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a b s t r a c t

Acoustic travelling waves are studied in the context of nonlinear propagation in Newtonian fluids. First,
we examine the one-dimensional (1D) versions of four weakly-nonlinear acoustic models, all of which
admit known travelling wave solutions (TWS)s in the form of Taylor shocks. Next, we derive the exact,
but implicit, kink-type TWS of the compressible 1D Navier–Stokes equations under the homentropic
assumption. Then, using three simple metrics, we numerically compare the TWSs of the former with that
of the latter. It is shown that, while results for gases are mixed, in the case of liquids, the simple Burgers’
equation yields the TWS that best approximates the profile of the Navier–Stokes equations. Lastly, an
energy analysis of theweakly-nonlinearmodels is carried out, connections between themodels are noted,
and new critical values of the physical parameters are presented.

Published by Elsevier Masson SAS.
1. Introduction

The study of nonlinear acoustic phenomena in dissipative
fluids has been, and remains, an important branch of fluid
mechanics. In the 1950s, Mendousse [1], and later Lighthill [2],
showed that under certain assumptions, the essential one being
that fluctuations in the field variables are sufficiently small in
amplitude, Burgers’ equation provides an approximate description
of ‘‘finite amplitude’’ acoustic waves in dissipative perfect gases;
see also Ref. [3] and those therein. Since that time researchers
have, in an effort to obtain ever more accurate, but still tractable,
descriptions of acoustic propagation in gases and liquids, derived
a number of other so-called weakly-nonlinear model equations,
i.e., nonlinear approximations to the compressible Navier–Stokes
equations.
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The primary aim of the present study is to determine, for
physically realistic parameter regimes, which of the following
bi-directional, weakly-nonlinear models best approximates the
compressible 1D Navier–Stokes equations under the travelling
wave assumption.
Lighthill–Westervelt (LW) equation [4,5]:

c2eφxx − φtt + δc−2
e φttt = βc−2

e ∂t(φt)
2. (1)

Blackstock–Lesser–Seebass–Crighton (BLSC) equation [6,7]:

[c2e − 2(β − 1)φt ]φxx − φtt + δφtxx = ∂t(φx)
2. (2)

Kuznetsov’s equation [8,9]:

c2eφxx − φtt + δφtxx = ∂t [(φx)
2
+ c−2

e (β − 1)(φt)
2
]. (3)

Rasmussen–Sørensen–Gaididei–Christiansen (RSGC) equation
[10,11]:

(c2e − φt)φxx − φtt + δφtxx = ∂t


(φx)

2
+ c−2

e


β −

3
2


(φt)

2

.

(4)
These four models are based on the assumption that the propa-
gation medium is a classical thermoviscous fluid5 whose equilib-
rium (or undisturbed) state is characterised by ϱ = ϱe, ℘ =

5 By which we mean a Newtonian fluid whose transport coefficients are
constants, and within which the flow of heat is governed by Fourier’s law; see,
e.g., [12, Chap. 10].
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℘e,u = (0, 0, 0), θ = θe, and η = ηe, where ϱ,℘,u, θ and η
denote the mass density, thermodynamic pressure, velocity, ab-
solute temperature, and specific entropy, respectively. Addition-
ally, all material parameters, as well as all quantities with an ‘‘e’’
subscript, are regarded as constant; the velocity vector is taken as
u = (u(x, t), 0, 0), i.e., planar flow along the x-axis is assumed;
u = φx, whereφ = φ(x, t) denotes the velocity potential, by virtue
of the fact that the irrotationality condition ∇ × u = 0 is identi-
cally satisfied here; and all body forces are neglected. Moreover,
ce(>0), the adiabatic sound speed, denotes the sound speed in the
undisturbed fluid; β is known as the coefficient of nonlinearity [13],
where β ∈ (1, 7) for nearly all fluids under ordinary conditions;
and

δ = ν[4/3 + µB/µ+ (γ − 1)/ Pr], (5)

termed the diffusivity of sound by Lighthill [2], is a positive
constant [14, Sect. 4.13]. In Eq. (5), the constants µ(>0) and µB
respectively denote the shear and bulk viscosities, where we note
thatµB is generally nonzero [14, p. 21]; ν = µ/ϱe is the kinematic
viscosity; the adiabatic index is defined as γ := cp/cv , where the
constants cp > cv > 0 respectively denote the specific heats at
constant pressure and volume [14,15]; and Pr = ν/κ is the Prandtl
number, where κ is the thermal diffusivity.

The approach we adopt here is to first obtain, wherever possi-
ble, analytical results, i.e., exact and/or approximate solutions, and
then turn to numerical methods for the purposes of comparison
and illustration. The present study could be regarded as a follow-
on to those presented in Refs. [11, Sect. 5.2] and [16], the aims of
which were to compare several lossless weakly-nonlinear models
with the Euler equations.

