
Coastal Engineering 58 (2011) 409–416

Contents lists available at ScienceDirect

Coastal Engineering

j ourna l homepage: www.e lsev ie r.com/ locate /coasta leng
Forecasting ocean waves: Comparing a physics-based model with statistical models

Gordon Reikard a,⁎, W. Erick Rogers b

a Statistics Department, Leap Wireless, CO, USA
b Oceanography Division, Naval Research Laboratory, Stennis Space Center, MS, USA
⁎ Corresponding author. Tel.: +1 303 734 7768.
E-mail address: Reikarsen@msn.com (G. Reikard).

0378-3839/$ – see front matter © 2010 Elsevier B.V. Al
doi:10.1016/j.coastaleng.2010.12.001
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 18 June 2010
Received in revised form 8 November 2010
Accepted 20 December 2010
Available online 14 January 2011

Keywords:
Wave forecasting
Simulation models
Time series models
The literature on ocean wave forecasting falls into two categories, physics-based models and statistical
methods. Since these two approaches have evolved independently, it is of interest to determine which
approach can predict more accurately, and over what time horizons. This paper runs a comparative analysis of
a well-known physics-based model for simulating waves near shore, SWAN, and two statistical techniques,
time-varying parameter regression and a frequency domain algorithm. Forecasts are run for the significant
wave height, over horizons ranging from the current period (i.e., the analysis time) to 15 h. Seven data sets,
four from the Pacific Ocean and three from the Gulf of Mexico, are used to evaluate the forecasts. The statistical
models do extremely well at short horizons, producing more accurate forecasts in the 1–5 hour range. The
SWAN model is superior at longer horizons. The crossover point, at which the forecast error from the two
methods converges, is in the area of 6 h. Based on these results, the choice of statistical versus physics-based
models will depend on the uses to which the forecasts will be put. Utilities operating wave farms, which need
to forecast at very short horizons, may prefer statistical techniques. Navies or shipping companies interested
in oceanic conditions over longer horizons will prefer physics-based models.
l rights reserved.
© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The literature on ocean wave forecasting falls into two broad
categories, physics-based models and statistical techniques. In the
physics literature, large-scale energy balance models have been the
methodology of choice since the 1970s. This last major advance in
this technology was the introduction of the third-generation (3G)
wave model (Komen et al., 1984). These 3G models are based on
theoretical and experimental studies by a number of researchers
including Phillips (1957, 1958), Miles (1957), Snyder et al. (1981),
Hasselmann et al. (1985), and Janssen (1991). The best-known is
the WAM (Wave Model), which has historically been used
primarily for large-scale, deep-water applications (WAMDIG,
1988; Komen et al., 1994). The SWAN (Simulating Waves Near
shore) model is a more recently developed 3G model, created for
the purpose of achieving economical solutions on high resolution
grids (Booij et al., 1999). The model includes mechanisms relevant
to near-shore processes (depth-induced breaking, bottom friction,
parameterized triad interactions) in addition to the traditional
mechanisms associated with global/regional wind wave models.
SWAN has been used successfully in hindcast applications (Ris et al.,
1999), and in real time wave prediction systems for coastal areas
(Rogers et al., 2007), Dykes et al. (2009). For recent reviews of 3G
wave modeling, see Jensen et al. (2002), Tolman et al. (2002) and
WISE (2007).

The statistical literature is more recent. The most popular
technique has been neural networks (Deo and Naidu, 1998; Deo
et al., 2001; Tsai et al., 2002; Deo and Jagdale, 2003; Makarynskyy,
2004; Londhe and Panchang, 2006; Jain and Deo, 2007; Tseng et al.,
2007, and Zamani et al., 2008). Ozger (2010) investigates wavelet
transformations. Regression-based models have been less popular,
but have also been used to good effect (Malmberg et al., 2005; Ho and
Yim, 2006; Roulston et al., 2005). Gaur and Deo (2008) use genetic
programming. Reikard (2009) extends regression and neural network
techniques to predicting the wave energy flux.

Since these two approaches have evolved independently, it is of
interest to determine which approach can predict more accurately,
and over what time horizons. A reasonable critique of statistical
methods is that they do not capture the underlying physics. However,
tests in fields ranging from the sciences to financial economics have
demonstrated that time series models can often forecast quite
accurately over short horizons.

