) to capture surface
fluxes and near-surface quantities.
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