In drawing this section to a close, we feel it necessary to
point out the following. The four PDEs we consider are all, as a
survey of the acoustics literature reveals,well-established,weakly-
nonlinear approximations of the 1D Navier–Stokes equations.
They have been derived, as alluded to earlier, primarily so that
researchers might have simplified (i.e., analytically tractable)
alternatives to the latter; in other words, as single-equation
models that are, nonetheless, capable of capturing the nonlinear
phenomena exhibited byNewtonian fluids undergoing irrotational
compressible flow. To be clear, our purpose here is not to
attempt to improve upon Eqs. (1)–(4) by including higher
order nonlinearities; indeed, doing so, assuming all requisite
higher-order terms in the constitutive relations are known
unambiguously [15, Sect. 1.1.5], is not only counter to the reason(s)
these PDEs were originally derived, but negates their usefulness as
models by making them more complicated, possibly to the point
where the analytical challenges theywould then pose rivaled those
of the (1D) Navier–Stokes equations themselves.

Remark 1. In the case of perfect gases, ce =
√
γ℘e/ϱe and β can

be expressed in terms of γ , specifically, by β = (γ + 1)/2.

2. Governing equations

All four weakly nonlinear models are based on the continuity
and momentum equations, which in 1D reduce to

ϱt + uϱx + ϱux = 0, (6)

ϱ(ut + uux) = −℘x +


4
3
µ+ µB


uxx, (7)

respectively, recalling that all body forces have been neglected, as
well as the linearised 1D energy equation [17, p. 21]

ϱeθeηt = Kθxx = −~κϱeθeφtxx, (8)
and the assumption that the equation of state can be taken
as [15, pp. 581–583]

℘ = ℘e + ϱec2e


s + (β − 1)s2 +


γ − 1
~c2e


(η − ηe)


(−1 ≪ s ≪ 1), (9)

i.e., as a truncated Taylor expansion of the general constitutive
equation ℘ = ℘(ϱ, η). Here, s = (ϱ − ϱe)/ϱe denotes the
condensation and the positive constants K and ~ represent the
thermal conductivity and the thermal coefficient of volume
expansion, respectively, where it should be noted that K = κcpϱe.

Remark 2. As alluded to earlier, since they are based on Eq. (9),
Eqs. (1)–(4) describe acoustic waves in both liquids and gases,
provided of course that fluctuations in ϱ, u, etc., about their
equilibrium state values are sufficiently small.

3. TWSs: weakly-nonlinear models

In this section we review and examine exact TWSs of the
four weakly-nonlinear models. To this end, we begin by recasting
Eqs. (1)–(4) in terms of the following dimensionless quantities:

φ�
= φ/(UL), u�

= u/U, x�
= x/L, t� = t(ce/L). (10)

Here, the positive constants U and L denote a characteristic speed
and length, respectively, and for typographical convenience all
diamond superscripts will henceforth be omitted but are to remain
understood. For future reference we note that ϵ = U/ce is the
Mach number, where ϵ ≪ 1 is henceforth assumed; Red = ceL/δ
denotes a Reynolds number; ξ(·) := x − (·)t is the wave variable;
a prime denotes d/dξ ; and n is an index which assumes the values
n = 0, 1, 2, 3.

And lastly, since Eqs. (1)–(4) are all invariant under the
transformation x → −x, we henceforth assume, without loss of
generality, only right-running waves.

3.1. The LW and BLSC equations

In dimensionless form, Eqs. (1) and (2) become, respectively,

φxx − φtt + (Red)−1φttt = ϵβ∂t(φt)
2. (11)

[1 − 2ϵ(β − 1)φt ]φxx − φtt + (Red)−1φtxx = 2ϵφxφxt . (12)

Introducing the ansatzes u(x, t) = F(ξ(vn)) and φ(x, t) =

P (ξ(vn)), where F := P ′, the constants vn(>0) denote the speeds
of the travelling waves, and in this subsection

n :=


0, LW,
1, BLSC, (13)

integrating each once w.r.t ξ , and then imposing the asymptotic
condition6 F → 0 as ξ → ∞, Eqs. (11) and (12) reduce to

(Red)−1F ′
−


1 − v2n

v3−2n
n


F = ϵβF 2 (n = 0, 1), (14)

i.e., the associated ODEs of the former and latter are Bernoulli
equations.

Integrating these ODEs and then imposing the usual wavefront
condition f (0) = 1/2, the following Taylor shock solutions are
obtained:

F(ξ(vn)) =
1
2
{1 − tanh[2ξ(vn)/ℓn]} (n = 0, 1). (15)

6 Physically, this implies that the fluid at ξ = +∞ is in its equilibrium state.
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Here, the shock thicknesses, ℓn, and the vn are given by

ℓ0,1 =
4

ϵβRed
, vn =


1 + 2 cos

 1
3 (θ + 4π)


3ϵβ

, n = 0,

1
2
ϵβ +


1 +

1
4
ϵ2β2, n = 1,

(16)

where cos(θ) = (2 − 27ϵ2β2)/2 follows from Cardan’s formula
[18].Moreover, the vn correspond to the smallest, or only,7 positive
root of the equations

ϵβv3−2n
n − v2n + 1 = 0, (17)

which arise from the corresponding ODEs in Eq. (14) as a
consequence of enforcing the (second) asymptotic condition F →