A further reason to compare the two approaches has to dowith the
uses of the forecasts. Large-scale simulation models were initially
developed primarily to satisfy the requirements of national navies,
although application in civilian forecasting centers is now wide-
spread. For instance, forecasts are also used by commercial shipping
lines, and typically involve prediction of wave heights over longer
horizons, on the order of several hours to a few days. Recently,
however, the technology has been developed to make wave farms
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commercially viable. Since electricity is perishable, utilities will be
interested in forecasting over much shorter horizons, on the order of
1–6 h, consistent with generating and selling power.

This paper runs a comparison of the SWAN model with two
statistical techniques. The most commonly predicted variable, in the
context of a 3G wave model such as SWAN, is the significant wave
height, HSt, which is the measure of the total energy (i.e., the
integratedwave spectrum). Predictions are denotedHS(t+τ), where t
is the analysis time and τ is the forecast horizon, or look-ahead period.
Seven data sets, from the Pacific Ocean and Gulf of Mexico, are used to
evaluate the models. Section 2 consists of a review of the models. The
setup of the forecasting tests is discussed in Section 3, and results are
presented in Section 4. Section 5 concludes.

2. The forecasting models

The SWAN model represents surface waves with the two-
dimensional wave action density spectrum N(σ,θ)=E(σ,θ)/σ, where
σ is the intrinsic frequency (i.e., the wave frequency measured from a
frame of reference whichmay include themotion of a current), θ is the
wave direction, and E is the spectral energy density. The wave
spectrum is described by the spectral action balance equation:

∂N
∂t + ∇⋅CN =

S
σ

ð1Þ

where∇ is the gradient operator in x, y, θ, and σ; C is the propagation
speed, which in the absence of currents is the wave group velocity.
The left hand side of this governing equation represents conservative
phenomena such as refraction and shoaling. The right-hand side
contains the source terms. The total source term S is given in most
general form as: S=Sinput+Sdiss+Snl i.e., input, dissipation, and
nonlinear interactions respectively. Specific source terms include
depth-limited wave breaking Sbr, steepness-limited wave breaking
(white-capping) Swc, dissipation by bottom friction Sbf, four-wave
nonlinear interaction Snl4, and input from the local wind Sin. For a
discussion of the other source terms, see Booij et al. (1999) and
SWAN (2008).

There is a wide range of statistical methods available in the
literature, but in the interests of tractability, only two are evaluated.
One is a regression with time-varying coefficients. This approach is
attractive for two reasons. First, any nonlinear model can in principle
be approximated by a stochastic coefficient model (Granger, 2008).
Second, empirical tests have often found that time-varying parameter
regressions yield the most accurate forecasts for volatile data (see for
instance Bunn, 2004). Let ln denote natural logs, let ω denote a
coefficient, let the t-subscript denote time variation, and let εt denote
the residual. The model is of the form:

lnHSt = ω0t + ω1tlnHSt−1 + ω2tlnHSt−2 + ω3tlnHSt−3

+ ω4tlnHSt−4 + εt εt e P 0;ν2
� � ð2Þ

where P is the probability distribution, and ν2 is the residual variance.
Here the regression includes four lags. With hourly data, all the lags
were statistically significant, and this specification was found to
predict more accurately than models with shorter or longer lag
structures.

The second is a frequency domain method. The reason for going to
the frequency domain is that the sea surface can be represented as a
spectrum, while waves can be represented as a superposition of cycles
at different frequencies. The specific approach used here involves
taking the Fourier transform of the moving average representation of
the series (Koopmans, 1974, 235–237). Because this approach is not
widely known, the mathematical derivation is presented, followed by
the steps of the algorithm used in the forecasts. Readers not interested
in the mathematics may wish to omit Eqs. (3)–(7), and proceed
directly to the algorithm.

The moving average representation models a time series as a
function of its innovations:

HSt = β Lð Þεt ð3Þ

where L is the backshift operator, β (0)=1, and εt is the residual.
This representation is commonly used in the ARIMA framework of
Box and Jenkins (1976), where it is modeled in the time domain
using a rational polynomial. Let ϕ(L) be the autoregressive
operator, represented as a polynomial in the backshift operator:
ϕ(L)=1–ϕ1L–… –ϕpLp, and let θ(L) be the moving average
operator: θ(L)=1+θ1L+…+θqLq. Ignoring constants, the moving
average representation is then given by the ratio of the moving
average and autoregressive polynomials: β=[θt(L) / ϕt(L) ]εt.

In the frequency domain, spectral methods can be used to calculate
the Fourier transform of β, which can be used to forecast. The spectral
density (F) of HSt can be expressed as a function of the z-transform:

FHSt = β zð Þβ z−1
� �

ν2 ð4Þ

The z-transform converts the discrete values of a time series into a
complex frequency domain representation, and is given by:

z = Λ exp δφð Þ = Λ cos φ + δ sin φð Þ ð5Þ

where Λ is the magnitude of z and φ is the complex argument, or
phase, in radians.