1 as ξ → −∞.
It is an interesting fact that, like those of the n = 2, 3 cases (see

Section 3.2), the wave speed parameter of the n = 0 case suffers
a bifurcation; specifically, there exists the critical Mach number
value

ϵ∗

0 (β) = β∗

0/β, where β∗

0 :=
2
9

√
3 ≈ 0.385,

such that v0 ∈ (1,
√
3 ] for ϵ ∈ (0, ϵ∗

0 ], but where v0 ∈ C for
ϵ > ϵ∗

0 . Here, it is understood that taking ϵ = ϵ∗

0 is possible only
for β ≫ β∗

0 , since ϵ ≪ 1 is required.
It should also be noted that when ϵ ∈ (0, ϵ∗

0 ), the n = 0 case of
Eq. (17) admits a second positive root, denoted here by V 0, where
V 0 ∈ (v0,∞); however, this root was rejected due to its unstable
nature, specifically, the fact that V 0 → ∞ as ϵ → 0.

Finally, we observe that v1 > 1 for common fluids under ordi-
nary conditions, which follows immediately from the fact that

v1 = 1 +
1
2
ϵβ +

1
8
ϵ2β2

+ · · · (ϵ ≪ 1), (18)

and, in turn, that for a given Mach number, v0 > v1 on 1 < β ≤

β∗

0/ϵ, the interval over which v0 ∈ R.

Remark 3. When the Mach number is expressed in terms of its
critical value via the relation ϵ = λ0ϵ

∗

0 , where λ0 ∈ (0, 1], v0
becomes independent of β .

Remark 4. The BLSC equation is easily derived from what has
come to be known as the Söderholm equation by simply omitting
terms of O(ϵ2) in the latter; see, e.g., Refs. [11,19] and those
therein.

3.2. The Kuznetsov and RSGC equations

In dimensionless form, Eqs. (3) and (4), reduce to the indicated
special cases of the following ‘‘dummy’’ PDE:

φxx − φtt + (Red)−1φtxx = ϵ(n − 2)φtφxx

+ ϵ


(φx)

2
+


β −

1
2
n

(φt)

2

t
, (19)

where

n :=


2, Kuznetsov,
3, RSGC,

and we stress that this PDE does not have a (known) physical
meaning for values of n other than two and three.

Referring the reader to Refs. [9,11] for specifics on the cases n =

2, 3, respectively, we observe that under the same ansatzes and
conditions introduced in the previous subsection, the associated

7 In this article, ‘‘only positive root’’ also refers to a single positive root of
multiplicity two.
ODEs of Eq. (19), like those of Eqs. (11) and (12), are of the Bernoulli
type, namely,

(Red)−1F ′
−


1 − v2n

vn


F = ϵ


1
2
n +


β −

1
2
n

v2n


F 2, (20)

which when integrated yield the Taylor shock profiles

F(ξ(vn)) =
1
2
{1 − tanh[2ξ(vn)/ℓn]} (n = 2, 3). (21)

Here, v2,3 denotes the smallest, or only, positive root of the
corresponding equationsΠn(vn) = 0, where we have defined

Πn(vn) := ϵ


β −

1
2
n

v3n − v2n +

1
2
ϵnvn + 1 (n = 2, 3); (22)

the shock thicknesses are given by

ℓ2,3 =
4

Red

ϵ

β −

1
2n

v2n +

1
2ϵn


=

4v2,3
Red(v22,3 − 1)

(n = 2, 3), (23)

where we observe that v2,3 > 1; and the restriction β ≠ 3/2 is
required for the case n = 3.

For β ∈ (1, 3/2), a range which includes the β-values of com-
mon (e.g., diatomic and monatomic) gases under ordinary condi-
tions, it is not difficult to establish that v3 ∈ (1, 2) and that this,
the only positive root of Π3 = 0 when β ∈ (1, 3/2), is of multi-
plicity one.

If, on the other hand, we assume β ≫ β∗

2,3, where

β∗

2 :=
32
27

≈ 1.185 and β∗

3 :=
27 + 7

√
21

36
≈ 1.641,

and set ϵ = ϵ∗
n (β), where

ϵ∗

n (β) =




√
β(9β − 8)3/2 − (27β2 − 36β + 8)

8(β − 1)
, n = 2,

9

β(β − 4/3)3 − (9β2 − 18β + 6)

9(β − 3/2)
, n = 3,

(24)

then it can be shown that
max(vn)

=


1 +


1 − 3(β − 1)[ϵ∗

2 (β)]
2

3(β − 1)ϵ∗

2 (β)
, n = 2

2 +

4 − 18(β − 3/2)[ϵ∗

3 (β)]
2

6(β − 3/2)ϵ∗

3 (β)
, n = 3

(β ≫ β∗

n ),

(25)
each of which is a root of multiplicity two. Here, we have imposed
large-β requirements to ensure ϵ∗

2,3 ≪ 1, as the weakly-nonlinear
approximation demands, just as we did in Section 3.1 to ensure
ϵ∗

0 ≪ 1.
When β > 1, 3/2 and ϵ ∈ (0, ϵ∗

2,3), the equations Π2,3 = 0
admit two distinct positive roots, the larger of which in each
case, denoted here as V 2,3, we reject since they blow-up as
ϵ → 0. Moreover, ϵ∗

2,3 are Mach number values at which the
correspondingwave speeds exhibit a bifurcation; see Ref. [9, Fig. 1]8
for the case n = 2. It is also noteworthy that
√
3 < max(v2) < max(v3) (β > 3/2),

where max(v2,3) →
√
3 as β → ∞; i.e., max(v2,3) → max(v0) as

β → ∞.

8 The quantities V0,1,2, ϵc , and β1 that appear in Ref. [9] correspond to
max(v2), v2, V 2, ϵ

∗

2 , and β
∗

2 , respectively, of the present article.
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Remark 5. On replacing the ‘‘small’’ terms φtxx and (φx)
2 in the

n = 2 case of Eq. (19) with φttt and (φt)
2, respectively, based on

the O(1) approximations φxx ≃ φtt and φx ≃ −φt [7], one obtains
Eq. (11), i.e., the LW equation.

Remark 6. Unlike Kuznetsov’s equation, the RSGC equation ad-
mits a Hamiltonian structure in the lossless (i.e., Red → ∞)
limit, as do the Euler equations to which this limiting case corre-
sponds; see Ref. [11, Sects. 2.3, 2.4], wherein it is also shown how
the BLSC and Kuznetsov equations are derivable from the RSGC
equation.

3.3. Energy-rate results

Seeking further insight into the physics captured by these
weakly-nonlinearmodels, we nowperform an energy analysis [20]
based on their TWSs. To this end, we return to Eqs. (11), (12) and
(19), multiply each by φt , and then integrate over the real line w.r.t
x. Thereupon, after integrating by parts, simplifying, and grouping
terms, we are led to consider

dE
dt

=



−Φ −
2
3
ϵβ

d
dt


+∞

−∞

(φt)
3 dx, n = 0,

−Φ − 2ϵ

β −

3
2


+∞

−∞

(φt)
2φxx dx, n = 1,

−Φ + ϵ


+∞

−∞

(φt)
2φxx dx

−
2
3
ϵ(β − 1)

d
dt


+∞

−∞

(φt)
3 dx, n = 2,

−Φ −
2
3
ϵ


β −

3
2


d
dt


+∞

−∞

(φt)
3 dx, n = 3,

(26)

which we should point out are all exact relations in the
sense that, apart from those used in the original derivations of
Eqs. (1)–(4), no other approximations have been employed. Here,
limx→±∞ φx, limx→±∞ φt , and limx→±∞ φtx were evaluated using
the fact that the Taylor shocks given in Sections 3.1 and 3.2 imply
φx = F(x − vnt) and φt = −vnF(x − vnt), for n = 0, 1, 2, 3; the
energy functional, E, is defined as

E := ER +
1
2


+∞

−∞

[(φx)
2
+ (φt)

2
] dx

− t

v0, n = 0,
vn(1 + ϵvn), n = 1, 2, 3, (27)

where ER is a constant; and Φ denotes the usual dissipation
integral, namely,

Φ :=
1

Red




+∞

−∞

|φt |φttt dx, n = 0,
+∞

−∞

(φxt)
2 dx, n = 1, 2, 3.

(28)

Because their integrands involve (at most) products of hyper-
bolic functions, the integrals on the RHS of Eq. (26) can be evalu-
ated in closed form. Omitting the details, it is readily established,
using, e.g., one of the many commercially available symbolic soft-
ware packages, that

dE
dt

=
1
2
ϵ


βv40, n = 0,
(β − 2)v21, n = 1,
[(β − 1)v22 − 1]v22, n = 2,
(β − 3/2)v23 −

1
2


v23, n = 3,

(29)
a

b

Fig. 1. (a,b) dE/dt vs. β in the case of gases and liquids, respectively, for ϵ = 0.1.
Thick-solid: LW (n = 0). Thin-solid: BLSC (n = 1). Thin-broken: Kuznetsov (n = 2).
Thick-broken: RSGC (n = 3).

which we observe is independent of the Reynolds number.9 We
also observe that for n = 1, 2, 3, dE/dt ≶ 0 in the case of gases
(i.e., 1 < β < 1.35) and liquids (i.e., β > 2), respectively, while
dE/dt > 0 for both gases and liquids when n = 0.

To illustrate these results, we have, in Fig. 1, plotted the
expressions for dE/dt given in Eq. (29) as functions of β , but with
the Mach number fixed at ϵ = 0.1. Therein, we observe that, for
both gases and liquids, the curves for the n = 1, 2, 3 cases are not
only similar in appearance and slope but are also grouped rather
closely together, with all appearing below (resp. above) the β-axis
in the case of gases (resp. liquids). In contrast, the n = 0 curve,
which is defined (i.e., real-valued) here in the case of liquids only
for 2 < β ≤ ϵ−1β∗

0 ≈ 3.849, clearly is removed from the others,
always lying above the β-axis and always exhibiting a positive
slope.