Let γ denote a one-sided polynomial in positive powers of z. Then
the log spectral density can be expressed as:

lnFHSt = γ zð Þ + γ z−1
� �

+ γ0 ð6Þ

Taking antilogs, and setting Eq. (4) equal to Eq. (6):

β zð Þβ z−1
� �

ν2 = exp γ zð Þ½ � + exp γ z−1
� �h i

+ exp γ0ð Þ ð7Þ

Eq. (7) provides a frequency domain estimate of β, which can then
be projected outside the range of the data set.

The steps of the forecasting algorithm are as follows:

• Compute the log spectral density of the time series to be forecasted.
• Inverse Fourier transform, to mask the negative powers.
• Fourier transform again, and take anti-logs in the frequency domain.
• Inverse Fourier transform to estimate β. Normalize so that β(0)=1.
• Fourier transform, and filter the transformed series by 1 / β(L); this
computes the residuals.

• Inverse Fourier transform, and mask the residuals outside the range
of the data.

• Fourier transform and filter the residuals by β(L) in the frequency
domain.

• Inverse Fourier transform the filtered residual series, extending the
date range to encompass the forecast range.

• Define an equation in the time domain such that the series to be
forecasted is a deterministic function of the series defined in the
previous step, and forecast this equation.

In the Regression Analysis of Time Series software package used to
run the statistical models, the frequency domain algorithm is available
as an automated routine, while the code can also be extracted for
more flexible programming. The website of this software package is:
http://www.estima.com.

One crucial issue in the statistical models is the method of
estimating the time-varying coefficients. Time-varying parameters
can be estimated using a Kalman filter (Kalman, 1960), or by sliding

http://www.estima.com


Table 1
The SWAN forecasts and locations.

NDBC
Buoy

SWAN Forecasts Location Latitude,
Longitude

46050 714 values, Jan. 2008
to May 2009

Stonewall Banks, Oregon,
20 NM West

44.641 N
124.500 W

46041 714 values, Jan. 2008
to May 2009

Cape Elizabeth, Washington,
45 NM Northwest

47.353 N
124.731 W

46029 714 values, Jan. 2008
to May 2009

Columbia River, Oregon,
20 NM West

46.144 N
124.510 W

46211* 714 values, Jan. 2008
to May 2009

Gray's Harbor, Washington,
4.5 NM Southwest

46.515 N
124.146 W

42007 1679 values, Oct. 2007
to May 2010

Biloxi, Mississippi,
22 NM South Southeast

30.090 N
88.769 W

42040 1679 values, Oct. 2007
to May 2010

Mobile, Alabama,
64 NM South

29.212 N
88.207 W

42039 306 values, Dec. 2009
to May 2010

Pensacola, Florida,
115 NM East Southeast

28.791 N
86.008 W

NDBC: National data buoy center (http://www.ndbc.noaa.gov).
*Equivalent to Coastal Data Information Program site 036 (http://www.cdip.ucsd.edu).
NM=Nautical miles.
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window techniques. When the Kalman filter is unrestricted, the
coefficients behave like a random walk. In highly variable time series,
however, the unrestricted Kalman filter is susceptible to finding
spurious patterns in random events. The degree of variation in the
coefficients can be reduced either by restricting the filter, or by
adjusting the widths of the moving window. Preliminary experi-
ments were run with the data sets below to determine the optimal
degree of restriction on the Kalman filter, by running forecasting
tests and comparing the errors. Generally, the tests favored high
degrees of restriction.

A second set of experiments were run using amovingwindow, and
comparing the errors associatedwith variouswindowwidths. At short
widths, on the order of 100 h or less, the results were similar to the
unrestricted Kalman filter. Over wider widths, on the order of 600 to
1200 h, the models became too inertial, and did not respond well to
changing conditions. The optimal windowwidths from the standpoint
of overall forecast accuracy were in the range of 400 to 600 h. On the
basis of the tests, a width of 480 observations was used. The spectral
algorithm was found to be less sensitive to changes in the window
widths, but here also 480 h yielded good results. Additional tests were
run for data sets in a variety of other locations, including deep water
sites in the Atlantic and Pacific. Again, themost accurate forecastswere
obtained when the window widths were in the range of 400 to 600 h.