Remark 7. In obtaining the expressions given in Eq. (29), we found
that, on evaluation, the dissipation integral could be expressed as

Φ =
1
6


ϵβv4−2n

n , n = 0, 1,
vn(v

2
n − 1), n = 2, 3,

(30)

where, as expected based on Eq. (29), Φ in each case turns out to
be independent of Red. It is also noteworthy that, under each of the
weakly-nonlinearmodels,Φ is both strictly positive, as the physics
of thermoviscous flow demands, and an increasing polynomial
function of the vn.

9 Meaning that dE/dt is also independent of δ; see Ref. [12, p. 616], wherein
mention of this point is made in relation to Burgers’ equation.
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4. TWS: 1D Navier–Stokes equations

Our aim in this section is to determine, by analytical methods,
a standard against which the TWSs presented in Section 3
can be meaningfully compared/contrasted; specifically, to solve
Eqs. (6)–(9) under the traveling wave assumption. While this task
might appear all but impossible, given the number of equations
involved and their mathematical complexity, a kink-type TWS
of this system can, nevertheless, be obtained by regarding the
flow as homentropic [14,21], which refers to the η = ηe special
case of isentropic flow, as demonstrated recently by Rasmussen
[11, Eq. (3.41)].

4.1. Ansatzes, associated ODE, and stability results

We now proceed under the homentropic flow approxima-
tion,10 which translates here into letting K → 0 and then in-
tegrating equation (8) subject to η(x, 0) = ηe. To this end, we
return to Eqs. (6), (7) and (9) and use the third, which now as-
sumes barotropic [14] form, to eliminate ℘ from the second. After
recasting the resulting equations in dimensionless form and set-
ting νL := ν(4/3 + µB/µ), we end up with the coupled pair

st + ϵusx + ϵux(1 + s) = 0, (31)

ϵ(1 + s)(ut + ϵuux) = −[s + (β − 1)s2]x + ϵ(Re)−1uxx, (32)

where Re is a Reynolds number based on νL. Here, in the spirit
of the terminology of Hayes [22, p. 38], we call νL ∈ [ν, δ) the
kinematic longitudinal coefficient of viscosity; it represents the
purely viscous contribution to the diffusivity of sound, where we
observe that δ → νL (from above) as K → 0.

Again seeking right-running waves, we set u(x, t) = f (ξ) and
s(x, t) = g(ξ), where ξ(c) := x − ct and c is a positive constant,
and then substitute these ansatzes into Eqs. (31) and (32). On
integrating the former with respect to ξ , and then using the fact
that u = s = 0 in the equilibrium state to solve for the resulting
constant of integration, our system of PDEs is reduced to

g = ϵf (c − ϵf )−1 (f ≠ fs), (33)

−ϵ(1 + g)f ′(c − ϵf ) = −[g + (β − 1)g2
]
′
+ ϵ(Re)−1f ′′, (34)

where fs := cϵ−1 and we recall that a prime denotes d/dξ .
Next, eliminating g between the last two equations, integrating

the result once, and then enforcing the first of our (two) asymptotic
conditions, namely, f → 0 as ξ → ∞, the associated ODE
for f turns out to be the following special case of Darboux’s
equation [23]:

(Re)−1f ′
=
ϵ(β − 1)f 2 + f (c − ϵf )− cf (c − ϵf )2

(c − ϵf )2
, (35)

where the ensuing (i.e., second) constant of integration is
necessarily zero. Here, we observe that this, rather unusual ODE
admits the three equilibrium solutions

f2 = 0, f1,3 =
β + 2(c2 − 1)∓

√
Q (c)

2ϵc
, (36)

where we have set Q (c) := β2
+4(β−1)(c2 −1) for convenience,

and it should be noted that Q (c) is strictly positive. A phase-plane
analysis reveals that f̄ = f1,2,3 are unstable, stable, and stable,
respectively, for all physically allowable values of ϵ and β , where
we observe that f2 < f1 < fs < f3.

10 Of course, only lossless fluids, i.e., fluids which are neither viscous nor thermally
conducting, are capable of exhibiting homentropic flow; however, as we will see,
the impact on theweakly-nonlinearmodels of assumingη = ηe is simply a decrease
in the value of δ.
Remark 8. From Eq. (5) it is clear that the approximation δ ≈ νL
applies only to fluids for which Pr ≫ γ − 1 is satisfied, examples
of which include glycerin [14, Table 4.6], pure water [15, p. 583],
and oils [24, p. 80].

4.2. Derivation and analysis of wave speed expressions

Enforcing now the second asymptotic condition, i.e., f → 1 as
ξ → −∞, we find that the speed of our travelling wave profile
corresponds to the positive root of Λ(c) = 0, where we have
defined

Λ(c) := c3 − 2ϵc2 − (1 − ϵ2)c − ϵ(β − 2), (37)

that renders f1 = 1. With regards to the zeros of Eq. (37) we
note the following: (a) for β > 2 (i.e., liquids), Λ(c) = 0 has
exactly one positive root, the value of which is always greater
than one; (b) for β < 2 (i.e., gases), this cubic equation has two
unequal positive roots, at least one of which lies on the interval
(0, 1); and (c) because it only arises in the context of multiphase
flows (specifically, those involving certain dusty gases [15, p. 581]),
which of course are not described by the Navier–Stokes equations,
the case β = 2, which would result in a single positive root of
multiplicity two, will not be considered here.

Since we are only interested in kink-type solutions of Eq. (35),
we take c = cm, where f1 = 1 only when c = cm, and, of course,
require f (0) ∈ (0, 1), i.e., f (0) ∈ (f2, f1). Here, using Cardan’s
formula [18] once again, cm, the largest (or only) positive root of
Λ(c) = 0, is found to be

cm =



2
3


ϵ + cos


1
3
ϑ


3 + ϵ2


, ∆ < 0;

2ϵ
3

+
3 + ϵ2

9

(27ϵ(β − 4/3)− 2ϵ3)/54 +

√
∆
1/3

+


(27ϵ(β − 4/3)− 2ϵ3)/54 +

√
∆

1/3
, ∆ ≥ 0;

(38)

where∆ = ∆(ϵ, β), the discriminant of Eq. (37), is

∆(ϵ, β) =
−4(β − 1)ϵ4 + (27β2

− 72β + 44)ϵ2 − 4
108

; (39)

and the angle ϑ is defined by the relation

cos(ϑ) =
ϵ

2


27(β − 4/3)− 2ϵ2

(3 + ϵ2)3


. (40)

Remark 9. An inspection of Eq. (40) revels that β•
:=

2
3 (2+ ϵ2/9)

is a critical value in the sense that ϑ = π/2 when β = β•, where
we observe that∆(ϵ, β•) < 0 and

cm|β=β• =
2
3


ϵ + cos

π
6


3 + ϵ2


. (41)

More interesting, however, is the following: Since ϵ ≪ 1 is as-
sumed, β• is very close to, but strictly greater than, 4/3, the theo-
retical value of β for monatomic gases under standard conditions;
see, e.g., Ref. [14, p. 80], recalling the relation β = (γ + 1)/2.

Remark 10. For β > 2, it can be shown that ∆(ϵ, β) ≤ 0 for
ϵ ≤ ϵ̃0, where ϵ̃0 < 1 is given by

ϵ̃0 :=


27β2 − 72β + 44 −


(β − 2)(9β − 10)3

8(β − 1)
, (42)

while ∆(ϵ̃0, β) > 0 for ϵ ∈ (ϵ̃0, 1). However, in spite of the fact
that ∆(ϵ̃0, β) = 0, the wave speed cm, unlike its counterparts
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Fig. 2. f , ψ vs. ξ for β = 4/3 and ϵ = 0.1, which implies cm ≈ 1.068, and Re = 1.
Solid: f vs. ξ (Eq. (43)). Broken: ψ vs. ξ (Eq. (45)).

corresponding to the LW, Kuznetsov, and RSGC equations, never
suffers a bifurcation. This is easily established by noting that ∆ <
0, for every ϵ > 0, when β ∈ (1, 2) and recalling that Eq. (37)
admits only one positive root when β > 2. It is also noteworthy,
again assuming β ∈ (2, 7), that ∆(1/2, β̃) = 0, where β̃ :=
1
54 (73 + 13

√
13 ) ≈ 2.220.

Remark 11. Since ϵ ≪ 1 implies ϵ < 1/2, it follows that cm ∈

(1, 2) for every β ∈ (1, 2) ∪ (2, 7); i.e., like those of the four
weakly-nonlinearmodels, the travellingwave profiles given below
in Eqs. (43) and (45) propagate at supersonic speed.

4.3. Exact TWSs for the velocity and density fields

Returning now to Eq. (35), separating variables, and then
integrating using partial fractions, we obtain, after enforcing the
wavefront condition f (0) = 1/2, the following exact, but implicit,
TWS for the velocity field (see also Ref. [11, Eq. (3.41)]):

ξ(cm) =
1

Re(c3m − cm)


β − 2 − 2c2m(β − 1)

√
Q (cm)

× tanh−1

β − 2 + 2c2m(1 − f)

√
Q (cm)



− ln


fc

2
m

c2mf2 − f(2c2m + β − 2)+ c2m − 1


f /fm

1
2 f

−1
m

,

f ∈ (0, 1). (43)
Here, we have set fm := cm/ϵ for convenience and we note that
the shock thickness, l, of the kinks (i.e., integral curves of Eq. (35))
described by Eq. (43) is given by

l =
2ϵ(1 − 2fm)2

Re |2β − ϵcm(1 − 2fm)2 + 4(fm − 1)|
. (44)

In turn, using Eqs. (33) and (43) it is easily shown that ψ , where
we now letψ(ξ) := 1+ g(ξ) denote the dimensionless density, is
given in terms of f by

ψ(ξ) = 1 +
ϵf (ξ)

cm − ϵf (ξ)
=

fm
fm − f (ξ)

. (45)

In Fig. 2 we have, under the assumption that the propagation
medium is a monatomic gas, plotted f , ψ vs. ξ for Re = 1,
which we take without loss of generality,11 and ϵ = 0.1. As one

11 Because from the standpoint of numerics, setting Re = 1 is equivalent to
applying the re-scaling ξ → ξ/Re.
Table 1
β = 1.047, cm ≈ 1.054, l ≈ 36.319.