Finally, a persistence forecast – setting the predicted value equal to
the most recently observed actual value – is also reported. This
method is commonly used to provide a benchmark forecast in
econometrics (Theil, 1971).
3. The forecasting tests

The physics-based numerical model outputs are all taken from
archived output from real time forecasting systems designed and
operated the Naval Research Laboratory, using SWAN. Inputs to these
systems were official operational wind and wave products. Thus the
wave predictions from these systems can be fairly portrayed as
completely “blindfolded”. Further, they did not benefit from post facto
improvements to forcing fields, as might be the case for hindcast
simulations driven by observational data and/or reanalysis wind
fields. The first forecasting system is the Coastal Northwest (CNW)
system for the Washington and Oregon coastlines (http://www7320.
nrlssc.navy.mil/CNW/). This system operated from October 2004 to
May 2009. The initial setup was performed for the NOAA Coastal
Storms Program. The second system is the north central Gulf of
Mexico (GMEX) system, which was initiated in October 2006 and
continues to operate at time of writing. The initial setup was
performed for the CenGOOS (Central Gulf Ocean Observing System)
program (http://www7320.nrlssc.navy.mil/CenGOOS/).

Table 1 reports the locations of the sites, the dates of the forecasts.
The grid domains for these two systems are shown in Figs. 1 and 2.
Some features of the model setup are:

• Spherical coordinates were used, with grid spacing as shown in
Table 2.

• The directional resolution Δθ=10° in all cases.
• The frequency grid is logarithmic, with 34 frequencies from
0.0418 Hz to 1.0 Hz.

• The default parameterizations in SWAN are that of WAM, Cycle 3,
sometimes referred to in the literature as “WAM3 physics”. In this
study, the default parameterizations for Sin, Sds, Snl4 are used, except
that the integer used for the weighting of relative wave number was
increased by 1.0 (see also Rogers et al., 2003 and Janssen et al. 1989).

• For the fully non-stationary models, a time step of 10 min is used.
• For the pseudo non-stationary models (see below), the default
convergence criterion for iterations was used.

• The interval of wind input is 3 h in all cases.
• In the case of the CNW system, the resolution of the forcing provided
to the outer SWAN nest (CNW-G1) case is at 1° intervals along the
boundary, and this was obtained from the operational NCEP WW3
Eastern North Pacific (ENP) model, which has a resolution of 0.25°.

• The Gulf of Mexico outer grid, denoted GMEX-G1 in Table 2,
includes the entire Gulf and the Caribbean north of 18 N. Boundary
forcing is not applied to this grid. Swells from east of the Florida
Straits or from the southern Caribbean are not included in the
forecast, since they typically have a negligible influence in the
northern Gulf.

• In all cases, boundary forcings are provided as full directional
spectra (i.e. not parameterized).

• The JONSWAP bottom friction formulation is used (see SWAN
manual). A non-default friction coefficient is used in the Gulf of
Mexico SWAN models. The value is based on an unpublished
document by Dr. Hendrik Tolman (NCEP).

• For the CNW SWAN models, the default setting for depth-limited
breaking is used. For the GMEX SWAN models, depth-limited
breaking is disabled.

• Default propagation schemes are used in all cases. The default
schemes for geographic propagation in SWAN are second order
accurate. For stationary computations, numerical diffusion is second
order. For nonstationary computations, numerical diffusion is third
order (see Rogers et al., 2002).

• The GMEX-G11 SWANmodel includes surface currents in its forcing.
These fields are taken from a 1/25° implementation of the HYCOM
model, also operated by NRL.

Additional details for these forecasts are given in Table 2. “Fully
nonstationary” indicates that computations are made in full time
stepping mode. “Pseudo-nonstationary” indicates that that the model
uses a time-sequence of computations that utilize the stationary
assumption (see discussion in Rogers et al., 2007). The deepwater
source term parameterizations used are not tuned for this simulation
or for this area; rather they are the same as what are used in SWAN
forecasting systems run at NRL for other areas.

Unlike the statistical model, the physics-based model does not use
wave observations to produce its forecast. Instead, in SWAN, wave
energy is introduced in two ways: Either by the model source term's
response to wind forcing (i.e., the right hand side of Eq. (1)), or by
inputs of directional spectral at the grid boundary, provided by a host
wave model, as indicated in Table 2.

At the four Pacific Coast sites, the forecasts were run for selected
dates spanning the period from January 1, 2008 through May 17,
2009, and for the following horizons: τ=0, 3, 6, 9, 12 and 15 h. For

http://www7320.nrlssc.navy.mil/CNW/
http://www7320.nrlssc.navy.mil/CNW/
http://www7320.nrlssc.navy.mil/CenGOOS/
http://www.cdip.ucsd.edu
http://www.cdip.ucsd.edu


Fig. 1. Diagram of Coastal Northwest Grid 1 (CNW-G1).
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each value of τ, 714 forecasted values are available. Different time
spans and forecast horizons were used at the Gulf sites. At the Biloxi
buoy (NOAA NDBC 42007) the forecasts were also available for τ=0,
Fig. 2. Diagram of Gulf of Mex
3, 6, 9, 12, and 15 h. The time span is from October 25, 2007 through
May 17, 2010, and 1679 predicted values are available for each value
of τ. At the Mobile buoy (42040) the time span is the same, but the
ico grid 11 (GMEX-G11).

image of Fig.�2


Table 2
Additional Detail for the SWAN Forecasts.

Grid ID CNW-G1 CNW-G11 CNW-G111 GMEX-G11 GMEX-G111

Grid descr. Coastal Northwest
(outer)

Coastal Northwest
(shelf)

Grays Harbor North-Central Gulf
of Mexico (outer)

North-Central Gulf
of Mexico (shelf)

Δx (longitude) 3.75′ or 4.9 km 0.92′ or 1.17 km 0.229′ or 289 m 4′–6.5 km 1.17′~1.88 km
Δy (latitude) 3.75′ or 6.9 km 0.92′ or 1.71 km 0.232′ or 430 m 4′=7.4 km 1.17′=2.18 km
Origin (°E, °N) 233.50 42.75 235.00 45.16 235.74 46.84 267.0 27.0 270.12 29.15
(# x-cells ,
# y-cells)

45 73 43 164 198
93 147 45 59 78

Bathymetry 1′ NGDC 15″ NGDC 3″ NGDC NRL DBDB (2′) NRL DBDB (1′)
Computation
mode

Fully nonstationary Pseudo-nonstationary Pseudo-nonstationary Fully nonstationary Pseudo-nonstationary

Bottom friction
coefficient

Cf=0.067 (default) Cf=0.019

Output locations 46050 (depth=123 m) 46041 (132 m) 46029 (135 m) 46211 (38 m) (CDIP-036) 42039 (307 m) 42040 (165 m) 42007 (14 m)
Boundary forcing
from

NCEP WW3 ENP
15′×15′ resolution

SWAN CNW-G1 SWAN CNW-G11 SWAN GMEX-G1 SWAN GMEX-G11

Wind forcing NCEP GFS ENP,
15′×15′ resolution

FNMOC COAMPS CENAM,
12′×12′ resolution

Boundary forcing to CNW-G11 CNW-G111, G112,G113 None GMEX-G111 none
Output interval 3 h hourly 3 h
forecast range (days) 3 2.0 1.5 2.0 2.0
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values of τ run continuously from zero through 15 h. There are 1679
forecasts for every value of τ. At the Pensacola buoy (42039) the time
span is from December 12, 2009 through May 15, 2010. Again, the
values of τ run from zero through 15 h, and 306 predictions are
available for each value of τ.

The data sets used to validate the forecasts were downloaded
from the National Oceanographic and Atmospheric Administra-
tion's National Data Buoy Center (http://www.ndbc.noaa.gov).
Table 3 reports the available dates, along with other properties of
the data. Fig. 3 shows the wave height over a 12-month period
from one of the Pacific Coast sites, Cape Elizabeth. Data from the
other three Pacific sites are comparable. At all of these sites, the
mean wave height ranges from 2.09 to 2.27 m, and the standard
deviation is slightly over 1 m. There is evidence of excess kurtosis.
Fig. 4 shows one of the three Gulf sites, Pensacola. The Gulf data
shows somewhat different properties. There are more outlying
fluctuations, and greater seasonal volatility. As Table 3 indicates,
the mean wave heights in the Gulf are lower, but the kurtosis is
significantly greater.

A major issue in the observational data is missing calendar dates,
and missing values. The databases were interpolated in two steps.
First, the date fields were used to create a continuous calendar.
Table 3
Properties of the buoy data.