Model D(F |n) d(vn) d(ℓn)

LW (n = 0) 0.0798 0.00691 1.8857
BLSC (n = 1) 0.0798 0.00001 1.8857
Kuz. (n = 2) 0.0734 0.00029 1.6964
RSGC (n = 3) 0.1436 0.00249 3.7050

Table 2
β = β•, cm ≈ 1.068, l ≈ 28.479.

Model D(F |n) d(vn) d(ℓn)

LW (n = 0) 0.0725 0.01265 1.5039
BLSC (n = 1) 0.0725 0.00059 1.5039
Kuz. (n = 2) 0.0376 0.00324 0.4306
RSGC (n = 3) 0.0931 0.00064 2.0351

Table 3
β = 2.350, cm ≈ 1.116, l ≈ 17.000.

Model D(F |n) d(vn) d(ℓn)

LW (n = 0) 0.0297 0.05987 0.0215
BLSC (n = 1) 0.0297 0.00881 0.0215
Kuz. (n = 2) 0.1556 0.03312 2.6180
RSGC (n = 3) 0.0978 0.02295 1.6257

can clearly see, like that of the velocity field, the density profile
assumes the form of a kink, the shock thickness (h) of which is
easily determined using Eq. (45):

h =
l(1 − 2fm)2

4fm(fm − 1)
. (46)

Fig. 2 also illustrates the fact that

0 < f < 1 < ψ < fm(fm − 1)−1 (∀ ξ ∈ R), (47)
where, in Fig. 2, fm ≈ 10.683 and fm(fm − 1)−1

≈ 1.103.

Remark 12. Since fm > 2, as can be shown using Eq. (47) and
Fig. 2, it follows from Eq. (46) that h > l; in other words, viscous
dissipation evidently has a greater effect on the density than it does
on the velocity field.

5. Numerically evaluated metrics

In this section we compare/contrast the four weakly nonlinear
solutions with/to the exact result given in Eq. (43) based on the
following three metrics:

D(F |n) :=

 10l

−10l
[f (ξ)− F(ξ)]2 dξ,

d(vn) := |cm − vn|, and d(ℓn) := |l − ℓn|.

(48)

Here, D(F |n) denotes the distance w.r.t the L2 norm between the
kink solution profile given in Eq. (43) and the Taylor shock profile
of the nth weakly-nonlinear model, where Red = Re is to be
henceforth understood.

In Tables 1–3, we have computed these three quantities for four
different values of β . In every table, as well as in Figs. 3 and 4
which appear in the next section, we have taken ϵ = 0.1 and
Re = 1. In Table 1, the fluid considered is Butane (C4H10), in its
gas/vapor state, at 20 °C and 1 atm [25]; next, in Table 2, β =

β•(≈1.334) approximately corresponds to a monatomic gas; and
lastly, in Table 3,β = 2.350 corresponds to liquid sodium at 110 °C
and 1 atm [13].

Considering gases and liquids separately, we seek to numeri-
cally identify the weakly-nonlinear model, in the case of each fluid
type, that yields the smallest value of two or more of the metrics.
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Fig. 3. f , F vs. ξ forβ = 1.200 and ϵ = 0.1, which implies cm ≈ 1.062, and Re = 1.
(Color available online only.) Black: Navier–Stokes (Eq. (43)). Broken: LW/BLSC
(Eq. (15)). Red: Kuznetsov (Eq. (21) with n = 2). Blue: RSGC (Eq. (21) with n = 3).

Fig. 4. f , F vs. ξ for β = 3.100 and ϵ = 0.1, which implies cm ≈ 1.167, and Re = 1
(Color available online only.). Black: Navier–Stokes (Eq. (43)). Broken: LW/BLSC
(Eq. (15)). Red: Kuznetsov (Eq. (21) with n = 2). Blue: RSGC (Eq. (21) with n = 3).

6. Closure

6.1. Conclusions

We have, in the travelling wave context, compared/contrasted
four bi-directional, weakly-nonlinear acoustic models with/to the
1D compressible Navier–Stokes equations under the assumption
of homentropic flow. We have presented exact TWSs for both the
former and latter, noted critical values of the parameters, and
examined special cases. Based on an analysis of these findings,
in particular, the numerical results that have been presented, we
report the following:

(i) For β ∈ (1, β•), i.e., in the case of gases, there is not a
unanimous ‘‘best approximation’’ based on our metrics. To be
more specific, while Kuznetsov’s equation (n = 2) yields the
smallest values ofD(F |n) and d(ℓn), the BLSC equation (n = 1)
gives the smallest value of d(vn); see Fig. 3, wherein the value
of β taken corresponds to a diatomic gas (e.g., air at 20 °C and
1 atm) [13], along with Tables 1 and 2.