Wave height statistics

NDBC Id /
Site name

Water
depth

Mean Standard
Deviation

Kurtosis Dates
Available_____________

46050 Stonewall
Banks

123 m 2.21 1.09 2.69 Mar. 5, 2008 to
May 31, 2009

46041 Cape
Elizabeth

132 m 2.27 1.18 1.64 Jan. 1, 2008 to
May 31, 2009

46029 Columbia
River

135 m 2.25 1.13 2.75 Mar. 3, 2008 to
May 31, 2009*

46211 Gray's
Harbor

40 m 2.04 1.08 2.21 Jan. 1, 2008 to
Dec 31, 2009

42007 Biloxi 35 m 0.76 0.51 17.06 Oct. 1, 2007 to
Dec 31, 2009**

42040 Mobile 161 m 1.06 0.77 17.45 Oct. 1, 2007 to
Oct 5, 2009***

42039 Pensacola 307 m 1.41 0.83 4.24 Dec. 1, 2009 to
Mar. 31, 2010

*The Columbia River site is missing data from April 15 through June 20, 2008.
**The Biloxi site is missing data from June 24 through August 31, 2008.
*** The Mobile site is missing data from February 15 through May 18, 2008.
Second, the missing values were interpolated using a polynomial. To
verify that the interpolations produced realistic numbers, the
statistical models were tested both over the interpolated data sets
and on the original data, simply omitting any missing values. The
forecast errors were extremely close, indicating that interpolation did
not appreciably bias the results. However, in some cases, data were
missing for several months at a time (see Table 3). These values were
simply omitted.

The experiments using the statistical models were set up as
follows. The forecast horizons were the same as for the SWAN model,
except that 1–2 and 4–5 hour predictions were also generated. The
forecasts were run over all the available data, and two sets of errors
are reported, for the entire data set, and for the same values in the
SWAN forecasts. The models were estimated over an initial set of
starting values, and were then forecasted a given number of steps
ahead. At the next step the models were re-estimated and forecasted,
continuing through the end of the data set. All forecasting was
dynamic, and the predicted values are true out-of-sample forecasts, in
that they use only data prior to the start of the forecast horizon. The
reported error for horizons beyond one period is for the forecast for
that horizon only; intervening values are omitted. In other words, the
error at τ=3 omits the errors at τ=1 and τ=2 h.
4. Results

Table 4 reports the results for the Pacific Coast, and Table 5 reports
the results for the Gulf. The first three columns report the errors from
the SWAN forecasts and the statistical forecasts only for the same
horizons and values as in the SWAN simulations. The error is
measured as the mean absolute error, i.e., the absolute difference
between the forecast and the actual value. For τ=0, the regression
forecast is of course the in-sample fit. No frequency domain forecast is
reported for τ=0, since the fit would be nearly perfect. Since the
SWANmodel does not utilize the observational data, its prediction for
τ=0 is, by contrast, not perfect. The next three columns report the
errors from the statistical models and persistence forecasts over all
available data points.

In all the sites, the statistical models are found to predict more
accurately at short horizons, while SWAN predicts more accurately
over longer horizons. At τ=1-5, the errors from the regression and
spectral algorithms are significantly lower than in the SWAN
forecasts. The statistical model errors over the entire data set are in
the same overall range as the errors for the smaller data set for which

http://www.ndbc.noaa.gov


Meters, January 1 to December 31, 2008
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Fig. 3. The significant wave height, Cape Elizabeth.
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the SWAN predictions are available — as would be expected if the
values used in the SWAN forecasts represent a random sample of the
larger data set. Among the statistical methods, the frequency domain
algorithm is somewhat better than the regression. At all the Pacific
Coast sites, both statistical models are superior to the persistence
forecast. However, as the horizon increases, the accuracy of the
statistical models deteriorates. At τ=6 h, the statistical models and
SWAN show comparable forecast errors at nearly all the sites. At τN6,
SWAN is unambiguously superior.

The tests for the Mobile and Pensacola locations are of particular
interest, since they include a larger number of forecast horizons for
SWAN. In both instances, however, the results are similar. The errors
from the statistical models significantly lower than the SWAN errors
at very short horizons, but the gap between the two falls as the
horizon increases, with the convergence points invariably occurring at
or near 6 h. At τ=7, the statistical model errors start to exceed the
SWAN error. In all three Gulf sites, the frequency domain algorithm is
superior to the regression. Interestingly, the persistence forecast does
better at the Gulf sites. At the Biloxi and Mobile sites, it is comparable
to the regression, although the spectral algorithm is consistently
better. At the Pensacola site, the persistence forecast is marginally
better than all the other models for the first 5 h.
Meters, June 1 2009
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2009
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Fig. 4. The significant wa
5. Conclusions

The tests have yielded one central conclusion. The accuracy of the
models is a function primarily of the forecast horizon. At very short
horizons, up to 5 h, the statistical models achieve more accurate
predictions. However, as the horizon extends, the accuracy of the
statistical models falls off rapidly. At horizons beyond 6 h, the SWAN
forecasts are uniformly more accurate. As a general rule, the crossover
point, at which the accuracy of the twomethods converges, in the area
of 6 h. A notable feature of the SWAN forecasts is that they maintain
the same level of accuracy at longer horizons. Additional tests of the
SWAN model have found that the error only decays after longer
period of time, on the order of several days.

One question that arises here is whether SWAN's performance at
short horizons can be explained by the forcing terms used in the
model. To evaluate this, the wind speed data at one of the sites
(Mobile) was compared with the SWAN wind forcing values for the
same location. The error is extremely similar over a range of horizons,
similar to the performance of SWAN itself on wave height. When
regression models were estimated for the Mobile wind speed, the
error was found to be lower at the short horizons, and higher at longer
horizons, with a crossover point in the area of 8 h.
 to March 31, 2010

Nov Dec Jan Feb Mar

ve height, Pensacola.
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Table 4
Comparison of forecast errors, Pacific Coast sites. Statistics are Mean Absolute Error.

Forecast
Horizon

Tests for simulation values Tests for all values

SWAN Regression Spectral Regression Spectral Persistence

Stonewall Banks
0 0.297 0.133 … 0.131 … …

1 … … … 0.130 0.129 0.140
2 … … … 0.168 0.161 0.182
3 0.295 0.197 0.192 0.206 0.194 0.223
4 … … … 0.242 0.228 0.261
5 … … … 0.290 0.272 0.313
6 0.299 0.303 0.295 0.315 0.295 0.340
9 0.309 0.392 0.368 0.396 0.371 0.431
12 0.298 0.447 0.422 0.452 0.427 0.501
15 0.307 0.498 0.471 0.503 0.479 0.562

Cape Elizabeth
0 0.306 0.132 … 0.127 … …

1 … … .. 0.126 0.119 0.131
2 … … … 0.165 0.158 0.172
3 0.331 0.205 0.187 0.208 0.201 0.217
4 … … … 0.247 0.238 0.258
5 … … … 0.301 0.288 0.314
6 0.327 0.311 0.293 0.328 0.314 0.343
9 0.334 0.397 0.369 0.422 0.401 0.441
12 0.356 0.455 0.421 0.495 0.428 0.521
15 0.351 0.511 0.491 0.553 0.538 0.592

Columbia River
0 0.319 0.131 … 0.125 … …

1 … … … 0.125 0.124 0.133
2 … … … 0.148 0.148 0.174
3 0.322 0.182 0.186 0.183 0.185 0.219
4 … … … 0.219 0.217 0.243
5 … … … 0.267 0.259 0.275
6 0.328 0.308 0.289 0.292 0.281 0.292
9 0.338 0.375 0.339 0.368 0.352 0.432
12 0.342 0.427 0.394 0.426 0.406 0.508
15 0.364 0.474 0.449 0.479 0.461 0.578

Gray's Harbor
0 0.276 0.094 … 0.069 … …

1 … … … 0.072 0.078 0.106
2 … … … 0.135 0.138 0.152
3 0.288 0.181 0.179 0.182 0.178 0.199
4 … … … 0.214 0.208 0.238
5 … … … 0.257 0.248 0.291
6 0.286 0.266 0.258 0.279 0.269 0.318
9 0.295 0.336 0.226 0.364 0.344 0.406
12 0.302 0.394 0.368 0.430 0.399 0.472
15 0.295 0.445 0.416 0.469 0.447 0.535

Table 5
Comparison of forecast errors, Gulf of Mexico sites. Statistics are Mean Absolute Error.

Forecast
Horizon

Test for simulation values Tests for all values

SWAN Regression Spectral Regression Spectral Persistence

Biloxi
0 0.186 0.059 … 0.065 … ..
1 … … … 0.068 0.061 0.066
2 … … … 0.087 0.082 0.085
3 0.169 0.110 0.096 0.112 0.098 0.110
4 … … … 0.134 0.116 0.131
5 … … … 0.163 0.141 0.159
6 0.174 0.179 0.156 0.178 0.154 0.174
9 0.178 0.202 0.192 0.203 0.194 0.224
12 0.182 0.227 0.227 0.233 0.228 0.262
15 0.189 0.251 0.254 0.255 0.256 0.292