(ii) For β > 2 (i.e., for liquids), the Burgers’ TWS was found to
be equal to (in terms of D and d) or better than (in terms of d)
that of the BLSC equation, the best of the bi-directionalmodels
in the case of liquids; see Fig. 4, wherein the value of β taken
corresponds to distilled water at 0 °C [13], as well as Tables 3
and A.1.

(iii) As compared with the other three bi-directional models, the
n = 2 (resp. n = 1) case yields the smallest value of |dE/dt|
for every β in the range corresponding to gases (resp. liquids);
see Fig. 1.

(iv) The LW equation had the poorest performance, overall, in
terms ofwave speed,with the value of d(v0) always exceeding
not only those of the n = 1, 2, 3 cases but also that of Burgers’
equation (see Table A.1).

6.2. Discussion

Of our findings, (ii) is clearly the most surprising, given
that Burgers’ equation (see Appendix A) is actually an evolution
equation based on the assumption of plane unidirectional flow. A
key aspect of its success, as shown in Table A.1, is the fact that
d(vBeq) < d(v1) when β > 2, where it is noteworthy that v1 =

vBeq+O(ϵ2) > vBeq. Of course, if themedium in question is a liquid
and bi-directional propagation is a possibility (as in, e.g., acoustic
reflection problems), then one would likely be compelled to set
aside Burgers’ equation in favor of the BLSC equation, which in the
context of TWSs is the simplest of the bi-directional models.

It was also something of a surprise, given the results of
Refs. [11,16], and the fact that the derivation of the BLSC model
involves fewer expansions than that of Kuznetsov’s equation, to
find that the latter outperformed the former, w.r.t two of our
three metrics, when only gases were considered; see (i). However,
one finds very little difference in both the solution profiles (see
Table 1) and energy-rate curves (see Fig. 1(a)) of these two PDEs
over 1 < β . 1.1, a range that includes the β-value of not only
Butane but other important gases aswell; see, e.g., Refs. [14, p. 640]
and [26, p. 788], once again recalling the relation β = (γ + 1)/2.

What is more, the fact that the same bi-directional models that
performed best in terms of the metrics D and d also yielded the
smallest values of |dE/dt| (see (iii)) suggests that theminimization
of |dE/dt|, over the β-intervals corresponding to gases and
liquids, might be the only criteria needed to identify/derive, from
among such models, those that best approximate f and l, but not
necessarily cm.

Andwhile the LWequation exhibited a rather poor performance
here (see (iv)), as did its lossless version in tests performed by
Christov et al. [16], it should be noted that this PDE remains a topic
of interest to researchers in a number of acoustics-related fields;
see, e.g., Refs. [27–29] and those therein.

6.3. Possible future work

We now mention just a few of the ways in which the present
study might be extended. Perhaps the most obvious follow-on
investigation would be to carry out a travelling wave analysis
using the un-approximated (i.e., nonlinear) 1D energy equation
[30, Eq. (14.5.16)] and the non-isentropic equation of state for a
perfect gas [5, Eq. (5)] in place of Eqs. (8) and (9), respectively; see
also Ref. [31]. Another possibility is to take the constitutive relation
for the shear stress as the Ostwald–deWaele power-law [24, p. 25],
a formulation that would likely allow for TWSs in the form of
compact kinks [32]. And lastly, following Straughan [33], one
could assume that the flow of heat in the fluid is described
not by Fourier’s law but instead by Christov’s [34] refinement
of the Maxwell–Cattaneo law, a result of which would be the
introduction of the fluid’s thermal relaxation time as a new
parameter; see also Ref. [35] and those therein.
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Appendix. Burgers’ equation

As shown by Crighton [7], under the assumption of unidirec-
tional flow, Burgers’ equation can be derived from the BLSC equa-
tion with little difficulty.12 In the case of right-running acoustic
waves, and retaining x and t as the independent variables, this cel-
ebrated PDE assumes the form [2,7]

2ut + 2(1 + ϵβu)ux = (Red)−1uxx. (A.1)

Seeking travelling wave solutions, we set u(x, t) = F(ξ(vBeq))
in Eq. (A.1) and then impose the asymptotic conditions u → 1, 0
as ξ → ∓∞. On solving the resulting Bernoulli equation subject
to the wavefront condition F(0) = 1/2, we obtain the well known
result

F(ξ) =
1
2


1 − tanh[2ξ(vBeq)/ℓBeq]


, (A.2)

where the wave speed and the shock thickness are respectively
given by vBeq := 1 + ϵβ/2 and ℓBeq = ℓ1. Here, we note that
v1 > vBeq, a fact easily establishedwith the aid of Eq. (18), and that,
apart from the difference in the wave speeds, F = F for n = 0, 1;
i.e., the plot of F vs. ξ is identical to the F vs. ξ solution curves
corresponding to Eqs. (11) and (12).

Below in Table A.1, for the same values of β used to generate
Tables 1–3 and Figs. 3 and 4, the Burgers’ TWS is compared with
its exact counterpart (Eq. (43)), using once again the three metrics
defined in Eqs. (48).
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