Mobile
0 0.200 0.068 … 0.069 … …

1 0.199 0.069 0.064 0.071 0.065 0.070
2 0.199 0.096 0.093 0.095 0.094 0.100
3 0.204 0.129 0.122 0.128 0.124 0.131
4 0.207 0.156 0.149 0.158 0.151 0.159
5 0.203 0.178 0.176 0.181 0.179 0.188
6 0.200 0.201 0.200 0.204 0.201 0.210
7 0.201 0.220 0.209 0.217 0.203 0.233
8 0.201 0.241 0.226 0.238 0.221 0.253
9 0.203 0.263 0.245 0.265 0.249 0.272
10 0.198 0.282 0.260 0.284 0.262 0.289
11 0.199 0.301 0.276 0.305 0.279 0.306
12 0.198 0.311 0.283 0.309 0.283 0.321
13 0.205 0.331 0.312 0.329 0.308 0.335
14 0.200 0.349 0.318 0.347 0.317 0.349
15 0.206 0.371 0.338 0.373 0.339 0.362

Pensacola
0 0.295 0.084 … 0.092 … …

1 0.280 0.085 0.076 0.093 0.083 0.076
2 0.272 0.129 0.110 0.124 0.119 0.112
3 0.273 0.171 0.152 0.170 0.147 0.146
4 0.270 0.206 0.190 0.208 0.188 0.182
5 0.266 0.245 0.220 0.238 0.212 0.214
6 0.270 0.263 0.235 0.276 0.241 0.249
7 0.272 0.318 0.276 0.308 0.273 0.272
8 0.267 0.339 0.302 0.337 0.303 0.298
9 0.278 0.367 0.321 0.363 0.323 0.322
10 0.286 0.398 0.358 0.389 0.348 0.344
11 0.293 0.427 0.391 0.412 0.372 0.366
12 0.295 0.446 0.387 0.435 0.385 0.386
13 0.281 0.467 0.394 0.456 0.402 0.405
14 0.277 0.469 0.399 0.464 0.421 0.423
15 0.283 0.487 0.415 0.492 0.448 0.439
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Using statistical forecasts of wind as an input to SWAN would
however be problematic. In SWAN, waves are not generated by wind
at a single site, but by wind over a range of locations. The wavemodel
is a temporal and spatial integration, or stated anotherway, a functionof
wind histories at several different points. Using the statistical wind
forecast would require a simplified version of SWAN that would not
consider propagation, or spatial gradients. Further, the goal in this paper
is not to evaluate individual inputs, but rather to compare the accuracy
of the SWAN modeling system, in its entirety, to the statistical models.
The SWAN model physics, wind forcing, bathymetry input, and
boundary forcing are all part of the SWAN modeling system and all
contribute to its performance.

Instead, themain reason for the differences between the two types
of models lies with the data itself. At high frequencies, the data exhibit
high degrees of dependence between time points (or in statistical
terms, serial correlation). Over short horizons, the data are dominated
by this dependence. The statistical models are able to parameterize
this, and predict more accurately. However, at slightly lower
frequencies, the dependence dissipates. At these longer horizons,
the data is more dominated by the underlying signals. As a result,
physics-based models are able to forecast more effectively.
These results suggest that the choice of statistical versus physics-
based models for forecasting will depend on the intended uses.
Utilities operating wave farms will need to predict power flows at
horizons of only a few hours, and for this reason may prefer to rely on
statistical techniques. Navies or shipping companies interested in
oceanic conditions over longer horizons, and in denied areas or other
locations where in situ data are not available to drive statistical
forecasts, will prefer physics-based models.

The results also point to some directions for further research. For
certain applications, it may be possible to combine physics-based and
statistical models. The combined prediction from a hybrid model
combining elements of both approaches may be superior to either
method individually. Another extension is prediction of the wave energy
flux, rather than thewave height alone. The next stage in this research is a
combination of physics-based and statistical models for wave energy.
Acronyms and abbreviations
CenGOOS Central Gulf Ocean Observing System
CDIP Coastal Data Information Program
CNW Coastal Northwest SWAN forecasting system
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COAMPS Coupled Ocean/Atmosphere Mesoscale Prediction System
(Hodur, 1997)

DBDB NRL Digital Bathymetric Data Base
ENP Eastern North Pacific, referring to a WW3 implementation

at NCEP
FNMOC Fleet Numerical Meteorology and Oceanography Center
GMEX north central Gulf of Mexico forecasting system
HYCOM HYbrid Coordinate Ocean Model (Bleck, 2002).
JONSWAP Joint North Sea Wave Project, (Hasselmann et al., 1973)
NCEP National Centers for Environmental Prediction
NDBC National Data Buoy Center
NGDC National Geophysical Data Center
NOAA National Oceanic and Atmospheric Administration
SWAN Simulating WAves Nearshore (Booij et al., 1999)
WAM WAve Model (WAMDIG, 1988; Komen et al., 1994)
WW3 WAVEWATCH III® (Tolman, 1991; Tolman, 2002)
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